aboutsummaryrefslogtreecommitdiffstats
path: root/src/grt/grt-options.adb
blob: eadca0068be9c5f5306465a0ee1d15ae0f5e3eab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
--  GHDL Run Time (GRT) -  command line options.
--  Copyright (C) 2002 - 2014 Tristan Gingold
--
--  GHDL is free software; you can redistribute it and/or modify it under
--  the terms of the GNU General Public License as published by the Free
--  Software Foundation; either version 2, or (at your option) any later
--  version.
--
--  GHDL is distributed in the hope that it will be useful, but WITHOUT ANY
--  WARRANTY; without even the implied warranty of MERCHANTABILITY or
--  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
--  for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with GCC; see the file COPYING.  If not, write to the Free
--  Software Foundation, 59 Temple Place - Suite 330, Boston, MA
--  02111-1307, USA.
--
--  As a special exception, if other files instantiate generics from this
--  unit, or you link this unit with other files to produce an executable,
--  this unit does not by itself cause the resulting executable to be
--  covered by the GNU General Public License. This exception does not
--  however invalidate any other reasons why the executable file might be
--  covered by the GNU Public License.
with Interfaces; use Interfaces;
with Grt.Strings; use Grt.Strings;
with Grt.Errors; use Grt.Errors;
with Grt.Severity; use Grt.Severity;
with Grt.Stdio; use Grt.Stdio;
with Grt.Astdio;
with Grt.Hooks;
with Grt.Wave_Opt.File;

package body Grt.Options is

   procedure Set_Time_Resolution is
   begin
      case Flag_String (5) is
         when 'f' | '-' =>
            Time_Resolution_Scale := 5;
         when 'p' =>
            Time_Resolution_Scale := 4;
         when 'n' =>
            Time_Resolution_Scale := 3;
         when 'u' =>
            Time_Resolution_Scale := 2;
         when 'm' =>
            Time_Resolution_Scale := 1;
         when 's' =>
            Time_Resolution_Scale := 0;
         when others =>
            Error ("unhandled time resolution");
      end case;
   end Set_Time_Resolution;

   procedure Help
   is
      use Grt.Astdio;
      procedure P (Str : String) renames Put_Line;
      Prog_Name : Ghdl_C_String;
   begin
      if Argc > 0 then
         Prog_Name := Argv (0);
         Put ("Usage: ");
         Put (Prog_Name (1 .. strlen (Prog_Name)));
         Put (" [OPTIONS]");
         New_Line;
      end if;

      P ("Options are:");
      P (" --help, -h        disp this help");
      P (" --assert-level=LEVEL   stop simulation if assert at LEVEL");
      P ("       LEVEL is note,warning,error,failure,none");
      P (" --backtrace-severity=LEVEL  display a backtrace for assertions");
      P (" --ieee-asserts=POLICY  enable or disable asserts from IEEE");
      P ("       POLICY is enable, disable, disable-at-0");
      P (" --asserts=POLICY  enable or disable asserts");
      P (" --stop-time=X     stop the simulation at time X");
      P ("       X is expressed as a time value, without spaces: 1ns, ps...");
      P (" --stop-delta=X    stop the simulation cycle after X delta");
      P (" --expect-failure  invert exit status");
      P (" --max-stack-alloc=X  error if variables are larger than X KB");
      P (" --no-run          do not simulate, only elaborate");
      P (" --unbuffered      disable buffering on stdout, stderr and");
      P ("                   files opened in write or append mode (TEXTIO).");
      P (" --read-wave-opt=FILENAME  read a wave option file.");
      P (" --write-wave-opt=FILENAME  write a wave option file.");
      --  P (" --threads=N       use N threads for simulation");
      P ("Additional features:");
      P (" --has-feature=X   test presence of feature X");
      P (" --list-features   display the list of features");
      Grt.Hooks.Call_Help_Hooks;
      P ("trace options:");
      P (" --disp-time       disp time as simulation advances");
      P (" --trace-signals   disp signals after each cycle");
      P (" --trace-processes disp process name before each cycle");
      P (" --stats           display run-time statistics");
      P ("debug options:");
      P (" --disp-order      disp signals order");
      P (" --disp-sources    disp sources while displaying signals");
      P (" --disp-sig-types  disp signal types");
      P (" --disp-signals-map    disp map bw declared sigs and internal sigs");
      P (" --disp-signals-table  disp internal signals");
      P (" --checks          do internal checks after each process run");
      P (" --activity=LEVEL  watch activity of LEVEL signals");
      P ("       LEVEL is all, min (default) or none (unsafe)");
   end Help;

   --  Extract from STR a number.
   --  First, all leading blanks are skipped.
   --  Then, all next digits are eaten.
   --  The position of the first non digit or one past the upper bound is
   --  returned into POS.
   --  If there is no digits, OK is set to false, else to true.
   procedure Extract_Integer
     (Str : String;
      Ok : out Boolean;
      Result : out Integer_64;
      Pos : out Natural)
   is
   begin
      Pos := Str'First;
      --  Skip blanks.
      while Pos <= Str'Last and then Str (Pos) = ' ' loop
         Pos := Pos + 1;
      end loop;
      Ok := False;
      Result := 0;
      loop
         exit when Pos > Str'Last or else Str (Pos) not in '0' .. '9';
         Ok := True;
         Result := Result * 10
           + (Character'Pos (Str (Pos)) - Character'Pos ('0'));
         Pos := Pos + 1;
      end loop;
   end Extract_Integer;

   function Parse_Time (Str : String) return Std_Time
   is
      Ok : Boolean;
      Pos : Natural;
      Time : Integer_64;
      Unit : String (1 .. 3);
      Scale : Natural_Time_Scale;
   begin
      Extract_Integer (Str, Ok, Time, Pos);
      if not Ok then
         Time := 1;
      end if;

