1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
|
-- GHDL Run Time (GRT) - signals management.
-- Copyright (C) 2002 - 2014 Tristan Gingold
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program. If not, see <gnu.org/licenses>.
--
-- As a special exception, if other files instantiate generics from this
-- unit, or you link this unit with other files to produce an executable,
-- this unit does not by itself cause the resulting executable to be
-- covered by the GNU General Public License. This exception does not
-- however invalidate any other reasons why the executable file might be
-- covered by the GNU Public License.
with System; use System;
with System.Storage_Elements; -- Work around GNAT bug.
pragma Unreferenced (System.Storage_Elements);
with Ada.Unchecked_Deallocation;
with Grt.Errors; use Grt.Errors;
with Grt.Errors_Exec; use Grt.Errors_Exec;
with Grt.Processes; use Grt.Processes;
with Grt.Options; use Grt.Options;
with Grt.Disp_Signals;
with Grt.Astdio;
with Grt.Stdio;
with Grt.Threads; use Grt.Threads;
package body Grt.Signals is
procedure Free is new Ada.Unchecked_Deallocation
(Object => Transaction, Name => Transaction_Acc);
procedure Free_In (Trans : Transaction_Acc)
is
Ntrans : Transaction_Acc;
begin
Ntrans := Trans;
Free (Ntrans);
end Free_In;
pragma Inline (Free_In);
-- Signal mode (and flags) for the current signal.
Sig_Mode : Mode_Signal_Type;
Sig_Has_Active : Boolean;
Sig_Kind : Kind_Signal_Type;
-- Last created implicit signal. This is used to add dependencies on
-- the prefix.
Last_Implicit_Signal : Ghdl_Signal_Ptr;
-- Current signal resolver.
Current_Resolv : Resolved_Signal_Acc := null;
function Get_Current_Mode_Signal return Mode_Signal_Type is
begin
return Sig_Mode;
end Get_Current_Mode_Signal;
procedure Assign
(Targ : out Value_Union; Val : Ghdl_Value_Ptr; Mode : Mode_Type) is
begin
case Mode is
when Mode_B1 =>
Targ.B1 := Val.B1;
when Mode_E8 =>
Targ.E8 := Val.E8;
when Mode_E32 =>
Targ.E32 := Val.E32;
when Mode_I32 =>
Targ.I32 := Val.I32;
when Mode_I64 =>
Targ.I64 := Val.I64;
when Mode_F64 =>
Targ.F64 := Val.F64;
end case;
end Assign;
function Read_Value (Value_Ptr : Ghdl_Value_Ptr; Mode : Mode_Type)
return Value_Union is
begin
case Mode is
when Mode_B1 =>
return (Mode => Mode_B1, B1 => Value_Ptr.B1);
when Mode_E8 =>
return (Mode => Mode_E8, E8 => Value_Ptr.E8);
when Mode_E32 =>
return (Mode => Mode_E32, E32 => Value_Ptr.E32);
when Mode_I32 =>
return (Mode => Mode_I32, I32 => Value_Ptr.I32);
when Mode_I64 =>
return (Mode => Mode_I64, I64 => Value_Ptr.I64);
when Mode_F64 =>
return (Mode => Mode_F64, F64 => Value_Ptr.F64);
end case;
end Read_Value;
-- For direct drivers, only a pointer is available and it may not be
-- aligned. Hence this version of Assign.
procedure Assign
(Targ : Ghdl_Value_Ptr; Val : Ghdl_Value_Ptr; Mode : Mode_Type) is
begin
case Mode is
when Mode_B1 =>
Targ.B1 := Val.B1;
when Mode_E8 =>
Targ.E8 := Val.E8;
when Mode_E32 =>
Targ.E32 := Val.E32;
when Mode_I32 =>
Targ.I32 := Val.I32;
when Mode_I64 =>
Targ.I64 := Val.I64;
when Mode_F64 =>
Targ.F64 := Val.F64;
end case;
end Assign;
procedure Ghdl_Signal_Name_Rti (Sig : Ghdl_Rti_Access;
Ctxt : Ghdl_Rti_Access;
Addr : Address)
is
pragma Unreferenced (Ctxt);
pragma Unreferenced (Addr);
Sig_Rti : constant Ghdl_Rtin_Object_Acc := To_Ghdl_Rtin_Object_Acc (Sig);
begin
Sig_Mode := Mode_Signal_Type'Val
(Sig.Mode and Ghdl_Rti_Signal_Mode_Mask);
Sig_Kind := Kind_Signal_Type'Val
((Sig.Mode and Ghdl_Rti_Signal_Kind_Mask)
/ Ghdl_Rti_Signal_Kind_Offset);
Sig_Has_Active :=
(Sig_Rti.Common.Mode and Ghdl_Rti_Signal_Has_Active) /= 0;
end Ghdl_Signal_Name_Rti;
procedure Ghdl_Signal_Set_Mode (Mode : Mode_Signal_Type;
Kind : Kind_Signal_Type;
Has_Active : Boolean) is
begin
Sig_Mode := Mode;
Sig_Kind := Kind;
Sig_Has_Active := Has_Active;
end Ghdl_Signal_Set_Mode;
function Is_Signal_Guarded (Sig : Ghdl_Signal_Ptr) return Boolean is
begin
return Sig.Flags.Sig_Kind /= Kind_Signal_No;
end Is_Signal_Guarded;
function To_Address is new Ada.Unchecked_Conversion
(Source => Ghdl_Signal_Ptr, Target => Address);
function Create_Signal
(Mode : Mode_Type;
Value_Ptr : Ghdl_Value_Ptr;
Mode_Sig : Mode_Signal_Type;
Resolv_Proc : Resolver_Acc;
Resolv_Inst : System.Address)
return Ghdl_Signal_Ptr
is
Res : Ghdl_Signal_Ptr;
Resolv : Resolved_Signal_Acc;
S : Ghdl_Signal_Data (Mode_Sig);
Init_Val : Value_Union;
begin
Sig_Table.Increment_Last;
if Current_Resolv = null then
if Resolv_Proc /= null then
Resolv := new Resolved_Signal_Type'
(Resolv_Proc => Resolv_Proc,
Resolv_Inst => Resolv_Inst,
Resolv_Ptr => Null_Address,
Sig_Range => (Sig_Table.Last, Sig_Table.Last),
Disconnect_Time => Bad_Time);
else
Resolv := null;
end if;
else
if Resolv_Proc /= null then
-- Only one resolution function is allowed!
Internal_Error ("create_signal");
end if;
Resolv := Current_Resolv;
if Current_Resolv.Sig_Range.Last = Sig_Table.Last then
Current_Resolv := null;
end if;
end if;
case Mode_Sig is
when Mode_Signal_User =>
S.Nbr_Drivers := 0;
S.Drivers := null;
S.Effective := null;
S.Resolv := Resolv;
when Mode_Conv_In
| Mode_Conv_Out =>
S.Conv := null;
when Mode_Stable
| Mode_Quiet
| Mode_Delayed =>
S.Time := 0;
when Mode_Guard =>
S.Guard_Func := null;
S.Guard_Instance := System.Null_Address;
when Mode_Transaction
| Mode_End =>
null;
end case;
Init_Val := Read_Value (Value_Ptr, Mode);
Res := new Ghdl_Signal'(Value_Ptr => Value_Ptr,
Driving_Value => Init_Val,
Last_Value => Init_Val,
-- Note: use -Std_Time'last instead of
-- Std_Time'First so that NOW - x'last_event
-- returns time'high at initialization!
Last_Event => -Std_Time'Last,
Last_Active => -Std_Time'Last,
Event => False,
Active => False,
Has_Active => False,
Mode => Mode,
Flags => (Propag => Propag_None,
Sig_Kind => Sig_Kind,
Is_Direct_Active => False,
Is_Dumped => False,
Is_Drv_Forced => False,
Is_Eff_Forced => False,
Is_Drv_Force_Scheduled => False,
Is_Eff_Force_Scheduled => False,
RO_Event => False,
Implicit_Active_Next => False,
Seen => False),
Net => No_Signal_Net,
Link => null,
Alink => null,
Flink => null,
Event_List => null,
Nbr_Ports => 0,
Ports => null,
Dump_Table_Idx => 0,
S => S);
if Resolv /= null and then Resolv.Resolv_Ptr = System.Null_Address then
Resolv.Resolv_Ptr := To_Address (Res);
end if;
case Flag_Activity is
when Activity_All =>
Res.Has_Active := True;
when Activity_Minimal =>
Res.Has_Active := Sig_Has_Active;
when Activity_None =>
Res.Has_Active := False;
end case;
-- Put the signal in the table.
Sig_Table.Table (Sig_Table.Last) := Res;
return Res;
end Create_Signal;
procedure Ghdl_Signal_Init (Sig : Ghdl_Signal_Ptr; Val : Value_Union) is
begin
Sig.Driving_Value := Val;
Sig.Last_Value := Val;
end Ghdl_Signal_Init;
procedure Ghdl_Signal_Merge_Rti (Sig : Ghdl_Signal_Ptr;
Rti : Ghdl_Rti_Access)
is
S_Rti : constant Ghdl_Rtin_Object_Acc := To_Ghdl_Rtin_Object_Acc (Rti);
begin
if Flag_Activity = Activity_Minimal then
if (S_Rti.Common.Mode and Ghdl_Rti_Signal_Has_Active) /= 0 then
Sig.Has_Active := True;
end if;
end if;
end Ghdl_Signal_Merge_Rti;
procedure Ghdl_Signal_Create_Resolution (Proc : Resolver_Acc;
Instance : System.Address;
Sig : System.Address;
Nbr_Sig : Ghdl_Index_Type)
is
begin
if Current_Resolv /= null then
Internal_Error ("Ghdl_Signal_Create_Resolution");
end if;
Current_Resolv := new Resolved_Signal_Type'
(Resolv_Proc => Proc,
Resolv_Inst => Instance,
Resolv_Ptr => Sig,
Sig_Range => (First => Sig_Table.Last + 1,
Last => Sig_Table.Last + Sig_Table_Index (Nbr_Sig)),
Disconnect_Time => Bad_Time);
end Ghdl_Signal_Create_Resolution;
procedure Check_New_Source (Sig : Ghdl_Signal_Ptr)
is
use Grt.Stdio;
use Grt.Astdio;
begin
if Sig.S.Nbr_Drivers + Sig.Nbr_Ports > 0 then
if Sig.S.Resolv = null then
-- LRM 4.3.1.2 Signal Declaration
-- It is an error if, after the elaboration of a description, a
-- signal has multiple sources and it is not a resolved signal.
Put (stderr, "for signal: ");
Disp_Signals.Put_Signal_Name (stderr, Sig);
New_Line (stderr);
Error ("several sources for unresolved signal");
elsif Sig.S.Mode_Sig = Mode_Buffer and False then
-- LRM 1.1.1.2 Ports
-- A BUFFER port may have at most one source.
-- FIXME: this is not true with VHDL-02.
-- With VHDL-87/93, should also check that: any actual associated
-- with a formal buffer port may have at most one source.
Error ("buffer port which more than one source");
end if;
end if;
end Check_New_Source;
-- Return TRUE if already present.
function Ghdl_Signal_Add_Driver (Sign : Ghdl_Signal_Ptr;
Trans : Transaction_Acc)
return Boolean
is
Proc : constant Process_Acc := Get_Current_Process;
type Size_T is mod 2**Standard'Address_Size;
function Malloc (Size : Size_T) return Driver_Arr_Ptr;
pragma Import (C, Malloc);
function Realloc (Ptr : Driver_Arr_Ptr; Size : Size_T)
return Driver_Arr_Ptr;
pragma Import (C, Realloc);
function Size (N : Ghdl_Index_Type) return Size_T is
begin
return Size_T (N * Driver_Fat_Array'Component_Size
/ System.Storage_Unit);
end Size;
begin
if Sign.S.Nbr_Drivers = 0 then
Check_New_Source (Sign);
Sign.S.Drivers := Malloc (Size (1));
Sign.S.Nbr_Drivers := 1;
else
-- Do not create a driver twice.
for I in 0 .. Sign.S.Nbr_Drivers - 1 loop
if Sign.S.Drivers (I).Proc = Proc then
return True;
end if;
end loop;
Check_New_Source (Sign);
Sign.S.Nbr_Drivers := Sign.S.Nbr_Drivers + 1;
Sign.S.Drivers := Realloc (Sign.S.Drivers, Size (Sign.S.Nbr_Drivers));
end if;
Sign.S.Drivers (Sign.S.Nbr_Drivers - 1) :=
(First_Trans => Trans,
Last_Trans => Trans,
Proc => Proc);
return False;
end Ghdl_Signal_Add_Driver;
procedure Ghdl_Process_Add_Driver (Sign : Ghdl_Signal_Ptr)
is
Trans : Transaction_Acc;
begin
Trans := new Transaction'(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Read_Value (Sign.Value_Ptr, Sign.Mode));
if Ghdl_Signal_Add_Driver (Sign, Trans) then
Free (Trans);
end if;
end Ghdl_Process_Add_Driver;
procedure Ghdl_Process_Add_Port_Driver
(Sign : Ghdl_Signal_Ptr; Val : Value_Union)
is
Trans : Transaction_Acc;
begin
Trans := new Transaction'(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Val);
if Ghdl_Signal_Add_Driver (Sign, Trans) then
Free (Trans);
end if;
end Ghdl_Process_Add_Port_Driver;
procedure Ghdl_Signal_Add_Direct_Driver (Sign : Ghdl_Signal_Ptr;
Drv : Ghdl_Value_Ptr)
is
Trans : Transaction_Acc;
Trans1 : Transaction_Acc;
begin
-- Create transaction for current driving value.
Trans := new Transaction'(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Read_Value (Drv, Sign.Mode));
if Ghdl_Signal_Add_Driver (Sign, Trans) then
Free (Trans);
return;
end if;
-- Create transaction for the next driving value.