      --  Check unit length and convert it to lower case.
      if Str'Last = Pos + 1 then
         Unit (3) := ' ';
      elsif Str'Last = Pos + 2 then
         Unit (3) := To_Lower (Str (Pos + 2));
      else
         Error_S ("bad unit for '");
         Diag_C (Str);
         Error_E ("'");
         return -1;
      end if;
      Unit (1) := To_Lower (Str (Pos));
      Unit (2) := To_Lower (Str (Pos + 1));

      if Unit = "fs " then
         Scale := 5;
      elsif Unit = "ps " then
         Scale := 4;
      elsif Unit = "ns " then
         Scale := 3;
      elsif Unit = "us " then
         Scale := 2;
      elsif Unit = "ms " then
         Scale := 1;
      elsif Unit = "sec" then
         Scale := 0;
      else
         Error_S ("bad unit name for '");
         Diag_C (Str);
         Error_E ("'");
         return -1;
      end if;
      if Scale > Time_Resolution_Scale then
         Error_S ("unit for '");
         Diag_C (Str);
         Error_E ("' is less than time resolution");
         return -1;
      end if;
      while Scale < Time_Resolution_Scale loop
         Time := Time * 1000;
         Scale := Scale + 1;
      end loop;
      return Std_Time (Time);
   end Parse_Time;

   function Parse_Severity (Opt_Name : String; Arg : String) return Integer is
   begin
      if Arg = "note" then
         return Note_Severity;
      elsif Arg = "warning" then
         return Warning_Severity;
      elsif Arg = "error" then
         return Error_Severity;
      elsif Arg = "failure" then
         return Failure_Severity;
      elsif Arg = "none" then
         return 4;
      else
         Error_S ("bad argument for ");
         Diag_C (Opt_Name);
         Error_E (" option, try --help");
         return -1;
      end if;
   end Parse_Severity;

   function Parse_Policy (Opt_Name : String; Arg : String)
                          return Assert_Handling is
   begin
      if Arg = "disable" then
         return Disable_Asserts;
      elsif Arg = "enable" then
         return Enable_Asserts;
      elsif Arg = "disable-at-0" then
         return Disable_Asserts_At_Time_0;
      else
         Error_S ("bad argument for ");
         Diag_C (Opt_Name);
         Error_E (" option, try --help");
         return Enable_Asserts;
      end if;
   end Parse_Policy;

   procedure Decode_Option
     (Option : String; Status : out Decode_Option_Status)
   is
      pragma Assert (Option'First = 1);
      Len : constant Natural := Option'Last;
   begin
      Status := Decode_Option_Ok;
      if Option = "--" then
         Status := Decode_Option_Last;
      elsif Option = "--help" or else Option = "-h" then
         Help;
         Status := Decode_Option_Stop;
      elsif Option = "--list-features" then
         Grt.Hooks.Display_Hooks_Desc;
         Status := Decode_Option_Stop;
      elsif Len > 14 and then Option (1 .. 14) = "--has-feature=" then
         if Grt.Hooks.Has_Feature (Option (15 .. Len)) then
            Grt.Errors.Exit_Status := 0;
         else
            Grt.Errors.Exit_Status := 1;
         end if;
         Status := Decode_Option_Stop;
      elsif Option = "--disp-time" then
         Disp_Time := True;
      elsif Option = "--trace-signals" then
         Trace_Signals := True;
         Disp_Time := True;
      elsif Option = "--trace-processes" then
         Trace_Processes := True;
         Disp_Time := True;
      elsif Option = "--disp-order" then
         Disp_Signals_Order := True;
      elsif Option = "--checks" then
         Checks := True;
      elsif Option = "--disp-sources" then
         Disp_Sources := True;
      elsif Option = "--disp-sig-types" then
         Disp_Sig_Types := True;
      elsif Option = "--disp-signals-map" then
         Disp_Signals_Map := True;
      elsif Option = "--disp-signals-table" then
         Disp_Signals_Table := True;
      elsif Option = "--disp-sensitivity" then
         Disp_Sensitivity := True;
      elsif Option = "--stats" then
         Flag_Stats := True;
      elsif Option = "--no-run" then
         Flag_No_Run := True;
      elsif Len > 12 and then Option (1 .. 12) = "--stop-time=" then
         Stop_Time := Parse_Time (Option (13 .. Len));
         if Stop_Time = -1 then
            --  In case of error...
            return;
         end if;
      elsif Len > 13 and then Option (1 .. 13) = "--stop-delta=" then
         declare
            Ok : Boolean;
            Pos : Natural;
            Time : Integer_64;
         begin
            Extract_Integer (Option (14 .. Len), Ok, Time, Pos);
            if not Ok or else Pos <= Len then
               Error_S ("bad value in '");
               Diag_C (Option);
               Error_E ("'");
            else
               if Time > Integer_64 (Integer'Last) then
                  Stop_Delta := Integer'Last;
               else
                  Stop_Delta := Integer (Time);
               end if;
            end if;
         end;
      elsif Len > 15 and then Option (1 .. 15) = "--assert-level=" then
         declare
            Level : Integer;
         begin
            Level := Parse_Severity ("--assert-level", Option (16 .. Len));
            if Level >= 0 then
               Severity_Level := Level;
            end if;
         end;
      elsif Len > 21 and then Option (1 .. 21) = "--backtrace-severity=" then
         declare
            Level : Integer;
         begin
            Level := Parse_Severity
              ("--backtrace-severity", Option (22 .. Len));
            if Level >= 0 then
               Backtrace_Severity := Level;
            end if;
         end;
      elsif Len > 15 and then Option (1 .. 15) = "--ieee-asserts=" then
         Ieee_Asserts := Parse_Policy ("--ieee-asserts", Option (16 .. Len));
      elsif Len > 10 and then Option (1 .. 10) = "--asserts=" then
         Asserts_Policy := Parse_Policy ("--asserts", Option (11 .. Len));
         Ieee_Asserts := Asserts_Policy;
      elsif Option = "--expect-failure" then
         Expect_Failure := True;
      elsif Len >= 13 and then Option (1 .. 13) = "--stack-size=" then
         Warning ("option --stack-size is deprecated");
      elsif Len >= 17 and then Option (1 .. 17) = "--stack-max-size=" then
         Warning ("option --stack-max-size is deprecated");
      elsif Len >= 18 and then Option (1 .. 18) = "--max-stack-alloc=" then
         declare
            Ok : Boolean;
            Pos : Natural;
            Val : Integer_64;
         begin
            Extract_Integer (Option (19 .. Len), Ok, Val, Pos);
            if not Ok or else Pos <= Len then
               Error_S ("bad value in '");
               Diag_C (Option);
               Error_E ("'");
            else
               Max_Stack_Allocation := Ghdl_Index_Type (Val * 1024);
            end if;
         end;
      elsif Len >= 11 and then Option (1 .. 11) = "--activity=" then
         if Option (12 .. Len) = "none" then
            Flag_Activity := Activity_None;
         elsif Option (12 .. Len) = "min" then
            Flag_Activity := Activity_Minimal;
         elsif Option (12 .. Len) = "all" then
            Flag_Activity := Activity_All;
         else
            Error ("bad argument for --activity, try --help");
         end if;
      elsif Len > 10 and then Option (1 .. 10) = "--threads=" then
         declare
            Ok : Boolean;
            Pos : Natural;
            Val : Integer_64;
         begin
            Extract_Integer (Option (11 .. Len), Ok, Val, Pos);
            if not Ok or else Pos <= Len then
               Error_S ("bad value in '");
               Diag_C (Option);
               Error_E ("'");
            else
               Nbr_Threads := Integer (Val);
            end if;
         end;
      elsif Len > 4 and then Option (1 .. 2) = "-g" then
         if Option (3) = '=' then
            Error_S ("missing generic name in '");
            Diag_C (Option);
            Error_E ("'");
            return;
         end if;
         declare
            Eq_Pos : Natural;
            Over : Generic_Override_Acc;
            Name : String_Access;
         begin
            if Option (3) = '\' then
               --  Extended identifier (not yet handled).
               raise Program_Error;
            else
               --  Search for '='.
               Eq_Pos := 0;
               for I in 3 .. Option'Last loop
                  if Option (I) = '=' then
                     Eq_Pos := I;
                     exit;
                  end if;
               end loop;
               if Eq_Pos = 0 then
                  Error_S ("missing '=' after generic name in '");
                  Diag_C (Option);
                  Error_E ("'");
               end if;
               Name := new String (1 .. Eq_Pos - 3);
               for I in 3 .. Eq_Pos - 1 loop
                  Name (I - 2) := To_Lower (Option (I));
               end loop;
            end if;
            Over := new Generic_Override_Type'
              (Name => Name,
               Value => new String'(Option (Eq_Pos + 1 .. Option'Last)),
               Next => null);
            --  Append.
            if Last_Generic_Override /= null then
               Last_Generic_Override.Next := Over;
            else
               First_Generic_Override := Over;
            end if;
            Last_Generic_Override := Over;
         end;
      elsif Option = "--unbuffered" then
         Unbuffered_Writes := True;
         setbuf (stdout, NULL_voids);
         setbuf (stderr, NULL_voids);
      elsif Len >= 16 and then Option (1 .. 16) = "--read-wave-opt="
      then
         Wave_Opt.File.Start
           (Option (17 .. Option'Last), To_Be_Created => False);
      elsif Len >= 17 and then Option (1 .. 17) = "--write-wave-opt="
      then
         Wave_Opt.File.Start
           (Option (18 .. Option'Last), To_Be_Created => True);
      elsif not Grt.Hooks.Call_Option_Hooks (Option) then
         Error_S ("unknown option '");
         Diag_C (Option);
         Error_E ("', try --help");
      end if;
   end Decode_Option;

   procedure Decode (Stop : out Boolean)
   is
      Arg : Ghdl_C_String;
      Len : Natural;
      Status : Decode_Option_Status;
   begin
      --  Must be done before decoding options.
      Set_Time_Resolution;

      Stop := False;
      Last_Opt := Argc - 1;
      for I in 1 .. Argc - 1 loop
         Arg := Argv (I);
         Len := strlen (Arg);
         declare
            Argument : constant String := Arg (1 .. Len);
         begin
            Decode_Option (Argument, Status);
            case Status is
               when Decode_Option_Last =>
                  Last_Opt := I;
                  exit;
               when Decode_Option_Stop =>
                  Stop := True;
               when Decode_Option_Ok =>
                  null;
            end case;
         end;
      end loop;
   end Decode;
end Grt.Options;
91'>2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/yosys.h"
#include "kernel/macc.h"
#include "kernel/celltypes.h"
#include "frontends/verilog/verilog_frontend.h"
#include "backends/ilang/ilang_backend.h"

#include <string.h>
#include <algorithm>

YOSYS_NAMESPACE_BEGIN

RTLIL::IdString::destruct_guard_t RTLIL::IdString::destruct_guard;
std::vector<char*> RTLIL::IdString::global_id_storage_;
dict<char*, int, hash_cstr_ops> RTLIL::IdString::global_id_index_;
#ifndef YOSYS_NO_IDS_REFCNT
std::vector<int> RTLIL::IdString::global_refcount_storage_;
std::vector<int> RTLIL::IdString::global_free_idx_list_;
#endif
#ifdef YOSYS_USE_STICKY_IDS
int RTLIL::IdString::last_created_idx_[8];
int RTLIL::IdString::last_created_idx_ptr_;
#endif

IdString RTLIL::ID::A;
IdString RTLIL::ID::B;
IdString RTLIL::ID::Y;
IdString RTLIL::ID::keep;
IdString RTLIL::ID::whitebox;
IdString RTLIL::ID::blackbox;

RTLIL::Const::Const()
{
	flags = RTLIL::CONST_FLAG_NONE;
}

RTLIL::Const::Const(std::string str)
{
	flags = RTLIL::CONST_FLAG_STRING;
	for (int i = str.size()-1; i >= 0; i--) {
		unsigned char ch = str[i];
		for (int j = 0; j < 8; j++) {
			bits.push_back((ch & 1) != 0 ? State::S1 : State::S0);
			ch = ch >> 1;
		}
	}
}

RTLIL::Const::Const(int val, int width)
{
	flags = RTLIL::CONST_FLAG_NONE;
	for (int i = 0; i < width; i++) {
		bits.push_back((val & 1) != 0 ? State::S1 : State::S0);
		val = val >> 1;
	}
}