Trans1 := new Transaction'(Kind => Trans_Direct,
Line => 0,
Time => 0,
Next => null,
Val_Ptr => Drv);
Sign.S.Drivers (Sign.S.Nbr_Drivers - 1).Last_Trans := Trans1;
Trans.Next := Trans1;
end Ghdl_Signal_Add_Direct_Driver;
procedure Append_Port (Targ : Ghdl_Signal_Ptr; Src : Ghdl_Signal_Ptr)
is
type Size_T is new Integer;
function Malloc (Size : Size_T) return Signal_Arr_Ptr;
pragma Import (C, Malloc);
function Realloc (Ptr : Signal_Arr_Ptr; Size : Size_T)
return Signal_Arr_Ptr;
pragma Import (C, Realloc);
function Size (N : Ghdl_Index_Type) return Size_T is
begin
return Size_T (N * Ghdl_Signal_Ptr'Size / System.Storage_Unit);
end Size;
begin
if Targ.Nbr_Ports = 0 then
Targ.Ports := Malloc (Size (1));
Targ.Nbr_Ports := 1;
else
Targ.Nbr_Ports := Targ.Nbr_Ports + 1;
Targ.Ports := Realloc (Targ.Ports, Size (Targ.Nbr_Ports));
end if;
Targ.Ports (Targ.Nbr_Ports - 1) := Src;
end Append_Port;
-- Add SRC to port list of TARG, but only if not already in this list.
procedure Add_Port (Targ : Ghdl_Signal_Ptr; Src : Ghdl_Signal_Ptr)
is
begin
for I in 1 .. Targ.Nbr_Ports loop
if Targ.Ports (I - 1) = Src then
return;
end if;
end loop;
Append_Port (Targ, Src);
end Add_Port;
procedure Ghdl_Signal_Add_Source (Targ : Ghdl_Signal_Ptr;
Src : Ghdl_Signal_Ptr)
is
begin
Check_New_Source (Targ);
Append_Port (Targ, Src);
end Ghdl_Signal_Add_Source;
procedure Ghdl_Signal_Set_Disconnect (Sign : Ghdl_Signal_Ptr;
Time : Std_Time) is
begin
if Sign.S.Resolv = null then
Internal_Error ("ghdl_signal_set_disconnect: not resolved");
end if;
if Sign.S.Resolv.Disconnect_Time /= Bad_Time then
Error ("disconnection already specified for signal");
end if;
if Time < 0 then
Error ("disconnection time is negative");
end if;
Sign.S.Resolv.Disconnect_Time := Time;
end Ghdl_Signal_Set_Disconnect;
function Value_Equal (Left, Right : Value_Union; Mode : Mode_Type)
return Boolean
is
begin
case Mode is
when Mode_B1 =>
return Left.B1 = Right.B1;
when Mode_E8 =>
return Left.E8 = Right.E8;
when Mode_E32 =>
return Left.E32 = Right.E32;
when Mode_I32 =>
return Left.I32 = Right.I32;
when Mode_I64 =>
return Left.I64 = Right.I64;
when Mode_F64 =>
return Left.F64 = Right.F64;
end case;
end Value_Equal;
procedure Error_Trans_Error (Trans : Transaction_Acc);
pragma No_Return (Error_Trans_Error);
procedure Error_Trans_Error (Trans : Transaction_Acc) is
begin
Error_S ("range check error on signal at ");
Diag_C (Trans.File);
Diag_C (':');
Diag_C (Trans.Line);
Error_E;
end Error_Trans_Error;
function Find_Driver (Sig : Ghdl_Signal_Ptr) return Ghdl_Index_Type
is
Proc : Process_Acc;
begin
if Sig.S.Drivers = null then
Error ("assignment to a signal without any driver");
end if;
Proc := Get_Current_Process;
for I in 0 .. Sig.S.Nbr_Drivers - 1 loop
if Sig.S.Drivers (I).Proc = Proc then
return I;
end if;
end loop;
Error ("assignment to a signal without a driver for the process");
end Find_Driver;
function Get_Driver (Sig : Ghdl_Signal_Ptr) return Driver_Acc
is
Proc : Process_Acc;
begin
if Sig.S.Drivers = null then
return null;
end if;
Proc := Get_Current_Process;
for I in 0 .. Sig.S.Nbr_Drivers - 1 loop
if Sig.S.Drivers (I).Proc = Proc then
return Sig.S.Drivers (I)'Unrestricted_Access;
end if;
end loop;
return null;
end Get_Driver;
-- Return TRUE iff SIG has a future transaction for the current time,
-- ie iff SIG will be active in the next delta cycle. This is used to
-- recompute whether SIG must be in the active chain. SIG must be a user
-- signal.
function Has_Transaction_In_Next_Delta (Sig : Ghdl_Signal_Ptr)
return Boolean is
begin
if Sig.Flags.Is_Direct_Active then
return True;
end if;
for I in 1 .. Sig.S.Nbr_Drivers loop
declare
Trans : constant Transaction_Acc :=
Sig.S.Drivers (I - 1).First_Trans.Next;
begin
if Trans.Kind /= Trans_Direct
and then Trans.Time = Current_Time
then
return True;
end if;
end;
end loop;
return False;
end Has_Transaction_In_Next_Delta;
-- Unique signal used to end lists. Lists are not null-terminated so that
-- it is easy to check if a signal is on the list: test if Link is
-- not null.
Signal_End_Decl : Ghdl_Signal := (Value_Ptr => null,
Driving_Value => (Mode => Mode_B1,
B1 => False),
Last_Value => (Mode => Mode_B1,
B1 => False),
Last_Event => 0,
Last_Active => 0,
Event => False,
Active => False,
Has_Active => False,
Mode => Mode_B1,
Flags => (Propag => Propag_None,
Sig_Kind => Kind_Signal_No,
Is_Direct_Active => False,
Is_Dumped => False,
Is_Drv_Forced => False,
Is_Eff_Forced => False,
Is_Drv_Force_Scheduled => False,
Is_Eff_Force_Scheduled => False,
RO_Event => False,
Implicit_Active_Next => False,
Seen => False),
Net => No_Signal_Net,
Link => null,
Alink => null,
Flink => null,
Event_List => null,
Nbr_Ports => 0,
Ports => null,
Dump_Table_Idx => 0,
S => (Mode_Sig => Mode_End));
-- Unused but well-known signal which always terminate
-- signal_active_chain.
-- As a consequence, every element of the chain has a link field set to
-- a non-null value (this is of course not true for SIGNAL_END). This may
-- be used to quickly check if a signal is in the list.
-- This signal is not in the signal table.
Signal_End : constant Ghdl_Signal_Ptr :=
Signal_End_Decl'Unrestricted_access;
-- List of signals that will be active in the next delta cycle. Signals
-- are inserted on this chain while processes are scheduling a transaction
-- with a delay of 0.
Signal_Active_Chain : Ghdl_Signal_Ptr;
-- List of signals whose 'Active flag must be cleared. A signal is added
-- to this list by Mark_Active and removed by Reset_Active_Flag at the
-- beginning of the next cycle. This list is null-terminated, as it uses
-- Alink (instead of Link) to link elements of the list.
Active_Clear_List : Ghdl_Signal_Ptr := null;
-- List of signals whose Update flag on the net has to be cleared.
Update_Clear_Chain : Ghdl_Signal_Ptr;
-- List of signals which have projected waveforms in the future (beyond
-- the next delta cycle).
-- Currently signals are never removed from this list.
-- TODO: maybe remove signals when they have no transaction in the future?
Future_List : Ghdl_Signal_Ptr;
-- Insert SIG on the Future_List, if not already inserted.
procedure Insert_Future_List (Sig : Ghdl_Signal_Ptr) is
begin
if Sig.Flink = null then
Sig.Flink := Future_List;
Future_List := Sig;
end if;
end Insert_Future_List;
-- Add SIG in active_chain while the signal is being assigned while
-- processes are executed. So SIG has to be considered during the update
-- phase.
--
-- It is also used internally by Run_Propagation to keep the list of nets
-- whose update flag has to be cleared.
procedure Insert_Active_Chain (Sig : Ghdl_Signal_Ptr);
pragma Inline (Insert_Active_Chain);
procedure Insert_Active_Chain (Sig : Ghdl_Signal_Ptr) is
begin
if Sig.Link = null then
-- Use Grt.Threads.Atomic_Insert ?
Sig.Link := Signal_Active_Chain;
Signal_Active_Chain := Sig;
end if;
end Insert_Active_Chain;
procedure Insert_Update_Clear_Chain (Sig : Ghdl_Signal_Ptr) is
begin
if Sig.Link = null then
Sig.Link := Update_Clear_Chain;
Update_Clear_Chain := Sig;
end if;
end Insert_Update_Clear_Chain;
procedure Ghdl_Signal_Start_Assign (Sign : Ghdl_Signal_Ptr;
Reject : Std_Time;
Trans : Transaction_Acc;
After : Std_Time)
is
Assign_Time : Std_Time;
Drv : constant Ghdl_Index_Type := Find_Driver (Sign);
Drv_Ptr : constant Driver_Arr_Ptr := Sign.S.Drivers;
Driver : Driver_Type renames Drv_Ptr (Drv);
begin
-- LRM93 8.4.1
-- It is an error if the time expression in a waveform element
-- evaluates to a negative value.
if After < 0 then
Error ("negative time expression in signal assignment");
end if;
if After = 0 then
-- Put SIGN on the active list if the transaction is scheduled
-- for the next delta cycle.
Insert_Active_Chain (Sign);
else
-- AFTER > 0.
-- Put SIGN on the future list.
Insert_Future_List (Sign);
end if;
Assign_Time := Current_Time + After;
if Assign_Time < 0 then
-- Beyond the future
Free_In (Trans);
return;
end if;
-- Handle sign as direct driver.
if Driver.Last_Trans.Kind = Trans_Direct then
if After /= 0 then
Internal_Error ("direct assign with non-0 after");
end if;
-- FIXME: can be a bound-error too!
if Trans.Kind = Trans_Value then
Assign (Driver.Last_Trans.Val_Ptr, Trans.Val'Access, Sign.Mode);
Free_In (Trans);
elsif Trans.Kind = Trans_Error then
Error_Trans_Error (Trans);
else
Internal_Error ("direct assign with non-value");
end if;
return;
end if;
-- LRM93 8.4.1
-- 1. All old transactions that are projected to occur at or after the
-- time at which the earliest new transaction is projected to occur
-- are deleted from the projected output waveform.
if Driver.Last_Trans.Time >= Assign_Time then
declare
-- LAST is the last transaction to keep.
Last : Transaction_Acc;
Next : Transaction_Acc;
begin
Last := Driver.First_Trans;
-- Find the first transaction to be deleted.
Next := Last.Next;
while Next /= null and then Next.Time < Assign_Time loop
Last := Next;
Next := Next.Next;
end loop;
-- Delete old transactions.
if Next /= null then
-- Set the last transaction of the driver.
Driver.Last_Trans := Last;
-- Cut the chain. This is not strickly necessary, since
-- it will be overriden below, by appending TRANS to the
-- driver.
Last.Next := null;
-- Free removed transactions.
loop
Last := Next.Next;
Free (Next);
exit when Last = null;
Next := Last;
end loop;
end if;
end;
end if;
-- 2. The new transaction are then appended to the projected output
-- waveform in the order of their projected occurence.
Trans.Time := Assign_Time;
Driver.Last_Trans.Next := Trans;
Driver.Last_Trans := Trans;
-- If the initial delay is inertial delay according to the definitions
-- of section 8.4, the projected output waveform is further modified
-- as follows:
-- 1. All of the new transactions are marked.
-- 2. An old transaction is marked if the time at which it is projected
-- to occur is less than the time at which the first new transaction
-- is projected to occur minus the pulse rejection limit.
-- 3. For each remaining unmarked, old transaction, the old transaction
-- is marked if it immediatly precedes a marked transaction and its
-- value component is the same as that of the marked transaction;
-- 4. The transaction that determines the current value of the driver
-- is marked.
-- 5. All unmarked transactions (all of which are old transactions) are
-- deleted from the projected output waveform.
--
-- GHDL: only transactions that are projected to occur at [T-R, T[
-- can be deleted (R is the reject time, T is now + after time).
if Reject > 0 then
-- LRM93 8.4
-- It is an error if the pulse rejection limit for any inertially
-- delayed signal assignment statement is [...] or greater than the
-- time expression associated with the first waveform element.
if Reject > After then
Error ("pulse rejection greater than first waveform delay");
end if;
declare
Prev : Transaction_Acc;
Next : Transaction_Acc;
begin
-- Find the first transaction after the project time less the
-- rejection time.
-- PREV will be the last old transaction which is projected to
-- occur before T - R.
Prev := Driver.First_Trans;
loop
Next := Prev.Next;
exit when Next.Time >= Assign_Time - Reject;
Prev := Next;
end loop;
-- Scan every transaction until TRANS. If a transaction value is
-- different from the TRANS value, then delete all previous
-- transactions (from T - R to the currently scanned transaction),
-- since they are not marked.
while Next /= Trans loop
if Next.Kind /= Trans.Kind
or else
(Trans.Kind = Trans_Value
and then not Value_Equal (Next.Val, Trans.Val, Sign.Mode))
then
-- NEXT is different from TRANS.
-- Delete ]PREV;NEXT].
declare
D, N : Transaction_Acc;
begin
D := Prev.Next;
Next := Next.Next;
Prev.Next := Next;
loop
N := D.Next;
Free (D);
exit when N = Next;
D := N;
end loop;
end;
else
Next := Next.Next;
end if;
end loop;
-- A previous assignment (with a 0 after time) may have put this
-- signal on the active chain. But maybe this previous
-- transaction has been removed (due to rejection) and therefore
-- this signal won't be active at the next delta. So remove it
-- from the active chain. This is a little bit costly (because
-- the chain is simply linked), but that issue doesn't appear
-- frequently.
if Sign.Link /= null
and then not Has_Transaction_In_Next_Delta (Sign)
then
if Signal_Active_Chain = Sign then
-- At the head of the chain.
-- FIXME: this is not atomic.
Signal_Active_Chain := Sign.Link;
else
-- In the middle of the chain.
declare
Prev : Ghdl_Signal_Ptr := Signal_Active_Chain;
begin
while Prev.Link /= Sign loop
Prev := Prev.Link;
end loop;
Prev.Link := Sign.Link;
end;
end if;
Sign.Link := null;
end if;
end;
elsif Reject /= 0 then
-- LRM93 8.4
-- It is an error if the pulse rejection limit for any inertially
-- delayed signal assignment statement is either negative or [...].
Error ("pulse rejection is negative");
end if;
-- Do some checks.
if Driver.Last_Trans.Next /= null then
Error ("ghdl_signal_start_assign internal_error");
end if;
end Ghdl_Signal_Start_Assign;
procedure Ghdl_Signal_Next_Assign (Sign : Ghdl_Signal_Ptr;
Val : Value_Union;
After : Std_Time)
is
Drv_Ptr : constant Driver_Arr_Ptr := Sign.S.Drivers;
Driver : Driver_Type renames Drv_Ptr (Find_Driver (Sign));
Trans : Transaction_Acc;
begin
Trans := new Transaction'(Kind => Trans_Value,
Line => 0,
Time => Current_Time + After,
Next => null,
Val => Val);
if Trans.Time <= Driver.Last_Trans.Time then
Error ("transactions not in ascending order");
end if;
pragma Assert (After > 0);
Insert_Future_List (Sign);
Driver.Last_Trans.Next := Trans;
Driver.Last_Trans := Trans;
end Ghdl_Signal_Next_Assign;
procedure Ghdl_Signal_Direct_Assign (Sign : Ghdl_Signal_Ptr) is
begin
Insert_Active_Chain (Sign);
-- Must be always set (as Sign.Link may be set by a regular driver).