RTLIL::Const::Const(RTLIL::State bit, int width)
{
	flags = RTLIL::CONST_FLAG_NONE;
	for (int i = 0; i < width; i++)
		bits.push_back(bit);
}

RTLIL::Const::Const(const std::vector<bool> &bits)
{
	flags = RTLIL::CONST_FLAG_NONE;
	for (auto b : bits)
		this->bits.push_back(b ? State::S1 : State::S0);
}

RTLIL::Const::Const(const RTLIL::Const &c)
{
	flags = c.flags;
	for (auto b : c.bits)
		this->bits.push_back(b);
}

bool RTLIL::Const::operator <(const RTLIL::Const &other) const
{
	if (bits.size() != other.bits.size())
		return bits.size() < other.bits.size();
	for (size_t i = 0; i < bits.size(); i++)
		if (bits[i] != other.bits[i])
			return bits[i] < other.bits[i];
	return false;
}

bool RTLIL::Const::operator ==(const RTLIL::Const &other) const
{
	return bits == other.bits;
}

bool RTLIL::Const::operator !=(const RTLIL::Const &other) const
{
	return bits != other.bits;
}

bool RTLIL::Const::as_bool() const
{
	for (size_t i = 0; i < bits.size(); i++)
		if (bits[i] == State::S1)
			return true;
	return false;
}

int RTLIL::Const::as_int(bool is_signed) const
{
	int32_t ret = 0;
	for (size_t i = 0; i < bits.size() && i < 32; i++)
		if (bits[i] == State::S1)
			ret |= 1 << i;
	if (is_signed && bits.back() == State::S1)
		for (size_t i = bits.size(); i < 32; i++)
			ret |= 1 << i;
	return ret;
}

std::string RTLIL::Const::as_string() const
{
	std::string ret;
	for (size_t i = bits.size(); i > 0; i--)
		switch (bits[i-1]) {
			case S0: ret += "0"; break;
			case S1: ret += "1"; break;
			case Sx: ret += "x"; break;
			case Sz: ret += "z"; break;
			case Sa: ret += "-"; break;
			case Sm: ret += "m"; break;
		}
	return ret;
}

RTLIL::Const RTLIL::Const::from_string(std::string str)
{
	Const c;
	for (auto it = str.rbegin(); it != str.rend(); it++)
		switch (*it) {
			case '0': c.bits.push_back(State::S0); break;
			case '1': c.bits.push_back(State::S1); break;
			case 'x': c.bits.push_back(State::Sx); break;
			case 'z': c.bits.push_back(State::Sz); break;
			case 'm': c.bits.push_back(State::Sm); break;
			default: c.bits.push_back(State::Sa);
		}
	return c;
}

std::string RTLIL::Const::decode_string() const
{
	std::string string;
	std::vector<char> string_chars;
	for (int i = 0; i < int (bits.size()); i += 8) {
		char ch = 0;
		for (int j = 0; j < 8 && i + j < int (bits.size()); j++)
			if (bits[i + j] == RTLIL::State::S1)
				ch |= 1 << j;
		if (ch != 0)
			string_chars.push_back(ch);
	}
	for (int i = int (string_chars.size()) - 1; i >= 0; i--)
		string += string_chars[i];
	return string;
}

bool RTLIL::Const::is_fully_zero() const
{
	cover("kernel.rtlil.const.is_fully_zero");

	for (auto bit : bits)
		if (bit != RTLIL::State::S0)
			return false;

	return true;
}

bool RTLIL::Const::is_fully_ones() const
{
	cover("kernel.rtlil.const.is_fully_ones");

	for (auto bit : bits)
		if (bit != RTLIL::State::S1)
			return false;

	return true;
}

bool RTLIL::Const::is_fully_def() const
{
	cover("kernel.rtlil.const.is_fully_def");

	for (auto bit : bits)
		if (bit != RTLIL::State::S0 && bit != RTLIL::State::S1)
			return false;

	return true;
}

bool RTLIL::Const::is_fully_undef() const
{
	cover("kernel.rtlil.const.is_fully_undef");

	for (auto bit : bits)
		if (bit != RTLIL::State::Sx && bit != RTLIL::State::Sz)
			return false;

	return true;
}

void RTLIL::AttrObject::set_bool_attribute(RTLIL::IdString id, bool value)
{
	if (value)
		attributes[id] = RTLIL::Const(1);
	else {
                const auto it = attributes.find(id);
                if (it != attributes.end())
			attributes.erase(it);
	}
}

bool RTLIL::AttrObject::get_bool_attribute(RTLIL::IdString id) const
{
	const auto it = attributes.find(id);
	if (it == attributes.end())
		return false;
	return it->second.as_bool();
}

void RTLIL::AttrObject::set_strpool_attribute(RTLIL::IdString id, const pool<string> &data)
{
	string attrval;
	for (auto &s : data) {
		if (!attrval.empty())
			attrval += "|";
		attrval += s;
	}
	attributes[id] = RTLIL::Const(attrval);
}

void RTLIL::AttrObject::add_strpool_attribute(RTLIL::IdString id, const pool<string> &data)
{
	pool<string> union_data = get_strpool_attribute(id);
	union_data.insert(data.begin(), data.end());
	if (!union_data.empty())
		set_strpool_attribute(id, union_data);
}

pool<string> RTLIL::AttrObject::get_strpool_attribute(RTLIL::IdString id) const
{
	pool<string> data;
	if (attributes.count(id) != 0)
		for (auto s : split_tokens(attributes.at(id).decode_string(), "|"))
			data.insert(s);
	return data;
}

void RTLIL::AttrObject::set_src_attribute(const std::string &src)
{
	if (src.empty())
		attributes.erase(ID(src));
	else
		attributes[ID(src)] = src;
}

std::string RTLIL::AttrObject::get_src_attribute() const
{
	std::string src;
	if (attributes.count(ID(src)))
		src = attributes.at(ID(src)).decode_string();
	return src;
}

bool RTLIL::Selection::selected_module(RTLIL::IdString mod_name) const
{
	if (full_selection)
		return true;
	if (selected_modules.count(mod_name) > 0)
		return true;
	if (selected_members.count(mod_name) > 0)
		return true;
	return false;
}

bool RTLIL::Selection::selected_whole_module(RTLIL::IdString mod_name) const
{
	if (full_selection)
		return true;
	if (selected_modules.count(mod_name) > 0)
		return true;
	return false;
}

bool RTLIL::Selection::selected_member(RTLIL::IdString mod_name, RTLIL::IdString memb_name) const
{
	if (full_selection)
		return true;
	if (selected_modules.count(mod_name) > 0)
		return true;
	if (selected_members.count(mod_name) > 0)
		if (selected_members.at(mod_name).count(memb_name) > 0)
			return true;
	return false;
}

void RTLIL::Selection::optimize(RTLIL::Design *design)
{
	if (full_selection) {
		selected_modules.clear();
		selected_members.clear();
		return;
	}

	std::vector<RTLIL::IdString> del_list, add_list;

	del_list.clear();
	for (auto mod_name : selected_modules) {
		if (design->modules_.count(mod_name) == 0)
			del_list.push_back(mod_name);
		selected_members.erase(mod_name);
	}
	for (auto mod_name : del_list)
		selected_modules.erase(mod_name);

	del_list.clear();
	for (auto &it : selected_members)
		if (design->modules_.count(it.first) == 0)
			del_list.push_back(it.first);
	for (auto mod_name : del_list)
		selected_members.erase(mod_name);

	for (auto &it : selected_members) {
		del_list.clear();
		for (auto memb_name : it.second)
			if (design->modules_[it.first]->count_id(memb_name) == 0)
				del_list.push_back(memb_name);
		for (auto memb_name : del_list)
			it.second.erase(memb_name);
	}

	del_list.clear();
	add_list.clear();
	for (auto &it : selected_members)
		if (it.second.size() == 0)
			del_list.push_back(it.first);
		else if (it.second.size() == design->modules_[it.first]->wires_.size() + design->modules_[it.first]->memories.size() +
				design->modules_[it.first]->cells_.size() + design->modules_[it.first]->processes.size())
			add_list.push_back(it.first);
	for (auto mod_name : del_list)
		selected_members.erase(mod_name);
	for (auto mod_name : add_list) {
		selected_members.erase(mod_name);
		selected_modules.insert(mod_name);
	}

	if (selected_modules.size() == design->modules_.size()) {
		full_selection = true;
		selected_modules.clear();
		selected_members.clear();
	}
}

RTLIL::Design::Design()
{
	static unsigned int hashidx_count = 123456789;
	hashidx_count = mkhash_xorshift(hashidx_count);
	hashidx_ = hashidx_count;

	refcount_modules_ = 0;
	selection_stack.push_back(RTLIL::Selection());

#ifdef WITH_PYTHON
	RTLIL::Design::get_all_designs()->insert(std::pair<unsigned int, RTLIL::Design*>(hashidx_, this));
#endif
}

RTLIL::Design::~Design()
{
	for (auto it = modules_.begin(); it != modules_.end(); ++it)
		delete it->second;
	for (auto n : verilog_packages)
		delete n;
	for (auto n : verilog_globals)
		delete n;
#ifdef WITH_PYTHON
	RTLIL::Design::get_all_designs()->erase(hashidx_);
#endif
}

#ifdef WITH_PYTHON
static std::map<unsigned int, RTLIL::Design*> all_designs;
std::map<unsigned int, RTLIL::Design*> *RTLIL::Design::get_all_designs(void)
{
	return &all_designs;
}
#endif

RTLIL::ObjRange<RTLIL::Module*> RTLIL::Design::modules()
{
	return RTLIL::ObjRange<RTLIL::Module*>(&modules_, &refcount_modules_);
}

RTLIL::Module *RTLIL::Design::module(RTLIL::IdString name)
{
	return modules_.count(name) ? modules_.at(name) : NULL;
}

RTLIL::Module *RTLIL::Design::top_module()
{
	RTLIL::Module *module = nullptr;
	int module_count = 0;

	for (auto mod : selected_modules()) {
		if (mod->get_bool_attribute(ID(top)))
			return mod;
		module_count++;
		module = mod;
	}

	return module_count == 1 ? module : nullptr;
}

void RTLIL::Design::add(RTLIL::Module *module)
{
	log_assert(modules_.count(module->name) == 0);
	log_assert(refcount_modules_ == 0);
	modules_[module->name] = module;
	module->design = this;

	for (auto mon : monitors)
		mon->notify_module_add(module);

	if (yosys_xtrace) {
		log("#X# New Module: %s\n", log_id(module));
		log_backtrace("-X- ", yosys_xtrace-1);
	}
}

RTLIL::Module *RTLIL::Design::addModule(RTLIL::IdString name)
{
	log_assert(modules_.count(name) == 0);
	log_assert(refcount_modules_ == 0);

	RTLIL::Module *module = new RTLIL::Module;
	modules_[name] = module;
	module->design = this;
	module->name = name;

	for (auto mon : monitors)
		mon->notify_module_add(module);

	if (yosys_xtrace) {
		log("#X# New Module: %s\n", log_id(module));
		log_backtrace("-X- ", yosys_xtrace-1);
	}

	return module;
}

void RTLIL::Design::scratchpad_unset(std::string varname)
{
	scratchpad.erase(varname);
}

void RTLIL::Design::scratchpad_set_int(std::string varname, int value)
{
	scratchpad[varname] = stringf("%d", value);
}

void RTLIL::Design::scratchpad_set_bool(std::string varname, bool value)
{
	scratchpad[varname] = value ? "true" : "false";
}

void RTLIL::Design::scratchpad_set_string(std::string varname, std::string value)
{
	scratchpad[varname] = value;
}

int RTLIL::Design::scratchpad_get_int(std::string varname, int default_value) const
{
	if (scratchpad.count(varname) == 0)
		return default_value;

	std::string str = scratchpad.at(varname);

	if (str == "0" || str == "false")
		return 0;

	if (str == "1" || str == "true")
		return 1;

	char *endptr = nullptr;
	long int parsed_value = strtol(str.c_str(), &endptr, 10);
	return *endptr ? default_value : parsed_value;
}