Sign.Flags.Is_Direct_Active := True;
end Ghdl_Signal_Direct_Assign;
procedure Ghdl_Signal_Simple_Assign_Error (Sign : Ghdl_Signal_Ptr;
File : Ghdl_C_String;
Line : Ghdl_I32)
is
Trans : Transaction_Acc;
begin
Trans := new Transaction'(Kind => Trans_Error,
Line => Line,
Time => 0,
Next => null,
File => File);
Ghdl_Signal_Start_Assign (Sign, 0, Trans, 0);
end Ghdl_Signal_Simple_Assign_Error;
procedure Ghdl_Signal_Start_Assign_Error (Sign : Ghdl_Signal_Ptr;
Rej : Std_Time;
After : Std_Time;
File : Ghdl_C_String;
Line : Ghdl_I32)
is
Trans : Transaction_Acc;
begin
Trans := new Transaction'(Kind => Trans_Error,
Line => Line,
Time => 0,
Next => null,
File => File);
Ghdl_Signal_Start_Assign (Sign, Rej, Trans, After);
end Ghdl_Signal_Start_Assign_Error;
procedure Ghdl_Signal_Next_Assign_Error (Sign : Ghdl_Signal_Ptr;
After : Std_Time;
File : Ghdl_C_String;
Line : Ghdl_I32)
is
Drv_Ptr : constant Driver_Arr_Ptr := Sign.S.Drivers;
Driver : Driver_Type renames Drv_Ptr (Find_Driver (Sign));
Trans : Transaction_Acc;
begin
Trans := new Transaction'(Kind => Trans_Error,
Line => Line,
Time => Current_Time + After,
Next => null,
File => File);
if Trans.Time <= Driver.Last_Trans.Time then
Error ("transactions not in ascending order");
end if;
pragma Assert (After > 0);
Insert_Future_List (Sign);
Driver.Last_Trans.Next := Trans;
Driver.Last_Trans := Trans;
end Ghdl_Signal_Next_Assign_Error;
procedure Ghdl_Signal_Start_Assign_Null (Sign : Ghdl_Signal_Ptr;
Rej : Std_Time;
After : Std_Time)
is
Trans : Transaction_Acc;
begin
if not Is_Signal_Guarded (Sign) then
Error ("null transaction for a non-guarded target");
end if;
Trans := new Transaction'(Kind => Trans_Null,
Line => 0,
Time => 0,
Next => null);
Ghdl_Signal_Start_Assign (Sign, Rej, Trans, After);
end Ghdl_Signal_Start_Assign_Null;
procedure Ghdl_Signal_Disconnect (Sign : Ghdl_Signal_Ptr)
is
Trans : Transaction_Acc;
Time : Std_Time;
begin
if not Is_Signal_Guarded (Sign) then
Error ("null transaction for a non-guarded target");
end if;
Trans := new Transaction'(Kind => Trans_Null,
Line => 0,
Time => 0,
Next => null);
Time := Sign.S.Resolv.Disconnect_Time;
Ghdl_Signal_Start_Assign (Sign, Time, Trans, Time);
end Ghdl_Signal_Disconnect;
function Ghdl_Create_Signal_B1 (Val_Ptr : Ghdl_Value_Ptr;
Resolv_Func : Resolver_Acc;
Resolv_Inst : System.Address)
return Ghdl_Signal_Ptr is
begin
return Create_Signal
(Mode_B1, Val_Ptr, Get_Current_Mode_Signal, Resolv_Func, Resolv_Inst);
end Ghdl_Create_Signal_B1;
procedure Ghdl_Signal_Init_B1 (Sig : Ghdl_Signal_Ptr; Init_Val : Ghdl_B1) is
begin
Ghdl_Signal_Init (Sig, Value_Union'(Mode => Mode_B1, B1 => Init_Val));
end Ghdl_Signal_Init_B1;
procedure Ghdl_Signal_Associate_B1 (Sig : Ghdl_Signal_Ptr; Val : Ghdl_B1) is
begin
Sig.Value_Ptr.B1 := Val;
Sig.Driving_Value.B1 := Val;
end Ghdl_Signal_Associate_B1;
procedure Ghdl_Signal_Add_Port_Driver_B1
(Sig : Ghdl_Signal_Ptr; Val : Ghdl_B1) is
begin
Ghdl_Process_Add_Port_Driver
(Sig, Value_Union'(Mode => Mode_B1, B1 => Val));
end Ghdl_Signal_Add_Port_Driver_B1;
procedure Ghdl_Signal_Simple_Assign_B1 (Sign : Ghdl_Signal_Ptr;
Val : Ghdl_B1)
is
Trans : Transaction_Acc;
begin
if not Sign.Has_Active
and then Sign.Net = Net_One_Driver
and then Val = Sign.Value_Ptr.B1
and then Sign.S.Drivers (0).First_Trans.Next = null
then
return;
end if;
Trans := new Transaction'
(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Value_Union'(Mode => Mode_B1, B1 => Val));
Ghdl_Signal_Start_Assign (Sign, 0, Trans, 0);
end Ghdl_Signal_Simple_Assign_B1;
procedure Ghdl_Signal_Start_Assign_B1 (Sign : Ghdl_Signal_Ptr;
Rej : Std_Time;
Val : Ghdl_B1;
After : Std_Time)
is
Trans : Transaction_Acc;
begin
Trans := new Transaction'
(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Value_Union'(Mode => Mode_B1, B1 => Val));
Ghdl_Signal_Start_Assign (Sign, Rej, Trans, After);
end Ghdl_Signal_Start_Assign_B1;
procedure Ghdl_Signal_Next_Assign_B1 (Sign : Ghdl_Signal_Ptr;
Val : Ghdl_B1;
After : Std_Time)
is
begin
Ghdl_Signal_Next_Assign
(Sign, Value_Union'(Mode => Mode_B1, B1 => Val), After);
end Ghdl_Signal_Next_Assign_B1;
function Ghdl_Create_Signal_E8 (Val_Ptr : Ghdl_Value_Ptr;
Resolv_Func : Resolver_Acc;
Resolv_Inst : System.Address)
return Ghdl_Signal_Ptr is
begin
return Create_Signal
(Mode_E8, Val_Ptr, Get_Current_Mode_Signal, Resolv_Func, Resolv_Inst);
end Ghdl_Create_Signal_E8;
procedure Ghdl_Signal_Init_E8 (Sig : Ghdl_Signal_Ptr; Init_Val : Ghdl_E8) is
begin
Ghdl_Signal_Init (Sig, Value_Union'(Mode => Mode_E8, E8 => Init_Val));
end Ghdl_Signal_Init_E8;
procedure Ghdl_Signal_Associate_E8 (Sig : Ghdl_Signal_Ptr; Val : Ghdl_E8) is
begin
Sig.Value_Ptr.E8 := Val;
Sig.Driving_Value.E8 := Val;
end Ghdl_Signal_Associate_E8;
procedure Ghdl_Signal_Add_Port_Driver_E8
(Sig : Ghdl_Signal_Ptr; Val : Ghdl_E8) is
begin
Ghdl_Process_Add_Port_Driver
(Sig, Value_Union'(Mode => Mode_E8, E8 => Val));
end Ghdl_Signal_Add_Port_Driver_E8;
procedure Ghdl_Signal_Simple_Assign_E8 (Sign : Ghdl_Signal_Ptr;
Val : Ghdl_E8)
is
Trans : Transaction_Acc;
begin
if not Sign.Has_Active
and then Sign.Net = Net_One_Driver
and then Val = Sign.Value_Ptr.E8
and then Sign.S.Drivers (0).First_Trans.Next = null
then
return;
end if;
Trans := new Transaction'
(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Value_Union'(Mode => Mode_E8, E8 => Val));
Ghdl_Signal_Start_Assign (Sign, 0, Trans, 0);
end Ghdl_Signal_Simple_Assign_E8;
procedure Ghdl_Signal_Start_Assign_E8 (Sign : Ghdl_Signal_Ptr;
Rej : Std_Time;
Val : Ghdl_E8;
After : Std_Time)
is
Trans : Transaction_Acc;
begin
Trans := new Transaction'
(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Value_Union'(Mode => Mode_E8, E8 => Val));
Ghdl_Signal_Start_Assign (Sign, Rej, Trans, After);
end Ghdl_Signal_Start_Assign_E8;
procedure Ghdl_Signal_Next_Assign_E8 (Sign : Ghdl_Signal_Ptr;
Val : Ghdl_E8;
After : Std_Time) is
begin
Ghdl_Signal_Next_Assign
(Sign, Value_Union'(Mode => Mode_E8, E8 => Val), After);
end Ghdl_Signal_Next_Assign_E8;
function Ghdl_Create_Signal_E32 (Val_Ptr : Ghdl_Value_Ptr;
Resolv_Func : Resolver_Acc;
Resolv_Inst : System.Address)
return Ghdl_Signal_Ptr is
begin
return Create_Signal
(Mode_E32, Val_Ptr, Get_Current_Mode_Signal, Resolv_Func, Resolv_Inst);
end Ghdl_Create_Signal_E32;
procedure Ghdl_Signal_Init_E32 (Sig : Ghdl_Signal_Ptr; Init_Val : Ghdl_E32)
is
begin
Ghdl_Signal_Init (Sig, Value_Union'(Mode => Mode_E32, E32 => Init_Val));
end Ghdl_Signal_Init_E32;
procedure Ghdl_Signal_Associate_E32 (Sig : Ghdl_Signal_Ptr; Val : Ghdl_E32)
is
begin
Sig.Value_Ptr.E32 := Val;
Sig.Driving_Value.E32 := Val;
end Ghdl_Signal_Associate_E32;
procedure Ghdl_Signal_Add_Port_Driver_E32
(Sig : Ghdl_Signal_Ptr; Val : Ghdl_E32) is
begin
Ghdl_Process_Add_Port_Driver
(Sig, Value_Union'(Mode => Mode_E32, E32 => Val));
end Ghdl_Signal_Add_Port_Driver_E32;
procedure Ghdl_Signal_Simple_Assign_E32 (Sign : Ghdl_Signal_Ptr;
Val : Ghdl_E32)
is
Trans : Transaction_Acc;
begin
if not Sign.Has_Active
and then Sign.Net = Net_One_Driver
and then Val = Sign.Value_Ptr.E32
and then Sign.S.Drivers (0).First_Trans.Next = null
then
return;
end if;
Trans := new Transaction'
(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Value_Union'(Mode => Mode_E32, E32 => Val));
Ghdl_Signal_Start_Assign (Sign, 0, Trans, 0);
end Ghdl_Signal_Simple_Assign_E32;
procedure Ghdl_Signal_Start_Assign_E32 (Sign : Ghdl_Signal_Ptr;
Rej : Std_Time;
Val : Ghdl_E32;
After : Std_Time)
is
Trans : Transaction_Acc;
begin
Trans := new Transaction'
(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Value_Union'(Mode => Mode_E32, E32 => Val));
Ghdl_Signal_Start_Assign (Sign, Rej, Trans, After);
end Ghdl_Signal_Start_Assign_E32;
procedure Ghdl_Signal_Next_Assign_E32 (Sign : Ghdl_Signal_Ptr;
Val : Ghdl_E32;
After : Std_Time)
is
begin
Ghdl_Signal_Next_Assign
(Sign, Value_Union'(Mode => Mode_E32, E32 => Val), After);
end Ghdl_Signal_Next_Assign_E32;
function Ghdl_Create_Signal_I32
(Val_Ptr : Ghdl_Value_Ptr;
Resolv_Func : Resolver_Acc;
Resolv_Inst : System.Address)
return Ghdl_Signal_Ptr
is
begin
return Create_Signal
(Mode_I32, Val_Ptr, Get_Current_Mode_Signal, Resolv_Func, Resolv_Inst);
end Ghdl_Create_Signal_I32;
procedure Ghdl_Signal_Init_I32 (Sig : Ghdl_Signal_Ptr; Init_Val : Ghdl_I32)
is
begin
Ghdl_Signal_Init (Sig, Value_Union'(Mode => Mode_I32, I32 => Init_Val));
end Ghdl_Signal_Init_I32;
procedure Ghdl_Signal_Associate_I32 (Sig : Ghdl_Signal_Ptr; Val : Ghdl_I32)
is
begin
Sig.Value_Ptr.I32 := Val;
Sig.Driving_Value.I32 := Val;
end Ghdl_Signal_Associate_I32;
procedure Ghdl_Signal_Add_Port_Driver_I32
(Sig : Ghdl_Signal_Ptr; Val : Ghdl_I32) is
begin
Ghdl_Process_Add_Port_Driver
(Sig, Value_Union'(Mode => Mode_I32, I32 => Val));
end Ghdl_Signal_Add_Port_Driver_I32;
procedure Ghdl_Signal_Simple_Assign_I32 (Sign : Ghdl_Signal_Ptr;
Val : Ghdl_I32)
is
Trans : Transaction_Acc;
begin
if not Sign.Has_Active
and then Sign.Net = Net_One_Driver
and then Val = Sign.Value_Ptr.I32
and then Sign.S.Drivers (0).First_Trans.Next = null
then
return;
end if;
Trans := new Transaction'
(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Value_Union'(Mode => Mode_I32, I32 => Val));
Ghdl_Signal_Start_Assign (Sign, 0, Trans, 0);
end Ghdl_Signal_Simple_Assign_I32;
procedure Ghdl_Signal_Start_Assign_I32 (Sign : Ghdl_Signal_Ptr;
Rej : Std_Time;
Val : Ghdl_I32;
After : Std_Time)
is
Trans : Transaction_Acc;
begin
Trans := new Transaction'
(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Value_Union'(Mode => Mode_I32, I32 => Val));
Ghdl_Signal_Start_Assign (Sign, Rej, Trans, After);
end Ghdl_Signal_Start_Assign_I32;
procedure Ghdl_Signal_Next_Assign_I32 (Sign : Ghdl_Signal_Ptr;
Val : Ghdl_I32;
After : Std_Time)
is
begin
Ghdl_Signal_Next_Assign
(Sign, Value_Union'(Mode => Mode_I32, I32 => Val), After);
end Ghdl_Signal_Next_Assign_I32;
function Ghdl_Create_Signal_I64
(Val_Ptr : Ghdl_Value_Ptr;
Resolv_Func : Resolver_Acc;
Resolv_Inst : System.Address)
return Ghdl_Signal_Ptr
is
begin
return Create_Signal
(Mode_I64, Val_Ptr, Get_Current_Mode_Signal, Resolv_Func, Resolv_Inst);
end Ghdl_Create_Signal_I64;
procedure Ghdl_Signal_Init_I64 (Sig : Ghdl_Signal_Ptr; Init_Val : Ghdl_I64)
is
begin
Ghdl_Signal_Init (Sig, Value_Union'(Mode => Mode_I64, I64 => Init_Val));
end Ghdl_Signal_Init_I64;
procedure Ghdl_Signal_Associate_I64 (Sig : Ghdl_Signal_Ptr; Val : Ghdl_I64)
is
begin
Sig.Value_Ptr.I64 := Val;
Sig.Driving_Value.I64 := Val;
end Ghdl_Signal_Associate_I64;
procedure Ghdl_Signal_Add_Port_Driver_I64
(Sig : Ghdl_Signal_Ptr; Val : Ghdl_I64) is
begin
Ghdl_Process_Add_Port_Driver
(Sig, Value_Union'(Mode => Mode_I64, I64 => Val));
end Ghdl_Signal_Add_Port_Driver_I64;
procedure Ghdl_Signal_Simple_Assign_I64 (Sign : Ghdl_Signal_Ptr;
Val : Ghdl_I64)
is
Trans : Transaction_Acc;
begin
if not Sign.Has_Active
and then Sign.Net = Net_One_Driver
and then Val = Sign.Value_Ptr.I64
and then Sign.S.Drivers (0).First_Trans.Next = null
then
return;
end if;
Trans := new Transaction'
(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Value_Union'(Mode => Mode_I64, I64 => Val));
Ghdl_Signal_Start_Assign (Sign, 0, Trans, 0);
end Ghdl_Signal_Simple_Assign_I64;
procedure Ghdl_Signal_Start_Assign_I64 (Sign : Ghdl_Signal_Ptr;
Rej : Std_Time;
Val : Ghdl_I64;
After : Std_Time)
is
Trans : Transaction_Acc;
begin
Trans := new Transaction'
(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Value_Union'(Mode => Mode_I64, I64 => Val));
Ghdl_Signal_Start_Assign (Sign, Rej, Trans, After);
end Ghdl_Signal_Start_Assign_I64;
procedure Ghdl_Signal_Next_Assign_I64 (Sign : Ghdl_Signal_Ptr;
Val : Ghdl_I64;
After : Std_Time)
is
begin
Ghdl_Signal_Next_Assign
(Sign, Value_Union'(Mode => Mode_I64, I64 => Val), After);
end Ghdl_Signal_Next_Assign_I64;
function Ghdl_Create_Signal_F64
(Val_Ptr : Ghdl_Value_Ptr;
Resolv_Func : Resolver_Acc;
Resolv_Inst : System.Address)
return Ghdl_Signal_Ptr
is
begin
return Create_Signal
(Mode_F64, Val_Ptr, Get_Current_Mode_Signal, Resolv_Func, Resolv_Inst);
end Ghdl_Create_Signal_F64;
procedure Ghdl_Signal_Init_F64 (Sig : Ghdl_Signal_Ptr; Init_Val : Ghdl_F64)
is
begin
Ghdl_Signal_Init (Sig, Value_Union'(Mode => Mode_F64, F64 => Init_Val));
end Ghdl_Signal_Init_F64;
procedure Ghdl_Signal_Associate_F64 (Sig : Ghdl_Signal_Ptr; Val : Ghdl_F64)
is
begin
Sig.Value_Ptr.F64 := Val;
Sig.Driving_Value.F64 := Val;
end Ghdl_Signal_Associate_F64;
procedure Ghdl_Signal_Add_Port_Driver_F64
(Sig : Ghdl_Signal_Ptr; Val : Ghdl_F64) is
begin
Ghdl_Process_Add_Port_Driver
(Sig, Value_Union'(Mode => Mode_F64, F64 => Val));
end Ghdl_Signal_Add_Port_Driver_F64;
procedure Ghdl_Signal_Simple_Assign_F64 (Sign : Ghdl_Signal_Ptr;
Val : Ghdl_F64)
is
Trans : Transaction_Acc;
begin
if not Sign.Has_Active
and then Sign.Net = Net_One_Driver
and then Val = Sign.Value_Ptr.F64
and then Sign.S.Drivers (0).First_Trans.Next = null
then
return;
end if;
Trans := new Transaction'
(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Value_Union'(Mode => Mode_F64, F64 => Val));
Ghdl_Signal_Start_Assign (Sign, 0, Trans, 0);
end Ghdl_Signal_Simple_Assign_F64;
procedure Ghdl_Signal_Start_Assign_F64 (Sign : Ghdl_Signal_Ptr;
Rej : Std_Time;
Val : Ghdl_F64;
After : Std_Time)
is
Trans : Transaction_Acc;
begin
Trans := new Transaction'
(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Value_Union'(Mode => Mode_F64, F64 => Val));
Ghdl_Signal_Start_Assign (Sign, Rej, Trans, After);
end Ghdl_Signal_Start_Assign_F64;
procedure Ghdl_Signal_Next_Assign_F64 (Sign : Ghdl_Signal_Ptr;
Val : Ghdl_F64;
After : Std_Time)
is
begin
Ghdl_Signal_Next_Assign
(Sign, Value_Union'(Mode => Mode_F64, F64 => Val), After);
end Ghdl_Signal_Next_Assign_F64;
procedure Ghdl_Signal_Internal_Checks
is
Sig : Ghdl_Signal_Ptr;
begin
for I in Sig_Table.First .. Sig_Table.Last loop
Sig := Sig_Table.Table (I);
-- Check drivers.