bool RTLIL::Design::scratchpad_get_bool(std::string varname, bool default_value) const
{
	if (scratchpad.count(varname) == 0)
		return default_value;

	std::string str = scratchpad.at(varname);

	if (str == "0" || str == "false")
		return false;

	if (str == "1" || str == "true")
		return true;

	return default_value;
}

std::string RTLIL::Design::scratchpad_get_string(std::string varname, std::string default_value) const
{
	if (scratchpad.count(varname) == 0)
		return default_value;
	return scratchpad.at(varname);
}

void RTLIL::Design::remove(RTLIL::Module *module)
{
	for (auto mon : monitors)
		mon->notify_module_del(module);

	if (yosys_xtrace) {
		log("#X# Remove Module: %s\n", log_id(module));
		log_backtrace("-X- ", yosys_xtrace-1);
	}

	log_assert(modules_.at(module->name) == module);
	modules_.erase(module->name);
	delete module;
}

void RTLIL::Design::rename(RTLIL::Module *module, RTLIL::IdString new_name)
{
	modules_.erase(module->name);
	module->name = new_name;
	add(module);
}

void RTLIL::Design::sort()
{
	scratchpad.sort();
	modules_.sort(sort_by_id_str());
	for (auto &it : modules_)
		it.second->sort();
}

void RTLIL::Design::check()
{
#ifndef NDEBUG
	for (auto &it : modules_) {
		log_assert(this == it.second->design);
		log_assert(it.first == it.second->name);
		log_assert(!it.first.empty());
		it.second->check();
	}
#endif
}

void RTLIL::Design::optimize()
{
	for (auto &it : modules_)
		it.second->optimize();
	for (auto &it : selection_stack)
		it.optimize(this);
	for (auto &it : selection_vars)
		it.second.optimize(this);
}

bool RTLIL::Design::selected_module(RTLIL::IdString mod_name) const
{
	if (!selected_active_module.empty() && mod_name != selected_active_module)
		return false;
	if (selection_stack.size() == 0)
		return true;
	return selection_stack.back().selected_module(mod_name);
}

bool RTLIL::Design::selected_whole_module(RTLIL::IdString mod_name) const
{
	if (!selected_active_module.empty() && mod_name != selected_active_module)
		return false;
	if (selection_stack.size() == 0)
		return true;
	return selection_stack.back().selected_whole_module(mod_name);
}

bool RTLIL::Design::selected_member(RTLIL::IdString mod_name, RTLIL::IdString memb_name) const
{
	if (!selected_active_module.empty() && mod_name != selected_active_module)
		return false;
	if (selection_stack.size() == 0)
		return true;
	return selection_stack.back().selected_member(mod_name, memb_name);
}

bool RTLIL::Design::selected_module(RTLIL::Module *mod) const
{
	return selected_module(mod->name);
}

bool RTLIL::Design::selected_whole_module(RTLIL::Module *mod) const
{
	return selected_whole_module(mod->name);
}

std::vector<RTLIL::Module*> RTLIL::Design::selected_modules() const
{
	std::vector<RTLIL::Module*> result;
	result.reserve(modules_.size());
	for (auto &it : modules_)
		if (selected_module(it.first) && !it.second->get_blackbox_attribute())
			result.push_back(it.second);
	return result;
}

std::vector<RTLIL::Module*> RTLIL::Design::selected_whole_modules() const
{
	std::vector<RTLIL::Module*> result;
	result.reserve(modules_.size());
	for (auto &it : modules_)
		if (selected_whole_module(it.first) && !it.second->get_blackbox_attribute())
			result.push_back(it.second);
	return result;
}

std::vector<RTLIL::Module*> RTLIL::Design::selected_whole_modules_warn() const
{
	std::vector<RTLIL::Module*> result;
	result.reserve(modules_.size());
	for (auto &it : modules_)
		if (it.second->get_blackbox_attribute())
			continue;
		else if (selected_whole_module(it.first))
			result.push_back(it.second);
		else if (selected_module(it.first))
			log_warning("Ignoring partially selected module %s.\n", log_id(it.first));
	return result;
}

RTLIL::Module::Module()
{
	static unsigned int hashidx_count = 123456789;
	hashidx_count = mkhash_xorshift(hashidx_count);
	hashidx_ = hashidx_count;

	design = nullptr;
	refcount_wires_ = 0;
	refcount_cells_ = 0;

#ifdef WITH_PYTHON
	RTLIL::Module::get_all_modules()->insert(std::pair<unsigned int, RTLIL::Module*>(hashidx_, this));
#endif
}

RTLIL::Module::~Module()
{
	for (auto it = wires_.begin(); it != wires_.end(); ++it)
		delete it->second;
	for (auto it = memories.begin(); it != memories.end(); ++it)
		delete it->second;
	for (auto it = cells_.begin(); it != cells_.end(); ++it)
		delete it->second;
	for (auto it = processes.begin(); it != processes.end(); ++it)
		delete it->second;
#ifdef WITH_PYTHON
	RTLIL::Module::get_all_modules()->erase(hashidx_);
#endif
}

#ifdef WITH_PYTHON
static std::map<unsigned int, RTLIL::Module*> all_modules;
std::map<unsigned int, RTLIL::Module*> *RTLIL::Module::get_all_modules(void)
{
	return &all_modules;
}
#endif

void RTLIL::Module::makeblackbox()
{
	pool<RTLIL::Wire*> delwires;

	for (auto it = wires_.begin(); it != wires_.end(); ++it)
		if (!it->second->port_input && !it->second->port_output)
			delwires.insert(it->second);

	for (auto it = memories.begin(); it != memories.end(); ++it)
		delete it->second;
	memories.clear();

	for (auto it = cells_.begin(); it != cells_.end(); ++it)
		delete it->second;
	cells_.clear();

	for (auto it = processes.begin(); it != processes.end(); ++it)
		delete it->second;
	processes.clear();

	remove(delwires);
	set_bool_attribute(ID::blackbox);
}

void RTLIL::Module::reprocess_module(RTLIL::Design *, dict<RTLIL::IdString, RTLIL::Module *>)
{
	log_error("Cannot reprocess_module module `%s' !\n", id2cstr(name));
}