case Sig.S.Mode_Sig is
when Mode_Signal_User =>
for J in 1 .. Sig.S.Nbr_Drivers loop
declare
Trans : Transaction_Acc;
begin
Trans := Sig.S.Drivers (J - 1).First_Trans;
while Trans.Next /= null loop
if Trans.Next.Time < Trans.Time then
Internal_Error ("ghdl_signal_internal_checks: "
& "bad transaction order");
end if;
Trans := Trans.Next;
end loop;
if Trans /= Sig.S.Drivers (J - 1).Last_Trans then
Internal_Error ("ghdl_signal_internal_checks: "
& "last transaction mismatch");
end if;
end;
end loop;
when others =>
null;
end case;
end loop;
end Ghdl_Signal_Internal_Checks;
procedure Ghdl_Signal_Effective_Value (Targ : Ghdl_Signal_Ptr;
Src : Ghdl_Signal_Ptr)
is
begin
if Targ.S.Effective /= null then
Error ("internal error: already effective value");
end if;
Targ.S.Effective := Src;
end Ghdl_Signal_Effective_Value;
function Ghdl_Create_Signal_Attribute
(Val_Ptr : Ghdl_Value_Ptr; Mode : Mode_Signal_Type; Time : Std_Time)
return Ghdl_Signal_Ptr
is
Res : Ghdl_Signal_Ptr;
begin
-- Note: bit and boolean are both mode_b1.
Val_Ptr.B1 := True;
Res := Create_Signal (Mode_B1, Val_Ptr, Mode, null, Null_Address);
Last_Implicit_Signal := Res;
if Mode /= Mode_Transaction then
Res.S.Time := Time;
Res.S.Attr_Trans := new Transaction'(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => (Mode => Mode_B1,
B1 => True));
end if;
if Time > 0 then
-- This signal will have transaction in the future.
Insert_Future_List (Res);
end if;
return Res;
end Ghdl_Create_Signal_Attribute;
function Ghdl_Create_Stable_Signal
(Val_Ptr : Ghdl_Value_Ptr; Val : Std_Time) return Ghdl_Signal_Ptr is
begin
return Ghdl_Create_Signal_Attribute (Val_Ptr, Mode_Stable, Val);
end Ghdl_Create_Stable_Signal;
function Ghdl_Create_Quiet_Signal
(Val_Ptr : Ghdl_Value_Ptr; Val : Std_Time) return Ghdl_Signal_Ptr is
begin
return Ghdl_Create_Signal_Attribute (Val_Ptr, Mode_Quiet, Val);
end Ghdl_Create_Quiet_Signal;
function Ghdl_Create_Transaction_Signal
(Val_Ptr : Ghdl_Value_Ptr) return Ghdl_Signal_Ptr is
begin
return Ghdl_Create_Signal_Attribute (Val_Ptr, Mode_Transaction, 0);
end Ghdl_Create_Transaction_Signal;
procedure Ghdl_Signal_Attribute_Register_Prefix (Sig : Ghdl_Signal_Ptr)
is
begin
Add_Port (Last_Implicit_Signal, Sig);
end Ghdl_Signal_Attribute_Register_Prefix;
function Ghdl_Signal_Create_Guard
(Val_Ptr : Ghdl_Value_Ptr; This : System.Address; Proc : Guard_Func_Acc)
return Ghdl_Signal_Ptr
is
Res : Ghdl_Signal_Ptr;
begin
Val_Ptr.B1 := Proc.all (This);
Res := Create_Signal (Mode_B1, Val_Ptr, Mode_Guard, null, Null_Address);
Res.S.Guard_Func := Proc;
Res.S.Guard_Instance := This;
Last_Implicit_Signal := Res;
return Res;
end Ghdl_Signal_Create_Guard;
procedure Ghdl_Signal_Guard_Dependence (Sig : Ghdl_Signal_Ptr)
is
begin
Add_Port (Last_Implicit_Signal, Sig);
Sig.Has_Active := True;
end Ghdl_Signal_Guard_Dependence;
function Ghdl_Create_Delayed_Signal
(Sig : Ghdl_Signal_Ptr; Val_Ptr : Ghdl_Value_Ptr; Val : Std_Time)
return Ghdl_Signal_Ptr
is
Res : Ghdl_Signal_Ptr;
begin
Assign (Val_Ptr, Sig.Value_Ptr, Sig.Mode);
Res := Create_Signal
(Sig.Mode, Val_Ptr, Mode_Delayed, null, Null_Address);
Res.S.Time := Val;
if Val > 0 then
Insert_Future_List (Res);
end if;
Res.S.Attr_Trans := new Transaction'(Kind => Trans_Value,
Line => 0,
Time => 0,
Next => null,
Val => Read_Value (Val_Ptr,
Sig.Mode));
Append_Port (Res, Sig);
return Res;
end Ghdl_Create_Delayed_Signal;
function Signal_Ptr_To_Index (Ptr : Ghdl_Signal_Ptr) return Sig_Table_Index
is
begin
-- Note: we may start from ptr.instance_name.sig_index, but
-- instance_name is *not* set for conversion signals.
for I in reverse Sig_Table.First .. Sig_Table.Last loop
if Sig_Table.Table (I) = Ptr then
return I;
end if;
end loop;
return -1;
end Signal_Ptr_To_Index;
function Ghdl_Signal_Get_Nbr_Ports (Sig : Ghdl_Signal_Ptr)
return Ghdl_Index_Type is
begin
return Sig.Nbr_Ports;
end Ghdl_Signal_Get_Nbr_Ports;
function Ghdl_Signal_Get_Nbr_Drivers (Sig : Ghdl_Signal_Ptr)
return Ghdl_Index_Type is
begin
return Sig.S.Nbr_Drivers;
end Ghdl_Signal_Get_Nbr_Drivers;
function Ghdl_Signal_Read_Port
(Sig : Ghdl_Signal_Ptr; Index : Ghdl_Index_Type)
return Ghdl_Value_Ptr
is
begin
if Index >= Sig.Nbr_Ports then
Internal_Error ("ghdl_signal_read_port: bad index");
end if;
return To_Ghdl_Value_Ptr (Sig.Ports (Index).Driving_Value'Address);
end Ghdl_Signal_Read_Port;
function Ghdl_Signal_Read_Driver
(Sig : Ghdl_Signal_Ptr; Index : Ghdl_Index_Type)
return Ghdl_Value_Ptr
is
Trans : Transaction_Acc;
begin
if Index >= Sig.S.Nbr_Drivers then
Internal_Error ("ghdl_signal_read_driver: bad index");
end if;
Trans := Sig.S.Drivers (Index).First_Trans;
case Trans.Kind is
when Trans_Value =>
return To_Ghdl_Value_Ptr (Trans.Val'Address);
when Trans_Direct =>
Internal_Error ("ghdl_signal_read_driver: trans_direct");
when Trans_Null =>
return null;
when Trans_Error =>
Error_Trans_Error (Trans);
end case;
end Ghdl_Signal_Read_Driver;
procedure Ghdl_Signal_Conversion (Func : System.Address;
Instance : System.Address;
Src : Ghdl_Signal_Ptr;
Src_Len : Ghdl_Index_Type;
Dst : Ghdl_Signal_Ptr;
Dst_Len : Ghdl_Index_Type;
Mode : Mode_Signal_Type)
is
Data : Sig_Conversion_Acc;
Sig : Ghdl_Signal_Ptr;
begin
Data := new Sig_Conversion_Type'(Func => Func,
Instance => Instance,
Src => (-1, -1),
Dest => (-1, -1));
Data.Src.First := Signal_Ptr_To_Index (Src);
Data.Src.Last := Data.Src.First + Sig_Table_Index (Src_Len) - 1;
Data.Dest.First := Signal_Ptr_To_Index (Dst);
Data.Dest.Last := Data.Dest.First + Sig_Table_Index (Dst_Len) - 1;
-- Convert DEST to new mode.
for I in Data.Dest.First .. Data.Dest.Last loop
Sig := Sig_Table.Table (I);
case Mode is
when Mode_Conv_In =>
Sig.S := (Mode_Sig => Mode_Conv_In,
Conv => Data);
when Mode_Conv_Out =>
Sig.S := (Mode_Sig => Mode_Conv_Out,
Conv => Data);
when others =>
Internal_Error ("ghdl_signal_conversion");
end case;
end loop;
end Ghdl_Signal_Conversion;
procedure Ghdl_Signal_In_Conversion (Func : System.Address;
Instance : System.Address;
Src : Ghdl_Signal_Ptr;
Src_Len : Ghdl_Index_Type;
Dst : Ghdl_Signal_Ptr;
Dst_Len : Ghdl_Index_Type)
is
begin
Ghdl_Signal_Conversion
(Func, Instance, Src, Src_Len, Dst, Dst_Len, Mode_Conv_In);
end Ghdl_Signal_In_Conversion;
procedure Ghdl_Signal_Out_Conversion (Func : System.Address;
Instance : System.Address;
Src : Ghdl_Signal_Ptr;
Src_Len : Ghdl_Index_Type;
Dst : Ghdl_Signal_Ptr;
Dst_Len : Ghdl_Index_Type)
is
begin
Ghdl_Signal_Conversion
(Func, Instance, Src, Src_Len, Dst, Dst_Len, Mode_Conv_Out);
end Ghdl_Signal_Out_Conversion;
function Ghdl_Signal_Driving (Sig : Ghdl_Signal_Ptr) return Ghdl_B1
is
Drv : Driver_Acc;
begin
Drv := Get_Driver (Sig);
if Drv = null then
-- FIXME: disp signal and process.
Error ("'driving error: no driver in process for signal");
end if;
if Drv.First_Trans.Kind /= Trans_Null then
return True;
else
return False;
end if;
end Ghdl_Signal_Driving;
function Ghdl_Signal_Driving_Value_B1 (Sig : Ghdl_Signal_Ptr) return Ghdl_B1
is
Drv : Driver_Acc;
begin
Drv := Get_Driver (Sig);
if Drv = null or else Drv.First_Trans.Kind /= Trans_Value then
Error ("'driving_value: no active driver in process for signal");
else
return Drv.First_Trans.Val.B1;
end if;
end Ghdl_Signal_Driving_Value_B1;
function Ghdl_Signal_Driving_Value_E8 (Sig : Ghdl_Signal_Ptr)
return Ghdl_E8
is
Drv : Driver_Acc;
begin
Drv := Get_Driver (Sig);
if Drv = null or else Drv.First_Trans.Kind /= Trans_Value then
Error ("'driving_value: no active driver in process for signal");
else
return Drv.First_Trans.Val.E8;
end if;
end Ghdl_Signal_Driving_Value_E8;
function Ghdl_Signal_Driving_Value_E32 (Sig : Ghdl_Signal_Ptr)
return Ghdl_E32
is
Drv : Driver_Acc;
begin
Drv := Get_Driver (Sig);
if Drv = null or else Drv.First_Trans.Kind /= Trans_Value then
Error ("'driving_value: no active driver in process for signal");
else
return Drv.First_Trans.Val.E32;
end if;
end Ghdl_Signal_Driving_Value_E32;
function Ghdl_Signal_Driving_Value_I32 (Sig : Ghdl_Signal_Ptr)
return Ghdl_I32
is
Drv : Driver_Acc;
begin
Drv := Get_Driver (Sig);
if Drv = null or else Drv.First_Trans.Kind /= Trans_Value then
Error ("'driving_value: no active driver in process for signal");
else
return Drv.First_Trans.Val.I32;
end if;
end Ghdl_Signal_Driving_Value_I32;
function Ghdl_Signal_Driving_Value_I64 (Sig : Ghdl_Signal_Ptr)
return Ghdl_I64
is
Drv : Driver_Acc;
begin
Drv := Get_Driver (Sig);
if Drv = null or else Drv.First_Trans.Kind /= Trans_Value then
Error ("'driving_value: no active driver in process for signal");
else
return Drv.First_Trans.Val.I64;
end if;
end Ghdl_Signal_Driving_Value_I64;
function Ghdl_Signal_Driving_Value_F64 (Sig : Ghdl_Signal_Ptr)
return Ghdl_F64
is
Drv : Driver_Acc;
begin
Drv := Get_Driver (Sig);
if Drv = null or else Drv.First_Trans.Kind /= Trans_Value then
Error ("'driving_value: no active driver in process for signal");
else
return Drv.First_Trans.Val.F64;
end if;
end Ghdl_Signal_Driving_Value_F64;
type Force_Kind is (Force, Release);
type Force_Mode is (Force_Effective, Force_Driving);
type Force_Value (Kind : Force_Kind);
type Force_Value_Acc is access Force_Value;
type Force_Value (Kind : Force_Kind) is record
Mode : Force_Mode;
Next : Force_Value_Acc;
Sig : Ghdl_Signal_Ptr;
case Kind is
when Force =>
Val : aliased Value_Union;
when Release =>
null;
end case;
end record;
procedure Free is new Ada.Unchecked_Deallocation
(Force_Value, Force_Value_Acc);
-- Chain of forced values for the next cycle.
Force_Value_First : Force_Value_Acc;
Force_Value_Last : Force_Value_Acc;
procedure Append_Force_Value (F : Force_Value_Acc) is
begin
if Force_Value_First = null then
Force_Value_First := F;
else
Force_Value_Last.Next := F;
end if;
Force_Value_Last := F;
end Append_Force_Value;
procedure Ghdl_Signal_Release_Eff (Sig : Ghdl_Signal_Ptr) is
begin
Append_Force_Value (new Force_Value'(Kind => Release,
Mode => Force_Effective,
Next => null,
Sig => Sig));
end Ghdl_Signal_Release_Eff;
procedure Ghdl_Signal_Release_Drv (Sig : Ghdl_Signal_Ptr) is
begin
Append_Force_Value (new Force_Value'(Kind => Release,
Mode => Force_Driving,
Next => null,
Sig => Sig));
end Ghdl_Signal_Release_Drv;
procedure Ghdl_Signal_Force_Driving_B1 (Sig : Ghdl_Signal_Ptr;
Val : Ghdl_B1) is
begin
Append_Force_Value (new Force_Value'(Kind => Force,
Mode => Force_Driving,
Next => null,
Sig => Sig,
Val => (Mode => Mode_B1,
B1 => Val)));
end Ghdl_Signal_Force_Driving_B1;
procedure Ghdl_Signal_Force_Effective_B1 (Sig : Ghdl_Signal_Ptr;
Val : Ghdl_B1) is
begin
Append_Force_Value (new Force_Value'(Kind => Force,
Mode => Force_Effective,
Next => null,
Sig => Sig,
Val => (Mode => Mode_B1,
B1 => Val)));
end Ghdl_Signal_Force_Effective_B1;
procedure Ghdl_Signal_Force_Driving_E8 (Sig : Ghdl_Signal_Ptr;
Val : Ghdl_E8) is
begin
Append_Force_Value (new Force_Value'(Kind => Force,
Mode => Force_Driving,
Next => null,
Sig => Sig,
Val => (Mode => Mode_E8,
E8 => Val)));
end Ghdl_Signal_Force_Driving_E8;
procedure Ghdl_Signal_Force_Effective_E8 (Sig : Ghdl_Signal_Ptr;
Val : Ghdl_E8) is
begin
Append_Force_Value (new Force_Value'(Kind => Force,
Mode => Force_Effective,
Next => null,
Sig => Sig,
Val => (Mode => Mode_E8,
E8 => Val)));
end Ghdl_Signal_Force_Effective_E8;
procedure Ghdl_Signal_Force_Driving_E32 (Sig : Ghdl_Signal_Ptr;
Val : Ghdl_E32) is
begin
Append_Force_Value (new Force_Value'(Kind => Force,
Mode => Force_Driving,
Next => null,
Sig => Sig,
Val => (Mode => Mode_E32,
E32 => Val)));
end Ghdl_Signal_Force_Driving_E32;
procedure Ghdl_Signal_Force_Effective_E32 (Sig : Ghdl_Signal_Ptr;
Val : Ghdl_E32) is
begin
Append_Force_Value (new Force_Value'(Kind => Force,
Mode => Force_Effective,
Next => null,
Sig => Sig,
Val => (Mode => Mode_E32,
E32 => Val)));
end Ghdl_Signal_Force_Effective_E32;
procedure Ghdl_Signal_Force_Driving_I32 (Sig : Ghdl_Signal_Ptr;
Val : Ghdl_I32) is
begin
Append_Force_Value (new Force_Value'(Kind => Force,
Mode => Force_Driving,
Next => null,
Sig => Sig,
Val => (Mode => Mode_I32,
I32 => Val)));
end Ghdl_Signal_Force_Driving_I32;
procedure Ghdl_Signal_Force_Effective_I32 (Sig : Ghdl_Signal_Ptr;
Val : Ghdl_I32) is
begin
Append_Force_Value (new Force_Value'(Kind => Force,
Mode => Force_Effective,
Next => null,
Sig => Sig,
Val => (Mode => Mode_I32,
I32 => Val)));
end Ghdl_Signal_Force_Effective_I32;
procedure Ghdl_Signal_Force_Driving_I64 (Sig : Ghdl_Signal_Ptr;
Val : Ghdl_I64) is
begin
Append_Force_Value (new Force_Value'(Kind => Force,
Mode => Force_Driving,
Next => null,
Sig => Sig,
Val => (Mode => Mode_I64,
I64 => Val)));
end Ghdl_Signal_Force_Driving_I64;
procedure Ghdl_Signal_Force_Effective_I64 (Sig : Ghdl_Signal_Ptr;
Val : Ghdl_I64) is
begin
Append_Force_Value (new Force_Value'(Kind => Force,
Mode => Force_Effective,
Next => null,
Sig => Sig,
Val => (Mode => Mode_I64,
I64 => Val)));
end Ghdl_Signal_Force_Effective_I64;
procedure Ghdl_Signal_Force_Driving_F64 (Sig : Ghdl_Signal_Ptr;
Val : Ghdl_F64) is
begin
Append_Force_Value (new Force_Value'(Kind => Force,
Mode => Force_Driving,
Next => null,
Sig => Sig,
Val => (Mode => Mode_F64,
F64 => Val)));
end Ghdl_Signal_Force_Driving_F64;
procedure Ghdl_Signal_Force_Effective_F64 (Sig : Ghdl_Signal_Ptr;
Val : Ghdl_F64) is
begin
Append_Force_Value (new Force_Value'(Kind => Force,
Mode => Force_Effective,
Next => null,
Sig => Sig,
Val => (Mode => Mode_F64,
F64 => Val)));
end Ghdl_Signal_Force_Effective_F64;
-- Remove all (but Signal_End) signals in the next active chain.
-- Called when a transaction/event will occur before the time for this
-- chain.
procedure Flush_Active_Chain
is
Sig : Ghdl_Signal_Ptr;
Next_Sig : Ghdl_Signal_Ptr;
begin
-- Free active_chain.
Sig := Signal_Active_Chain;
loop
Next_Sig := Sig.Link;
exit when Next_Sig = null;
Sig.Link := null;
Sig := Next_Sig;
end loop;
pragma Assert (Sig = Signal_End);
Signal_Active_Chain := Sig;
end Flush_Active_Chain;
function Find_Next_Time (Tn : Std_Time) return Std_Time
is
Res : Std_Time;
Sig : Ghdl_Signal_Ptr;
procedure Check_Transaction (Trans : Transaction_Acc) is
begin
if Trans = null or else Trans.Kind = Trans_Direct then
-- Activity of direct drivers is done through link.
return;
end if;
if Trans.Time = Res then
-- Put to active list.
Insert_Active_Chain (Sig);
elsif Trans.Time < Res then
-- A transaction is scheduled before all the previous one. Clear
-- the active chain, and put simply Sig on it.
Flush_Active_Chain;
Res := Trans.Time;
-- Put sig on the list.
Insert_Active_Chain (Sig);
end if;
if Res = Current_Time then
-- Must have been in the active list.
Internal_Error ("find_next_time(2)");
end if;
end Check_Transaction;
begin
pragma Assert (Tn >= Current_Time);
-- If there is signals in the active list, then next cycle is a delta
-- cycle, so next time is current_time.
if Signal_Active_Chain.Link /= null then
return Current_Time;
end if;
if Force_Value_First /= null then
return Current_Time;
end if;
Res := Tn;
Sig := Future_List;
while Sig.Flink /= null loop
case Sig.S.Mode_Sig is
when Mode_Signal_User =>
for J in 1 .. Sig.S.Nbr_Drivers loop
Check_Transaction (Sig.S.Drivers (J - 1).First_Trans.Next);
end loop;
when Mode_Delayed
| Mode_Stable
| Mode_Quiet =>
Check_Transaction (Sig.S.Attr_Trans.Next);
when others =>
Internal_Error ("find_next_time(3)");
end case;
Sig := Sig.Flink;
end loop;
return Res;
end Find_Next_Time;
-- function Get_Nbr_Non_Null_Source (Sig : Ghdl_Signal_Ptr)
-- return Natural
-- is
-- Length : Natural;
-- begin
-- Length := Sig.Nbr_Ports;
-- for I in 0 .. Sig.Nbr_Drivers - 1 loop
-- case Sig.Drivers (I).First_Trans.Kind is
-- when Trans_Value =>
-- Length := Length + 1;
-- when Trans_Null =>
-- null;
-- when Trans_Error =>
-- Error ("range check error");
-- end case;
-- end loop;
-- return Length;
-- end Get_Nbr_Non_Null_Source;
function To_Resolver_Acc is new Ada.Unchecked_Conversion
(Source => System.Address, Target => Resolver_Acc);
procedure Compute_Resolved_Signal (Resolv : Resolved_Signal_Acc)
is
Sig : constant Ghdl_Signal_Ptr :=
Sig_Table.Table (Resolv.Sig_Range.First);
Length : Ghdl_Index_Type;
type Bool_Array_Type is array (1 .. Sig.S.Nbr_Drivers) of Boolean;
Vec : Bool_Array_Type;
begin
-- Compute number of non-null drivers.
Length := 0;
for I in 1 .. Sig.S.Nbr_Drivers loop
case Sig.S.Drivers (I - 1).First_Trans.Kind is
when Trans_Value =>
Length := Length + 1;
Vec (I) := True;
when Trans_Null =>
Vec (I) := False;
when Trans_Error =>
Error ("range check error");
when Trans_Direct =>
Internal_Error ("compute_resolved_signal: trans_direct");
end case;
end loop;
-- Check driving condition on all signals.
for J in Resolv.Sig_Range.First + 1.. Resolv.Sig_Range.Last loop
for I in 1 .. Sig.S.Nbr_Drivers loop
if (Sig_Table.Table (J).S.Drivers (I - 1).First_Trans.Kind
/= Trans_Null)
xor Vec (I)
then
Error ("null-transaction required");
end if;
end loop;
end loop;
-- if no driving sources and register, exit.
if Length = 0
and then Sig.Nbr_Ports = 0
and then Sig.Flags.Sig_Kind = Kind_Signal_Register
then
return;
end if;
-- Call the procedure.
Resolv.Resolv_Proc.all (Resolv.Resolv_Inst,
Resolv.Resolv_Ptr,
Vec'Address,
Length,
Sig.S.Nbr_Drivers,
Sig.Nbr_Ports);
end Compute_Resolved_Signal;
procedure Call_Conversion_Function (Conv : Sig_Conversion_Acc)
is
F : Conversion_Func_Acc;
begin
F := To_Conversion_Func_Acc (Conv.Func);
F.all (Conv.Instance);
end Call_Conversion_Function;
procedure Resume_Process_If_Event
(Sig : Ghdl_Signal_Ptr; Proc : Process_Acc)
is
El : Action_List_Acc;
begin
El := new Action_List'(Dynamic => False,
Proc => Proc,
Next => Sig.Event_List);
Sig.Event_List := El;
end Resume_Process_If_Event;
-- Order of signals:
-- To be computed: driving value or/and effective value
-- To be considered: ports, signals, implicit signals, resolution,
-- conversion
--
procedure Add_Propagation (P : Propagation_Type) is
begin
Propagation.Increment_Last;
Propagation.Table (Propagation.Last) := P;
end Add_Propagation;
procedure Add_Forward_Propagation (Sig : Ghdl_Signal_Ptr) is
begin
for I in 1 .. Sig.Nbr_Ports loop
Add_Propagation
((Kind => Imp_Forward_Build,
Forward => new Forward_Build_Type'(Src => Sig.Ports (I - 1),
Targ => Sig)));
end loop;
end Add_Forward_Propagation;
-- Put SIG in PROPAGATION table until ORDER level.
procedure Order_Signal (Sig : Ghdl_Signal_Ptr; Order : Propag_Order_Flag);
-- Return TRUE is the effective value of SIG is the driving value of SIG.
function Is_Eff_Drv (Sig : Ghdl_Signal_Ptr) return Boolean
is
begin
case Sig.S.Mode_Sig is
when Mode_Signal
| Mode_Buffer
| Mode_Out =>
return True;
when Mode_Linkage =>
-- No effective value.
return False;
when Mode_Inout
| Mode_In =>
if Sig.S.Effective = null then
if Sig.S.Nbr_Drivers > 0 or Sig.Nbr_Ports > 0 then
-- Only for inout.
return True;
else
return False;
end if;
else
return False;
end if;
when Mode_Conv_In
| Mode_Conv_Out =>
return False;
when Mode_Stable
| Mode_Guard
| Mode_Quiet
| Mode_Transaction
| Mode_Delayed =>
return True;
when Mode_End =>
return False;
end case;
end Is_Eff_Drv;
procedure Order_Signal_List (Sig : Ghdl_Signal_Ptr;
Order : Propag_Order_Flag)
is
begin
for I in 1 .. Sig.Nbr_Ports loop
Order_Signal (Sig.Ports (I - 1), Order);
end loop;
end Order_Signal_List;
-- Put SIG in PROPAGATION table until ORDER level.
procedure Order_Signal (Sig : Ghdl_Signal_Ptr; Order : Propag_Order_Flag)
is
begin
if Sig = null then
return;
end if;
-- Catch infinite loops, which must never happen.
-- Also exit if the signal is already fully ordered.
case Sig.Flags.Propag is
when Propag_None =>
null;
when Propag_Being_Driving =>
Internal_Error ("order_signal: being driving");
when Propag_Being_Effective =>
Internal_Error ("order_signal: being effective");
when Propag_Driving =>
null;
when Propag_Done =>
-- If sig was already handled, nothing to do!
return;
end case;
-- First, the driving value.
if Sig.Flags.Propag = Propag_None then
case Sig.S.Mode_Sig is
when Mode_Signal_User =>
if Sig.S.Nbr_Drivers = 0 and Sig.Nbr_Ports = 0 then
-- No source.
Sig.Flags.Propag := Propag_Driving;
elsif Sig.S.Resolv = null then
-- Not resolved (so at most one source).
if Sig.S.Nbr_Drivers = 1 then
-- Not resolved, 1 source : a driver.
pragma Assert (Sig.Nbr_Ports = 0);
if Is_Eff_Drv (Sig) then
Add_Propagation ((Kind => Eff_One_Driver, Sig => Sig));
Sig.Flags.Propag := Propag_Done;
else
Add_Propagation ((Kind => Drv_One_Driver, Sig => Sig));
Sig.Flags.Propag := Propag_Driving;
end if;
else
Sig.Flags.Propag := Propag_Being_Driving;
-- not resolved, 1 source : Source is a port.
pragma Assert (Sig.Nbr_Ports = 1);
pragma Assert (Sig.S.Nbr_Drivers = 0);
Order_Signal (Sig.Ports (0), Propag_Driving);
if Is_Eff_Drv (Sig) then
Add_Propagation ((Kind => Eff_One_Port, Sig => Sig));
Sig.Flags.Propag := Propag_Done;
else
Add_Propagation ((Kind => Drv_One_Port, Sig => Sig));
Sig.Flags.Propag := Propag_Driving;
end if;
end if;
else
-- Resolved signal.
declare
Resolv : Resolved_Signal_Acc;
S : Ghdl_Signal_Ptr;
begin
-- Compute driving value of brothers.
Resolv := Sig.S.Resolv;
for I in Resolv.Sig_Range.First .. Resolv.Sig_Range.Last
loop
S := Sig_Table.Table (I);
if S.Flags.Propag /= Propag_None then
Internal_Error ("order_signal(1)");
end if;
S.Flags.Propag := Propag_Being_Driving;
end loop;
for I in Resolv.Sig_Range.First .. Resolv.Sig_Range.Last
loop
S := Sig_Table.Table (I);
-- Compute driving value of the sources.
for J in 1 .. S.Nbr_Ports loop
Order_Signal (S.Ports (J - 1), Propag_Driving);
end loop;
end loop;
for I in Resolv.Sig_Range.First .. Resolv.Sig_Range.Last
loop
S := Sig_Table.Table (I);
S.Flags.Propag := Propag_Driving;
end loop;
if Is_Eff_Drv (Sig) then
if Resolv.Sig_Range.First = Resolv.Sig_Range.Last then
Add_Propagation ((Kind => Eff_One_Resolved,
Sig => Sig));
else
Add_Propagation ((Kind => Eff_Multiple,
Resolv => Resolv));
end if;
else
if Resolv.Sig_Range.First = Resolv.Sig_Range.Last then
Add_Propagation ((Kind => Drv_One_Resolved,
Sig => Sig));
else
Add_Propagation ((Kind => Drv_Multiple,
Resolv => Resolv));
end if;
end if;
end;
end if;
when Mode_Signal_Implicit =>
Sig.Flags.Propag := Propag_Being_Driving;
Order_Signal_List (Sig, Propag_Done);
Sig.Flags.Propag := Propag_Done;
case Mode_Signal_Implicit (Sig.S.Mode_Sig) is
when Mode_Guard =>
Add_Propagation ((Kind => Imp_Guard, Sig => Sig));
when Mode_Stable =>
Add_Forward_Propagation (Sig);
Add_Propagation ((Kind => Imp_Stable, Sig => Sig));
when Mode_Quiet =>
Add_Forward_Propagation (Sig);
Add_Propagation ((Kind => Imp_Quiet, Sig => Sig));
when Mode_Delayed =>
Add_Forward_Propagation (Sig);
Add_Propagation ((Kind => Imp_Delayed, Sig => Sig));
when Mode_Transaction =>
Add_Propagation ((Kind => Imp_Transaction, Sig => Sig));
end case;
return;
when Mode_Conv_In =>
-- In conversion signals have no driving value
null;
when Mode_Conv_Out =>
declare
Conv : Sig_Conversion_Acc;
begin
Conv := Sig.S.Conv;
for I in Conv.Dest.First .. Conv.Dest.Last loop
Sig_Table.Table (I).Flags.Propag := Propag_Being_Driving;
end loop;
for I in Conv.Src.First .. Conv.Src.Last loop
Order_Signal (Sig_Table.Table (I), Propag_Driving);
end loop;
Add_Propagation ((Kind => Out_Conversion, Conv => Conv));
for I in Conv.Dest.First .. Conv.Dest.Last loop
Sig_Table.Table (I).Flags.Propag := Propag_Done;
end loop;
end;
when Mode_End =>
Internal_Error ("order_signal: mode_end");
end case;
end if;
-- Effective value.
if Order = Propag_Driving then
-- Will be done later.
return;
end if;
case Sig.S.Mode_Sig is
when Mode_Signal
| Mode_Buffer
| Mode_Out =>
-- Effective value is driving value.