RTLIL::IdString RTLIL::Module::derive(RTLIL::Design*, dict<RTLIL::IdString, RTLIL::Const>, bool mayfail)
{
	if (mayfail)
		return RTLIL::IdString();
	log_error("Module `%s' is used with parameters but is not parametric!\n", id2cstr(name));
}


RTLIL::IdString RTLIL::Module::derive(RTLIL::Design*, dict<RTLIL::IdString, RTLIL::Const>, dict<RTLIL::IdString, RTLIL::Module*>, dict<RTLIL::IdString, RTLIL::IdString>, bool mayfail)
{
	if (mayfail)
		return RTLIL::IdString();
	log_error("Module `%s' is used with parameters but is not parametric!\n", id2cstr(name));
}

size_t RTLIL::Module::count_id(RTLIL::IdString id)
{
	return wires_.count(id) + memories.count(id) + cells_.count(id) + processes.count(id);
}

#ifndef NDEBUG
namespace {
	struct InternalCellChecker
	{
		RTLIL::Module *module;
		RTLIL::Cell *cell;
		pool<RTLIL::IdString> expected_params, expected_ports;

		InternalCellChecker(RTLIL::Module *module, RTLIL::Cell *cell) : module(module), cell(cell) { }

		void error(int linenr)
		{
			std::stringstream buf;
			ILANG_BACKEND::dump_cell(buf, "  ", cell);

			log_error("Found error in internal cell %s%s%s (%s) at %s:%d:\n%s",
					module ? module->name.c_str() : "", module ? "." : "",
					cell->name.c_str(), cell->type.c_str(), __FILE__, linenr, buf.str().c_str());
		}

		int param(RTLIL::IdString name)
		{
			if (cell->parameters.count(name) == 0)
				error(__LINE__);
			expected_params.insert(name);
			return cell->parameters.at(name).as_int();
		}

		int param_bool(RTLIL::IdString name)
		{
			int v = param(name);
			if (cell->parameters.at(name).bits.size() > 32)
				error(__LINE__);
			if (v != 0 && v != 1)
				error(__LINE__);
			return v;
		}

		void param_bits(RTLIL::IdString name, int width)
		{
			param(name);
			if (int(cell->parameters.at(name).bits.size()) != width)
				error(__LINE__);
		}

		void port(RTLIL::IdString name, int width)
		{
			if (!cell->hasPort(name))
				error(__LINE__);
			if (cell->getPort(name).size() != width)
				error(__LINE__);
			expected_ports.insert(name);
		}

		void check_expected(bool check_matched_sign = true)
		{
			for (auto &para : cell->parameters)
				if (expected_params.count(para.first) == 0)
					error(__LINE__);
			for (auto &conn : cell->connections())
				if (expected_ports.count(conn.first) == 0)
					error(__LINE__);

			if (expected_params.count(ID(A_SIGNED)) != 0 && expected_params.count(ID(B_SIGNED)) && check_matched_sign) {
				bool a_is_signed = param(ID(A_SIGNED)) != 0;
				bool b_is_signed = param(ID(B_SIGNED)) != 0;
				if (a_is_signed != b_is_signed)
					error(__LINE__);
			}
		}

		void check_gate(const char *ports)
		{
			if (cell->parameters.size() != 0)
				error(__LINE__);

			for (const char *p = ports; *p; p++) {
				char portname[3] = { '\\', *p, 0 };
				if (!cell->hasPort(portname))
					error(__LINE__);
				if (cell->getPort(portname).size() != 1)
					error(__LINE__);
			}

			for (auto &conn : cell->connections()) {
				if (conn.first.size() != 2 || conn.first[0] != '\\')
					error(__LINE__);
				if (strchr(ports, conn.first[1]) == NULL)
					error(__LINE__);
			}
		}

		void check()
		{
			if (!cell->type.begins_with("$") || cell->type.begins_with("$__") || cell->type.begins_with("$paramod") || cell->type.begins_with("$fmcombine") ||
					cell->type.begins_with("$verific$") || cell->type.begins_with("$array:") || cell->type.begins_with("$extern:"))
				return;

			if (cell->type.in(ID($not), ID($pos), ID($neg))) {
				param_bool(ID(A_SIGNED));
				port(ID::A, param(ID(A_WIDTH)));
				port(ID::Y, param(ID(Y_WIDTH)));
				check_expected();
				return;
			}

			if (cell->type.in(ID($and), ID($or), ID($xor), ID($xnor))) {
				param_bool(ID(A_SIGNED));
				param_bool(ID(B_SIGNED));
				port(ID::A, param(ID(A_WIDTH)));
				port(ID::B, param(ID(B_WIDTH)));
				port(ID::Y, param(ID(Y_WIDTH)));
				check_expected();
				return;
			}

			if (cell->type.in(ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool))) {
				param_bool(ID(A_SIGNED));
				port(ID::A, param(ID(A_WIDTH)));
				port(ID::Y, param(ID(Y_WIDTH)));
				check_expected();
				return;
			}

			if (cell->type.in(ID($shl), ID($shr), ID($sshl), ID($sshr), ID($shift), ID($shiftx))) {
				param_bool(ID(A_SIGNED));
				param_bool(ID(B_SIGNED));
				port(ID::A, param(ID(A_WIDTH)));
				port(ID::B, param(ID(B_WIDTH)));
				port(ID::Y, param(ID(Y_WIDTH)));
				check_expected(false);
				return;
			}

			if (cell->type.in(ID($lt), ID($le), ID($eq), ID($ne), ID($eqx), ID($nex), ID($ge), ID($gt))) {
				param_bool(ID(A_SIGNED));
				param_bool(ID(B_SIGNED));
				port(ID::A, param(ID(A_WIDTH)));
				port(ID::B, param(ID(B_WIDTH)));
				port(ID::Y, param(ID(Y_WIDTH)));
				check_expected();
				return;
			}