Sig.Flags.Propag := Propag_Done;
when Mode_Linkage =>
-- No effective value.
Sig.Flags.Propag := Propag_Done;
when Mode_Inout
| Mode_In =>
if Sig.S.Effective = null then
-- Effective value is driving value or initial value.
null;
else
Sig.Flags.Propag := Propag_Being_Effective;
Order_Signal (Sig.S.Effective, Propag_Done);
Add_Propagation ((Kind => Eff_Actual, Sig => Sig));
Sig.Flags.Propag := Propag_Done;
end if;
when Mode_Stable
| Mode_Guard
| Mode_Quiet
| Mode_Transaction
| Mode_Delayed =>
-- Sig.Propag is already set to PROPAG_DONE.
null;
when Mode_Conv_In =>
declare
Conv : Sig_Conversion_Acc;
begin
Conv := Sig.S.Conv;
for I in Conv.Dest.First .. Conv.Dest.Last loop
Sig_Table.Table (I).Flags.Propag := Propag_Being_Effective;
end loop;
for I in Conv.Src.First .. Conv.Src.Last loop
Order_Signal (Sig_Table.Table (I), Propag_Done);
end loop;
Add_Propagation ((Kind => In_Conversion, Conv => Conv));
for I in Conv.Dest.First .. Conv.Dest.Last loop
Sig_Table.Table (I).Flags.Propag := Propag_Done;
end loop;
end;
when Mode_Conv_Out =>
-- No effective value.
null;
when Mode_End =>
Internal_Error ("order_signal: mode_end");
end case;
end Order_Signal;
procedure Set_Net (Sig : Ghdl_Signal_Ptr;
Net : Signal_Net_Type;
Link : Ghdl_Signal_Ptr)
is
use Astdio;
use Stdio;
begin
if Sig = null then
return;
end if;
if Boolean'(False) then
Put ("set_net ");
Put_I32 (stdout, Ghdl_I32 (Net));
Put (" on ");
Put (stdout, Sig.all'Address);
Put (" ");
Disp_Signals.Disp_Mode_Signal (Sig.S.Mode_Sig);
New_Line;
end if;
if Sig.Net /= No_Signal_Net then
if Sig.Net /= Net then
-- Renumber.
if Boolean'(False) then
Put ("set_net renumber ");
Put_I32 (stdout, Ghdl_I32 (Net));
Put (" on ");
Put (stdout, Sig.all'Address);
New_Line;
end if;
declare
S : Ghdl_Signal_Ptr;
Old : constant Signal_Net_Type := Sig.Net;
begin
-- Merge the old net into NET.
S := Sig;
loop
S.Net := Net;
S := S.Link;
exit when S = Sig;
end loop;
-- Add to the ring.
S := Sig.Link;
Sig.Link := Link.Link;
Link.Link := S;
-- Check.
for I in Sig_Table.First .. Sig_Table.Last loop
if Sig_Table.Table (I).Net = Old then
-- Disp_Signals.Disp_Signals_Table;
-- Disp_Signals.Disp_Signals_Map;
Internal_Error ("set_net: link corrupted");
end if;
end loop;
end;
end if;
return;
end if;
Sig.Net := Net;
-- Add SIG in the LINK ring.
-- Note: this works even if LINK is not a ring (ie, LINK.link = null).
if Link.Link = null and then Sig /= Link then
Internal_Error ("set_net: bad link");
end if;
Sig.Link := Link.Link;
Link.Link := Sig;
-- Dependences.
case Sig.S.Mode_Sig is
when Mode_Signal_User =>
for I in 1 .. Sig.Nbr_Ports loop
Set_Net (Sig.Ports (I - 1), Net, Link);
end loop;
Set_Net (Sig.S.Effective, Net, Link);
if Sig.S.Resolv /= null then
for I in Sig.S.Resolv.Sig_Range.First
.. Sig.S.Resolv.Sig_Range.Last
loop
Set_Net (Sig_Table.Table (I), Net, Link);
end loop;
end if;
when Mode_Signal_Forward =>
null;
when Mode_Transaction
| Mode_Guard =>
for I in 1 .. Sig.Nbr_Ports loop
Set_Net (Sig.Ports (I - 1), Net, Link);
end loop;
when Mode_Conv_In
| Mode_Conv_Out =>
declare
S : Ghdl_Signal_Ptr;
Conv : Sig_Conversion_Acc;
begin
Conv := Sig.S.Conv;
S := Sig_Table.Table (Conv.Src.First);
if Sig = S or else S.Net /= Net then
for J in Conv.Src.First .. Conv.Src.Last loop
Set_Net (Sig_Table.Table (J), Net, Link);
end loop;
for J in Conv.Dest.First .. Conv.Dest.Last loop
Set_Net (Sig_Table.Table (J), Net, Link);
end loop;
end if;
end;
when Mode_End =>
Internal_Error ("set_net");
end case;
end Set_Net;
function Get_Propagation_Net (P : Signal_Net_Type) return Signal_Net_Type
is
begin
case Propagation.Table (P).Kind is
when Drv_Multiple
| Eff_Multiple =>
return Sig_Table.Table
(Propagation.Table (P).Resolv.Sig_Range.First).Net;
when In_Conversion
| Out_Conversion =>
return Sig_Table.Table
(Propagation.Table (P).Conv.Src.First).Net;
when Imp_Forward_Build =>
return Propagation.Table (P).Forward.Src.Net;
when others =>
return Propagation.Table (P).Sig.Net;
end case;
end Get_Propagation_Net;
Last_Signal_Net : Signal_Net_Type;
-- Create a net for SIG, or if one of its dependences has already a net,
-- merge SIG in this net.
procedure Merge_Net (Sig : Ghdl_Signal_Ptr)
is
begin
if Sig.S.Mode_Sig in Mode_Signal_User then
if Sig.S.Resolv = null
and then Sig.Nbr_Ports = 0
and then Sig.S.Effective = null
then
Internal_Error ("merge_net(1)");
end if;
if Sig.S.Effective /= null
and then Sig.S.Effective.Net /= No_Signal_Net
then
-- Avoid to create a net, just merge.
Set_Net (Sig, Sig.S.Effective.Net, Sig.S.Effective);
return;
end if;
end if;
if Sig.Nbr_Ports >= 1
and then Sig.Ports (0).Net /= No_Signal_Net
then
-- Avoid to create a net, just merge.
Set_Net (Sig, Sig.Ports (0).Net, Sig.Ports (0));
else
Last_Signal_Net := Last_Signal_Net + 1;
Set_Net (Sig, Last_Signal_Net, Sig);
end if;
end Merge_Net;
-- Create nets.
-- For all signals, set the net field.
procedure Create_Nets
is
Sig : Ghdl_Signal_Ptr;
begin
Last_Signal_Net := No_Signal_Net;
for I in reverse Propagation.First .. Propagation.Last loop
case Propagation.Table (I).Kind is
when Drv_Error
| Prop_End =>
null;
when Drv_One_Driver
| Eff_One_Driver =>
null;
when Eff_One_Resolved =>
Sig := Propagation.Table (I).Sig;
-- Do not create a net if the signal has no dependences.
if Sig.Net = No_Signal_Net
and then (Sig.S.Effective /= null or Sig.Nbr_Ports /= 0)
then
Merge_Net (Sig);
end if;
when Drv_One_Port
| Eff_One_Port
| Imp_Guard
| Imp_Transaction
| Eff_Actual
| Drv_One_Resolved =>
Sig := Propagation.Table (I).Sig;
if Sig.Net = No_Signal_Net then
Merge_Net (Sig);
end if;
when Imp_Forward =>
-- Should not yet appear.
Internal_Error ("create_nets - forward");
when Imp_Forward_Build =>
Sig := Propagation.Table (I).Forward.Src;
if Sig.Net = No_Signal_Net then
-- Create a new net with only sig.
Last_Signal_Net := Last_Signal_Net + 1;
Set_Net (Sig, Last_Signal_Net, Sig);
end if;
when Imp_Quiet
| Imp_Stable
| Imp_Delayed =>
Sig := Propagation.Table (I).Sig;
if Sig.Net = No_Signal_Net then
-- Create a new net with only sig.
Last_Signal_Net := Last_Signal_Net + 1;
Sig.Net := Last_Signal_Net;
Sig.Link := Sig;
end if;
when Drv_Multiple
| Eff_Multiple =>
declare
Resolv : Resolved_Signal_Acc;
Link : Ghdl_Signal_Ptr;
begin
Last_Signal_Net := Last_Signal_Net + 1;
Resolv := Propagation.Table (I).Resolv;
Link := Sig_Table.Table (Resolv.Sig_Range.First);
for J in Resolv.Sig_Range.First .. Resolv.Sig_Range.Last loop
Set_Net (Sig_Table.Table (J), Last_Signal_Net, Link);
end loop;
end;
when In_Conversion
| Out_Conversion =>
declare
Conv : Sig_Conversion_Acc;
Link : Ghdl_Signal_Ptr;
begin
Conv := Propagation.Table (I).Conv;
Link := Sig_Table.Table (Conv.Src.First);
if Link.Net = No_Signal_Net then
Last_Signal_Net := Last_Signal_Net + 1;
Set_Net (Link, Last_Signal_Net, Link);
end if;
end;
end case;
end loop;
-- Reorder propagation table.
declare
type Off_Array is array (Signal_Net_Type range <>) of Signal_Net_Type;
Offs : Off_Array (0 .. Last_Signal_Net) := (others => 0);
Last_Off : Signal_Net_Type;
Num : Signal_Net_Type;
-- procedure Disp_Offs
-- is
-- use Grt.Astdio;
-- use Grt.Stdio;
-- begin
-- for I in Offs'Range loop
-- if Offs (I) /= 0 then
-- Put_I32 (stdout, Ghdl_I32 (I));
-- Put (": ");
-- Put_I32 (stdout, Ghdl_I32 (Offs (I)));
-- New_Line;
-- end if;
-- end loop;
-- end Disp_Offs;
type Propag_Array is array (Signal_Net_Type range <>)
of Propagation_Type;
procedure Deallocate is new Ada.Unchecked_Deallocation
(Object => Forward_Build_Type, Name => Forward_Build_Acc);
Net : Signal_Net_Type;
begin
-- 1) Count number of propagation cell per net.
for I in Propagation.First .. Propagation.Last loop
Net := Get_Propagation_Net (I);
Offs (Net) := Offs (Net) + 1;
end loop;
-- 2) Convert numbers to offsets.
Last_Off := 1;
for I in 1 .. Last_Signal_Net loop
Num := Offs (I);
if Num /= 0 then
-- Reserve one slot for a prepended 'prop_end'.
Offs (I) := Last_Off + 1;
Last_Off := Last_Off + 1 + Num;
end if;
end loop;
Offs (0) := Last_Off + 1;
declare
Propag : Propag_Array (1 .. Last_Off); -- := (others => 0);
begin
for I in Propagation.First .. Propagation.Last loop
Net := Get_Propagation_Net (I);
if Net /= No_Signal_Net then
Propag (Offs (Net)) := Propagation.Table (I);
Offs (Net) := Offs (Net) + 1;
end if;
end loop;
Propagation.Set_Last (Last_Off);
Propagation.Release;
for I in Propagation.First .. Propagation.Last loop
if Propag (I).Kind = Imp_Forward_Build then
Propagation.Table (I) := (Kind => Imp_Forward,
Sig => Propag (I).Forward.Targ);
Deallocate (Propag (I).Forward);
else
Propagation.Table (I) := Propag (I);
end if;
end loop;
end;
for I in 1 .. Last_Signal_Net loop
-- Ignore holes.
if Offs (I) /= 0 then
Propagation.Table (Offs (I)) :=
(Kind => Prop_End, Updated => True);
end if;
end loop;
Propagation.Table (1) := (Kind => Prop_End, Updated => True);
-- 4) Convert back from offset to start position (on the prop_end
-- cell).
Offs (0) := 1;
Last_Off := 1;
for I in 1 .. Last_Signal_Net loop
if Offs (I) /= 0 then
Num := Offs (I);
Offs (I) := Last_Off;
Last_Off := Num;
end if;
end loop;
-- 5) Re-map the nets to cell indexes.
for I in Sig_Table.First .. Sig_Table.Last loop
Sig := Sig_Table.Table (I);
if Sig.Net = No_Signal_Net then
if Sig.S.Resolv /= null then
Sig.Net := Net_One_Resolved;
elsif Sig.S.Nbr_Drivers = 1 then
if Sig.S.Drivers (0).Last_Trans.Kind = Trans_Direct then
Sig.Net := Net_One_Direct;
else
Sig.Net := Net_One_Driver;
end if;
else
pragma Assert (Sig.S.Nbr_Drivers = 0);
null;
end if;
else
Sig.Net := Offs (Sig.Net);
end if;
Sig.Link := null;
end loop;
end;
end Create_Nets;
function Get_Nbr_Future return Ghdl_I32
is
Res : Ghdl_I32;
Sig : Ghdl_Signal_Ptr;
begin
Res := 0;
Sig := Future_List;
while Sig.Flink /= null loop
Res := Res + 1;
Sig := Sig.Flink;
end loop;
return Res;
end Get_Nbr_Future;
-- Check every scalar subelement of a resolved signal has a driver
-- in the same process.
procedure Check_Resolved_Driver (Resolv : Resolved_Signal_Acc)
is
First_Sig : Ghdl_Signal_Ptr;
Nbr : Ghdl_Index_Type;
begin
First_Sig := Sig_Table.Table (Resolv.Sig_Range.First);
Nbr := First_Sig.S.Nbr_Drivers;
for I in Resolv.Sig_Range.First + 1 .. Resolv.Sig_Range.Last loop
if Sig_Table.Table (I).S.Nbr_Drivers /= Nbr then
-- FIXME: provide more information (signal name, process name).
Error ("missing drivers for subelement of a resolved signal");
end if;
end loop;
end Check_Resolved_Driver;
Ieee_Std_Logic_1164_Resolved_Resolv_Ptr : Address;
pragma Import (C, Ieee_Std_Logic_1164_Resolved_Resolv_Ptr,
"ieee__std_logic_1164__resolved_RESOLV_ptr");
procedure Free is new Ada.Unchecked_Deallocation
(Name => Resolved_Signal_Acc, Object => Resolved_Signal_Type);
procedure Order_All_Signals
is
Sig : Ghdl_Signal_Ptr;
Resolv : Resolved_Signal_Acc;
begin
-- Do checks and optimization.
for I in Sig_Table.First .. Sig_Table.Last loop
Sig := Sig_Table.Table (I);
-- LRM 5.3
-- If, by the above rules, no disconnection specification applies to
-- the drivers of a guarded, scalar signal S whose type mark is T
-- (including a scalar subelement of a composite signal), then the
-- following default disconnection specification is implicitly
-- assumed:
-- disconnect S : T after 0 ns;
if Sig.S.Mode_Sig in Mode_Signal_User then
Resolv := Sig.S.Resolv;
if Resolv /= null and then Resolv.Disconnect_Time = Bad_Time then
Resolv.Disconnect_Time := 0;
end if;
if Resolv /= null
and then Resolv.Sig_Range.First = I
and then Resolv.Sig_Range.Last > I
then
-- Check every scalar subelement of a resolved signal
-- has a driver in the same process.
Check_Resolved_Driver (Resolv);
end if;
if Resolv /= null
and then Resolv.Sig_Range.First = I
and then Resolv.Sig_Range.Last = I
and then
(Resolv.Resolv_Proc
= To_Resolver_Acc (Ieee_Std_Logic_1164_Resolved_Resolv_Ptr))
and then Sig.S.Nbr_Drivers + Sig.Nbr_Ports <= 1
and then Sig.Flags.Sig_Kind = Kind_Signal_No
then
-- Optimization: remove resolver if there is at most one
-- source.
Free (Sig.S.Resolv);
end if;
end if;
end loop;
-- Really order them.
for I in Sig_Table.First .. Sig_Table.Last loop
Order_Signal (Sig_Table.Table (I), Propag_Driving);
end loop;
for I in Sig_Table.First .. Sig_Table.Last loop
Order_Signal (Sig_Table.Table (I), Propag_Done);
end loop;
Create_Nets;
end Order_All_Signals;
-- Mark SIG as active (set 'Active and 'Last_Active).
-- This procedure is called while signals are updated.
-- Put SIG on Active_Clear_List (if not already) so that 'Active will be
-- cleared at the end of the delta cycle.
procedure Mark_Active (Sig : Ghdl_Signal_Ptr);
pragma Inline (Mark_Active);
procedure Mark_Active (Sig : Ghdl_Signal_Ptr) is
begin
if not Sig.Active then
-- Sig is active...
Sig.Active := True;
Sig.Last_Active := Current_Time;
-- ... but only for one cycle. It has to be cleared before the next
-- cycle.
Sig.Alink := Active_Clear_List;
Active_Clear_List := Sig;
end if;
end Mark_Active;
procedure Set_Stable_Quiet_Activity
(Mode : Propagation_Kind_Type; Sig : Ghdl_Signal_Ptr) is
begin
case Mode is
when Imp_Stable =>
for I in 0 .. Sig.Nbr_Ports - 1 loop
if Sig.Ports (I).Event then
Mark_Active (Sig);
return;
end if;
end loop;
when Imp_Quiet
| Imp_Transaction
| Imp_Guard =>
for I in 1 .. Sig.Nbr_Ports loop
if Sig.Ports (I - 1).Active then
Mark_Active (Sig);
return;
end if;
end loop;
when others =>
Internal_Error ("set_stable_quiet_activity");
end case;
end Set_Stable_Quiet_Activity;
function Get_Resolved_Activity (Sig : Ghdl_Signal_Ptr) return Boolean
is
Trans : Transaction_Acc;
Res : Boolean := False;
begin
for J in 1 .. Sig.S.Nbr_Drivers loop
Trans := Sig.S.Drivers (J - 1).First_Trans.Next;
if Trans /= null then
if Trans.Kind = Trans_Direct then
Assign (Sig.S.Drivers (J - 1).First_Trans.Val,
Trans.Val_Ptr, Sig.Mode);
-- In fact we knew the signal was active!
Res := True;
elsif Trans.Time = Current_Time then
Free (Sig.S.Drivers (J - 1).First_Trans);
Sig.S.Drivers (J - 1).First_Trans := Trans;
Res := True;
end if;
end if;
end loop;
if Res then
return True;
end if;
for J in 1 .. Sig.Nbr_Ports loop
if Sig.Ports (J - 1).Active then
return True;
end if;
end loop;
return False;
end Get_Resolved_Activity;
procedure Set_Conversion_Activity (Conv : Sig_Conversion_Acc)
is
Active : Boolean := False;
begin
for I in Conv.Src.First .. Conv.Src.Last loop
Active := Active or Sig_Table.Table (I).Active;
end loop;
if Active then
Call_Conversion_Function (Conv);
end if;
for I in Conv.Dest.First .. Conv.Dest.Last loop
Sig_Table.Table (I).Active := Active;
end loop;
end Set_Conversion_Activity;
procedure Delayed_Implicit_Process (Sig : Ghdl_Signal_Ptr)
is
Pfx : constant Ghdl_Signal_Ptr := Sig.Ports (0);
Ntime : Std_Time;
Trans : Transaction_Acc;
Last : Transaction_Acc;
Val : Value_Union;
begin
if Pfx.Event then
-- LRM 14.1
-- P: process (S)
-- begin
-- R <= transport S after T;
-- end process;
Ntime := Current_Time + Sig.S.Time;
-- Find the last transaction.
Last := Sig.S.Attr_Trans;
while Last.Next /= null loop
Last := Last.Next;
end loop;
-- The transaction are scheduled after the last one.
pragma Assert (Last.Time <= Ntime);
Val := Read_Value (Pfx.Value_Ptr, Pfx.Mode);
if Last.Time = Ntime then
-- Change the projected value.
Last.Val := Val;
else
-- Create the transaction.
Trans := new Transaction'(Kind => Trans_Value,
Line => 0,
Time => Ntime,
Next => null,
Val => Val);
-- Append the transaction.
Last.Next := Trans;
end if;
if Sig.S.Time = 0 then
-- The signal will be active on the next cycle.
Sig.Flags.Implicit_Active_Next := True;
end if;
end if;
end Delayed_Implicit_Process;
-- Set the effective value of signal SIG to VAL.
-- If the value is different from the previous one, resume processes.
procedure Set_Effective_Value
(Sig : Ghdl_Signal_Ptr; Val : Ghdl_Value_Ptr)
is
El : Action_List_Acc;
begin
case Sig.Mode is
when Mode_B1 =>
if Sig.Value_Ptr.B1 = Val.B1 then
return;
end if;
Sig.Last_Value.B1 := Sig.Value_Ptr.B1;
Sig.Value_Ptr.B1 := Val.B1;
when Mode_E8 =>
if Sig.Value_Ptr.E8 = Val.E8 then
return;
end if;
Sig.Last_Value.E8 := Sig.Value_Ptr.E8;
Sig.Value_Ptr.E8 := Val.E8;
when Mode_E32 =>
if Sig.Value_Ptr.E32 = Val.E32 then
return;
end if;
Sig.Last_Value.E32 := Sig.Value_Ptr.E32;
Sig.Value_Ptr.E32 := Val.E32;
when Mode_I32 =>
if Sig.Value_Ptr.I32 = Val.I32 then
return;
end if;
Sig.Last_Value.I32 := Sig.Value_Ptr.I32;
Sig.Value_Ptr.I32 := Val.I32;
when Mode_I64 =>
if Sig.Value_Ptr.I64 = Val.I64 then
return;
end if;
Sig.Last_Value.I64 := Sig.Value_Ptr.I64;
Sig.Value_Ptr.I64 := Val.I64;
when Mode_F64 =>
if Sig.Value_Ptr.F64 = Val.F64 then
return;
end if;
Sig.Last_Value.F64 := Sig.Value_Ptr.F64;
Sig.Value_Ptr.F64 := Val.F64;
end case;
Sig.Event := True;
Sig.Last_Event := Current_Time;
if not Sig.Flags.RO_Event then
Sig.Flags.RO_Event := True;
if Sig.Dump_Table_Idx /= 0 then
Changed_Sig_Table.Append(Sig);
end if;
end if;
El := Sig.Event_List;
while El /= null loop
Resume_Process (El.Proc);
El := El.Next;
end loop;
end Set_Effective_Value;
procedure Run_Propagation (Sig_Net : Ghdl_Signal_Ptr)
is
Net : constant Signal_Net_Type := Sig_Net.Net;
Propagation_Kind : Propagation_Kind_Type;
I : Signal_Net_Type;
Sig : Ghdl_Signal_Ptr;
Trans : Transaction_Acc;
First_Trans : Transaction_Acc;
begin
pragma Assert (Net in Signal_Net_Defined);
if Propagation.Table (Net).Updated then
-- Propagation was already run for this net.
return;
end if;
-- Set the updated flag, so that propagation is run only once.
Propagation.Table (Net).Updated := True;
-- And put it on the Update_Clear_Chain to clear the update flag.
Insert_Update_Clear_Chain (Sig_Net);
I := Net + 1;
loop
Propagation_Kind := Propagation.Table (I).Kind;
-- First: the driving value.
case Propagation_Kind is
when Drv_One_Driver
| Eff_One_Driver =>
Sig := Propagation.Table (I).Sig;
First_Trans := Sig.S.Drivers (0).First_Trans;
Trans := First_Trans.Next;
if Trans /= null then
if Trans.Kind = Trans_Direct then
-- Note: already or will be marked as active in
-- update_signals.
Mark_Active (Sig);
Assign (First_Trans.Val, Trans.Val_Ptr, Sig.Mode);
if not Sig.Flags.Is_Drv_Forced then
Sig.Driving_Value := First_Trans.Val;
end if;
elsif Trans.Time = Current_Time then
Mark_Active (Sig);
Free (First_Trans);
Sig.S.Drivers (0).First_Trans := Trans;
if not Sig.Flags.Is_Drv_Forced then
case Trans.Kind is
when Trans_Value =>
Sig.Driving_Value := Trans.Val;
when Trans_Direct =>
Internal_Error ("run_propagation: trans_direct");
when Trans_Null =>
Error ("null transaction");
when Trans_Error =>
Error_Trans_Error (Trans);
end case;
end if;
end if;
end if;
when Drv_One_Resolved
| Eff_One_Resolved =>
Sig := Propagation.Table (I).Sig;
if Get_Resolved_Activity (Sig) then
Mark_Active (Sig);
if not Sig.Flags.Is_Drv_Forced then
Compute_Resolved_Signal
(Propagation.Table (I).Sig.S.Resolv);
end if;
end if;
when Drv_One_Port
| Eff_One_Port =>
Sig := Propagation.Table (I).Sig;
if Sig.Ports (0).Active then
Mark_Active (Sig);
if not Sig.Flags.Is_Drv_Forced then
Sig.Driving_Value := Sig.Ports (0).Driving_Value;
end if;
end if;
when Eff_Actual =>
Sig := Propagation.Table (I).Sig;
-- Note: the signal may have drivers (inout ports).
if Sig.S.Effective.Active and not Sig.Active then
Mark_Active (Sig);
end if;
when Drv_Multiple
| Eff_Multiple =>
declare
Active : Boolean := False;
Resolv : Resolved_Signal_Acc;
begin
Resolv := Propagation.Table (I).Resolv;
for I in Resolv.Sig_Range.First .. Resolv.Sig_Range.Last loop
Sig := Sig_Table.Table (I);
Active := Active or Get_Resolved_Activity (Sig);
end loop;
if Active then
-- Mark the first signal as active (since only this one
-- will be checked to set effective value).
for I in Resolv.Sig_Range.First .. Resolv.Sig_Range.Last
loop
Mark_Active (Sig_Table.Table (I));
end loop;
if not Sig.Flags.Is_Drv_Forced then
Compute_Resolved_Signal (Resolv);
end if;
end if;
end;
when Imp_Guard
| Imp_Stable
| Imp_Quiet
| Imp_Transaction
| Imp_Forward_Build =>
null;
when Imp_Forward =>
Sig := Propagation.Table (I).Sig;
Insert_Active_Chain (Sig);
when Imp_Delayed =>
Sig := Propagation.Table (I).Sig;
Trans := Sig.S.Attr_Trans.Next;
if Trans /= null and then Trans.Time = Current_Time then
Mark_Active (Sig);
Free (Sig.S.Attr_Trans);
Sig.S.Attr_Trans := Trans;
if not Sig.Flags.Is_Drv_Forced then
Sig.Driving_Value := Trans.Val;
end if;
end if;
when In_Conversion =>
null;
when Out_Conversion =>
-- FIXME: do not overwrite the drv_forced signals.
Set_Conversion_Activity (Propagation.Table (I).Conv);
when Prop_End =>
return;
when Drv_Error =>
Internal_Error ("update signals");
end case;
-- Second: the effective value.
case Propagation_Kind is
when Drv_One_Driver
| Drv_One_Port
| Drv_One_Resolved
| Drv_Multiple =>
null;
when Eff_One_Driver
| Eff_One_Port
| Eff_One_Resolved =>
Sig := Propagation.Table (I).Sig;
if Sig.Active then
if not Sig.Flags.Is_Eff_Forced then
Set_Effective_Value
(Sig, Sig.Driving_Value'Unrestricted_Access);
end if;
end if;
when Eff_Multiple =>
declare
Resolv : Resolved_Signal_Acc;
begin
Resolv := Propagation.Table (I).Resolv;
if Sig_Table.Table (Resolv.Sig_Range.First).Active then
-- If one signal is active, all are active.
for I in Resolv.Sig_Range.First .. Resolv.Sig_Range.Last
loop
Sig := Sig_Table.Table (I);
if not Sig.Flags.Is_Eff_Forced then
Set_Effective_Value
(Sig, Sig.Driving_Value'Unrestricted_Access);
end if;
end loop;
end if;
end;
when Eff_Actual =>
Sig := Propagation.Table (I).Sig;
if Sig.Active then
if not Sig.Flags.Is_Eff_Forced then
Set_Effective_Value (Sig, Sig.S.Effective.Value_Ptr);
end if;
end if;
when Imp_Forward
| Imp_Forward_Build =>
null;
when Imp_Guard =>
-- Guard signal is active iff one of its dependence is active.
Sig := Propagation.Table (I).Sig;
Set_Stable_Quiet_Activity (Imp_Guard, Sig);
if Sig.Active then
if not Sig.Flags.Is_Drv_Forced then
Sig.Driving_Value.B1 :=
Sig.S.Guard_Func.all (Sig.S.Guard_Instance);
end if;
if not Sig.Flags.Is_Eff_Forced then
Set_Effective_Value
(Sig, Sig.Driving_Value'Unrestricted_Access);
end if;
end if;
when Imp_Stable
| Imp_Quiet =>
Sig := Propagation.Table (I).Sig;
-- Mark Sig active if one of its source is active (Imp_Quiet)
-- or has an event (Imp_Stable).
Set_Stable_Quiet_Activity (Propagation_Kind, Sig);
if Sig.Active then
-- Set driver.
-- LRM02 12.6.3
-- If an event has occurred on signal S, then S'Stable(T) is
-- updated by assigning the value FALSE to the variable
-- representing the current value of S'Table(T), ...
if not Sig.Flags.Is_Drv_Forced then
Sig.Driving_Value :=
Value_Union'(Mode => Mode_B1, B1 => False);
end if;
-- LRM02 12.6.3
-- ... and the driver of S'Stable(T) is a assigned the
-- waveform TRUE after T.
Trans := new Transaction'
(Kind => Trans_Value,
Line => 0,
Time => Current_Time + Sig.S.Time,
Next => null,
Val => Value_Union'(Mode => Mode_B1, B1 => True));
-- Remove previous transaction.
if Sig.S.Attr_Trans.Next /= null then
Free (Sig.S.Attr_Trans.Next);
end if;
Sig.S.Attr_Trans.Next := Trans;
if not Sig.Flags.Is_Eff_Forced then
Set_Effective_Value
(Sig, Sig.Driving_Value'Unrestricted_Access);
end if;
if Sig.S.Time = 0 then
-- Signal is active in the next cycle. If Time > 0, it
-- has been put in Future_List during creation.
Sig.Flags.Implicit_Active_Next := True;
end if;
else
-- LRM02 12.6.3
-- Otherwise, if the driver of S'Stable(T) is active, then
-- S'Stable(T) is updated by assigning the current value of
-- the driver to the variable representing the current value
-- of S'Stable(T).
Trans := Sig.S.Attr_Trans.Next;
if Trans /= null and then Trans.Time = Current_Time then
Mark_Active (Sig);
Free (Sig.S.Attr_Trans);
Sig.S.Attr_Trans := Trans;
if not Sig.Flags.Is_Drv_Forced then
Sig.Driving_Value := Trans.Val;
end if;
if not Sig.Flags.Is_Eff_Forced then
Set_Effective_Value
(Sig, Sig.Driving_Value'Unrestricted_Access);
end if;
end if;
end if;
when Imp_Transaction =>
-- LRM 12.6.3 Updating Implicit Signals
-- Finally, for any implicit signal S'Transaction, the current
-- value of the signal is modified if and only if S is active.
-- If signal S is active, then S'Transaction is updated by
-- assigning the value of the expression (not S'Transaction)
-- to the variable representing the current value of
-- S'Transaction.
declare
Val : aliased Value_Union;
begin
Sig := Propagation.Table (I).Sig;
Val := (Mode => Mode_B1,
B1 => not Sig.Value_Ptr.B1);
for I in 0 .. Sig.Nbr_Ports - 1 loop
if Sig.Ports (I).Active then
Mark_Active (Sig);
if not Sig.Flags.Is_Eff_Forced then
Set_Effective_Value (Sig, Val'Unrestricted_Access);
end if;
exit;
end if;
end loop;
end;
when Imp_Delayed =>
Sig := Propagation.Table (I).Sig;
if Sig.Active then
if not Sig.Flags.Is_Eff_Forced then
Set_Effective_Value
(Sig, Sig.Driving_Value'Unrestricted_Access);
end if;
end if;
Delayed_Implicit_Process (Sig);
when In_Conversion =>
-- TODO: handle eff_forced signals.
Set_Conversion_Activity (Propagation.Table (I).Conv);
when Out_Conversion =>
null;
when Prop_End =>
null;
when Drv_Error =>
Internal_Error ("run_propagation(2)");
end case;
I := I + 1;
end loop;
end Run_Propagation;
procedure Reset_Active_Flag
is
Sig : Ghdl_Signal_Ptr;
begin
-- 1) Reset active flag.
Sig := Active_Clear_List;
Active_Clear_List := null;
while Sig /= null loop
Sig.Active := False;
Sig.Event := False;
if Options.Flag_Stats then
if Sig.Active then
Nbr_Active := Nbr_Active + 1;
end if;
if Sig.Event then
Nbr_Events := Nbr_Events + 1;
end if;
end if;
Sig := Sig.Alink;
end loop;
-- for I in Sig_Table.First .. Sig_Table.Last loop
-- Sig := Sig_Table.Table (I);
-- if Sig.Active or Sig.Event then
-- Internal_Error ("reset_active_flag");
-- end if;
-- end loop;
end Reset_Active_Flag;
procedure Update_A_Signal (Sig : Ghdl_Signal_Ptr)
is
Trans : Transaction_Acc;
begin
-- 14.7.3.2 Driving values
-- a) If a driving-value release is scheduled for S or for a signal
-- of which S is a subelement, S becomes driving-value released,
-- that is, no longer driving-value forced. Proceed to step b).
-- b) If a driving force is scheduled for S or for a signal of which
-- S is a subelement, S becomes driving-value forced and the
-- driving value of S is the driving force value of S or the
-- element of the driving force value for the signal of which S
-- is a subelement, as appropriate; no further steps are
-- required. Otherwise, proceed to step c).
-- c) If S is driving-value foced, the driving value of S is unchanged
-- from its previous value; no further steps are required.
-- Otherwise, proceed to step d).
-- d) If a driving-value deposit is scheduled for S or for a signal of
-- which S is a subelement, the driving value of S is the driving
-- deposite value for S or the element of the driving deposit for
-- the signal of which S is a subelement, as appropriate; no further
-- steps are requited. Otherwise, proceed to step e) or f), as
-- appropriate;
-- GHDL: not yet implemented.
null;
case Sig.Net is
when Net_One_Driver =>
-- This signal is active.
Mark_Active (Sig);
-- Update driver
Trans := Sig.S.Drivers (0).First_Trans.Next;
if Trans /= null then
Free (Sig.S.Drivers (0).First_Trans);
Sig.S.Drivers (0).First_Trans := Trans;
end if;
-- Update driving value (unless forced)
if not Sig.Flags.Is_Drv_Forced then
case Trans.Kind is
when Trans_Value =>
Sig.Driving_Value := Trans.Val;
when Trans_Direct =>
Internal_Error ("update_signals: trans_direct");
when Trans_Null =>
Error ("null transaction");
when Trans_Error =>
Error_Trans_Error (Trans);
end case;
end if;
if not Sig.Flags.Is_Eff_Forced then
Set_Effective_Value
(Sig, Sig.Driving_Value'Unrestricted_Access);
end if;
when Net_One_Direct =>
Mark_Active (Sig);
Sig.Flags.Is_Direct_Active := False;
Trans := Sig.S.Drivers (0).Last_Trans;
Assign (Sig.S.Drivers (0).First_Trans.Val,
Trans.Val_Ptr, Sig.Mode);
if not Sig.Flags.Is_Drv_Forced then
Sig.Driving_Value := Sig.S.Drivers (0).First_Trans.Val;
end if;
if not Sig.Flags.Is_Eff_Forced then
Set_Effective_Value
(Sig, Sig.Driving_Value'Unrestricted_Access);
end if;
when Net_One_Resolved =>
-- This signal is active.
Mark_Active (Sig);
Sig.Flags.Is_Direct_Active := False;
for J in 1 .. Sig.S.Nbr_Drivers loop
Trans := Sig.S.Drivers (J - 1).First_Trans.Next;
if Trans /= null then
if Trans.Kind = Trans_Direct then
Assign (Sig.S.Drivers (J - 1).First_Trans.Val,
Trans.Val_Ptr, Sig.Mode);
elsif Trans.Time = Current_Time then
Free (Sig.S.Drivers (J - 1).First_Trans);
Sig.S.Drivers (J - 1).First_Trans := Trans;
end if;
end if;
end loop;
if not Sig.Flags.Is_Drv_Forced then
Compute_Resolved_Signal (Sig.S.Resolv);
end if;
if not Sig.Flags.Is_Eff_Forced then
Set_Effective_Value
(Sig, Sig.Driving_Value'Unrestricted_Access);
end if;
when No_Signal_Net =>
-- Can happen with force/release.
-- This signal is active.
Mark_Active (Sig);
-- Driving value is not modified (there is not driver).
if not Sig.Flags.Is_Eff_Forced then
Set_Effective_Value
(Sig, Sig.Driving_Value'Unrestricted_Access);
end if;
when Signal_Net_Defined =>
Sig.Flags.Is_Direct_Active := False;
Run_Propagation (Sig);
end case;
end Update_A_Signal;
procedure Update_Signals
is
Sig : Ghdl_Signal_Ptr;
Next_Sig : Ghdl_Signal_Ptr;
begin
-- LRM93 12.6.2
-- 1) Reset active flag: all signals active in the previous cycle are
-- not anymore active.
Reset_Active_Flag;
-- Forced signals.
-- LRM08 14.7.3 Propagation of signal values
-- A signal is said to be active during a given simulation cycle if
-- ...
-- - A force, a deposite, or a release is scheduled for the signal.
if Force_Value_First /= null then
declare
Fv : Force_Value_Acc;
Next_Fv : Force_Value_Acc;
begin
Fv := Force_Value_First;
while Fv /= null loop
Sig := Fv.Sig;
case Fv.Kind is
when Force =>
-- TODO: warn if forced many times in the same cycle ?
case Fv.Mode is
when Force_Driving =>
Sig.Flags.Is_Drv_Forced := True;
Sig.Flags.Is_Drv_Force_Scheduled := True;
Sig.Driving_Value := Fv.Val;
when Force_Effective =>
Sig.Flags.Is_Eff_Forced := True;
Sig.Flags.Is_Eff_Force_Scheduled := True;
Set_Effective_Value (Sig, Fv.Val'Access);
end case;
when Release =>
case Fv.Mode is
when Force_Driving =>
if not Sig.Flags.Is_Drv_Force_Scheduled then
Sig.Flags.Is_Drv_Forced := False;
end if;
when Force_Effective =>
if not Sig.Flags.Is_Eff_Force_Scheduled then
Sig.Flags.Is_Eff_Forced := False;
end if;
end case;
end case;
-- If alredy in the active chain, it means that a driver is
-- also active. Do not do anything particular.
if Sig.Net in Signal_Net_Defined then
-- Mark SIG as active so that propagation will execute
-- just below.
Mark_Active (Sig);
end if;
Insert_Active_Chain (Sig);
Fv := Fv.Next;
end loop;
-- Free force/release. This is done after to clear the
-- schedule flags.
-- Not highly efficient, but there shouldn't be a lot of force /
-- release, and it allows to detect force+release 'conflicts'.
Fv := Force_Value_First;
while Fv /= null loop
Fv.Sig.Flags.Is_Drv_Force_Scheduled := False;
Fv.Sig.Flags.Is_Eff_Force_Scheduled := False;
Next_Fv := Fv.Next;
Free (Fv);
Fv := Next_Fv;
end loop;
Force_Value_First := null;
Force_Value_Last := null;
end;
end if;
-- For each active signal.
loop
-- Extract an active signal.
Sig := Signal_Active_Chain;
Next_Sig := Sig.Link;
-- Leave Signal_End.
exit when Next_Sig = null;
-- (Remove it from the chain).
Signal_Active_Chain := Next_Sig;
Sig.Link := null;
Update_A_Signal (Sig);
Sig := Next_Sig;
end loop;
-- Un-mark updated nets.
Sig := Update_Clear_Chain;
Update_Clear_Chain := Signal_End;
while Sig.Link /= null loop
Propagation.Table (Sig.Net).Updated := False;
Next_Sig := Sig.Link;
Sig.Link := null;
-- Maybe put SIG in the active list, if it will be active during
-- the next cycle.
-- This can happen only for 'quiet, 'stable or 'delayed.
if Sig.Flags.Implicit_Active_Next then
pragma Assert (Sig.S.Mode_Sig in Mode_Signal_Forward);
Sig.Flags.Implicit_Active_Next := False;
Insert_Active_Chain (Sig);
end if;
Sig := Next_Sig;
end loop;
end Update_Signals;
procedure Run_Propagation_Init (Start : Signal_Net_Type)
is
I : Signal_Net_Type;
Sig : Ghdl_Signal_Ptr;
begin
I := Start;
loop
-- First: the driving value.
case Propagation.Table (I).Kind is
when Drv_One_Driver
| Eff_One_Driver =>
-- Nothing to do: drivers were already created.
null;
when Drv_One_Resolved
| Eff_One_Resolved =>
-- Execute the resolution function.
Sig := Propagation.Table (I).Sig;
if Sig.Nbr_Ports > 0 then
Compute_Resolved_Signal (Sig.S.Resolv);
end if;
when Drv_One_Port
| Eff_One_Port =>
-- Copy value.
Sig := Propagation.Table (I).Sig;
Sig.Driving_Value := Sig.Ports (0).Driving_Value;
when Eff_Actual =>
null;
when Drv_Multiple
| Eff_Multiple =>
Compute_Resolved_Signal (Propagation.Table (I).Resolv);
when Imp_Guard
| Imp_Stable
| Imp_Quiet
| Imp_Transaction
| Imp_Forward
| Imp_Forward_Build =>
null;
when Imp_Delayed =>
-- LRM 14.1
-- Assuming that the initial value of R is the same as the
-- initial value of S, [...]
Sig := Propagation.Table (I).Sig;
Sig.Driving_Value := Sig.Ports (0).Driving_Value;
when In_Conversion =>
null;
when Out_Conversion =>
Call_Conversion_Function (Propagation.Table (I).Conv);
when Prop_End =>
return;
when Drv_Error =>
Internal_Error ("init_signals");
end case;
-- Second: the effective value.
case Propagation.Table (I).Kind is
when Drv_One_Driver
| Drv_One_Port
| Drv_One_Resolved
| Drv_Multiple =>
null;
when Eff_One_Driver
| Eff_One_Port
| Eff_One_Resolved
| Imp_Delayed =>
Sig := Propagation.Table (I).Sig;
Assign (Sig.Value_Ptr, Sig.Driving_Value'Access, Sig.Mode);
when Eff_Multiple =>
declare
Resolv : Resolved_Signal_Acc;
begin
Resolv := Propagation.Table (I).Resolv;
for I in Resolv.Sig_Range.First .. Resolv.Sig_Range.Last loop
Sig := Sig_Table.Table (I);
Assign (Sig.Value_Ptr,
Sig.Driving_Value'Access, Sig.Mode);
end loop;
end;
when Eff_Actual =>
Sig := Propagation.Table (I).Sig;
Assign (Sig.Value_Ptr, Sig.S.Effective.Value_Ptr, Sig.Mode);
when Imp_Guard =>
-- Guard signal is active iff one of its dependence is active.
Sig := Propagation.Table (I).Sig;
Sig.Driving_Value.B1 :=
Sig.S.Guard_Func.all (Sig.S.Guard_Instance);
Assign (Sig.Value_Ptr, Sig.Driving_Value'Access, Sig.Mode);
when Imp_Stable
| Imp_Quiet
| Imp_Transaction
| Imp_Forward
| Imp_Forward_Build =>
-- Already initialized during creation.
null;
when In_Conversion =>
Call_Conversion_Function (Propagation.Table (I).Conv);
when Out_Conversion =>
null;
when Prop_End =>
null;
when Drv_Error =>
Internal_Error ("init_signals(2)");
end case;
I := I + 1;
end loop;
end Run_Propagation_Init;
-- LRM93 12.6.4 The simulation cycle
-- The initialization phase consists of the following steps:
-- - The driving value and the effective value of each explicitly
-- declared signal are computed, and the current value of the signal
-- is set to the effective value. This value is assumed to have been
-- the value of the signal for an infinite length of time prior to
-- the start of the simulation.
procedure Init_Signals
is
Sig : Ghdl_Signal_Ptr;
begin
for I in Sig_Table.First .. Sig_Table.Last loop
Sig := Sig_Table.Table (I);
case Sig.Net is
when Net_One_Driver
| Net_One_Direct =>
-- Use the current value of the transaction for the current
-- value of the signal.
Assign (Sig.Driving_Value'Access,
Sig.S.Drivers (0).First_Trans.Val'Access, Sig.Mode);
Assign (Sig.Value_Ptr, Sig.Driving_Value'Access, Sig.Mode);
when Net_One_Resolved =>
Sig.Has_Active := True;
if Sig.S.Nbr_Drivers + Sig.Nbr_Ports > 0 then
Compute_Resolved_Signal (Sig.S.Resolv);
Assign (Sig.Value_Ptr, Sig.Driving_Value'Access, Sig.Mode);
end if;
when No_Signal_Net =>
Assign (Sig.Value_Ptr, Sig.Driving_Value'Access, Sig.Mode);
when others =>
if Propagation.Table (Sig.Net).Updated then
Propagation.Table (Sig.Net).Updated := False;
Run_Propagation_Init (Sig.Net + 1);
end if;
end case;
end loop;
end Init_Signals;
procedure Init is
begin
Signal_Active_Chain := Signal_End;
Future_List := Signal_End;
Update_Clear_Chain := Signal_End;
end Init;
end Grt.Signals;
|