			if (cell->type.in(ID($add), ID($sub), ID($mul), ID($div), ID($mod), ID($pow))) {
				param_bool(ID(A_SIGNED));
				param_bool(ID(B_SIGNED));
				port(ID::A, param(ID(A_WIDTH)));
				port(ID::B, param(ID(B_WIDTH)));
				port(ID::Y, param(ID(Y_WIDTH)));
				check_expected(cell->type != ID($pow));
				return;
			}

			if (cell->type == ID($fa)) {
				port(ID::A, param(ID(WIDTH)));
				port(ID::B, param(ID(WIDTH)));
				port(ID(C), param(ID(WIDTH)));
				port(ID(X), param(ID(WIDTH)));
				port(ID::Y, param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($lcu)) {
				port(ID(P), param(ID(WIDTH)));
				port(ID(G), param(ID(WIDTH)));
				port(ID(CI), 1);
				port(ID(CO), param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($alu)) {
				param_bool(ID(A_SIGNED));
				param_bool(ID(B_SIGNED));
				port(ID::A, param(ID(A_WIDTH)));
				port(ID::B, param(ID(B_WIDTH)));
				port(ID(CI), 1);
				port(ID(BI), 1);
				port(ID(X), param(ID(Y_WIDTH)));
				port(ID::Y, param(ID(Y_WIDTH)));
				port(ID(CO), param(ID(Y_WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($macc)) {
				param(ID(CONFIG));
				param(ID(CONFIG_WIDTH));
				port(ID::A, param(ID(A_WIDTH)));
				port(ID::B, param(ID(B_WIDTH)));
				port(ID::Y, param(ID(Y_WIDTH)));
				check_expected();
				Macc().from_cell(cell);
				return;
			}

			if (cell->type == ID($logic_not)) {
				param_bool(ID(A_SIGNED));
				port(ID::A, param(ID(A_WIDTH)));
				port(ID::Y, param(ID(Y_WIDTH)));
				check_expected();
				return;
			}

			if (cell->type.in(ID($logic_and), ID($logic_or))) {
				param_bool(ID(A_SIGNED));
				param_bool(ID(B_SIGNED));
				port(ID::A, param(ID(A_WIDTH)));
				port(ID::B, param(ID(B_WIDTH)));
				port(ID::Y, param(ID(Y_WIDTH)));
				check_expected(false);
				return;
			}

			if (cell->type == ID($slice)) {
				param(ID(OFFSET));
				port(ID::A, param(ID(A_WIDTH)));
				port(ID::Y, param(ID(Y_WIDTH)));
				if (param(ID(OFFSET)) + param(ID(Y_WIDTH)) > param(ID(A_WIDTH)))
					error(__LINE__);
				check_expected();
				return;
			}

			if (cell->type == ID($concat)) {
				port(ID::A, param(ID(A_WIDTH)));
				port(ID::B, param(ID(B_WIDTH)));
				port(ID::Y, param(ID(A_WIDTH)) + param(ID(B_WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($mux)) {
				port(ID::A, param(ID(WIDTH)));
				port(ID::B, param(ID(WIDTH)));
				port(ID(S), 1);
				port(ID::Y, param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($pmux)) {
				port(ID::A, param(ID(WIDTH)));
				port(ID::B, param(ID(WIDTH)) * param(ID(S_WIDTH)));
				port(ID(S), param(ID(S_WIDTH)));
				port(ID::Y, param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($lut)) {
				param(ID(LUT));
				port(ID::A, param(ID(WIDTH)));
				port(ID::Y, 1);
				check_expected();
				return;
			}

			if (cell->type == ID($sop)) {
				param(ID(DEPTH));
				param(ID(TABLE));
				port(ID::A, param(ID(WIDTH)));
				port(ID::Y, 1);
				check_expected();
				return;
			}

			if (cell->type == ID($sr)) {
				param_bool(ID(SET_POLARITY));
				param_bool(ID(CLR_POLARITY));
				port(ID(SET), param(ID(WIDTH)));
				port(ID(CLR), param(ID(WIDTH)));
				port(ID(Q),   param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($ff)) {
				port(ID(D), param(ID(WIDTH)));
				port(ID(Q), param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($dff)) {
				param_bool(ID(CLK_POLARITY));
				port(ID(CLK), 1);
				port(ID(D), param(ID(WIDTH)));
				port(ID(Q), param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($dffe)) {
				param_bool(ID(CLK_POLARITY));
				param_bool(ID(EN_POLARITY));
				port(ID(CLK), 1);
				port(ID(EN), 1);
				port(ID(D), param(ID(WIDTH)));
				port(ID(Q), param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($dffsr)) {
				param_bool(ID(CLK_POLARITY));
				param_bool(ID(SET_POLARITY));
				param_bool(ID(CLR_POLARITY));
				port(ID(CLK), 1);
				port(ID(SET), param(ID(WIDTH)));
				port(ID(CLR), param(ID(WIDTH)));
				port(ID(D), param(ID(WIDTH)));
				port(ID(Q), param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($adff)) {
				param_bool(ID(CLK_POLARITY));
				param_bool(ID(ARST_POLARITY));
				param_bits(ID(ARST_VALUE), param(ID(WIDTH)));
				port(ID(CLK), 1);
				port(ID(ARST), 1);
				port(ID(D), param(ID(WIDTH)));
				port(ID(Q), param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($dlatch)) {
				param_bool(ID(EN_POLARITY));
				port(ID(EN), 1);
				port(ID(D), param(ID(WIDTH)));
				port(ID(Q), param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($dlatchsr)) {
				param_bool(ID(EN_POLARITY));
				param_bool(ID(SET_POLARITY));
				param_bool(ID(CLR_POLARITY));
				port(ID(EN), 1);
				port(ID(SET), param(ID(WIDTH)));
				port(ID(CLR), param(ID(WIDTH)));
				port(ID(D), param(ID(WIDTH)));
				port(ID(Q), param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($fsm)) {
				param(ID(NAME));
				param_bool(ID(CLK_POLARITY));
				param_bool(ID(ARST_POLARITY));
				param(ID(STATE_BITS));
				param(ID(STATE_NUM));
				param(ID(STATE_NUM_LOG2));
				param(ID(STATE_RST));
				param_bits(ID(STATE_TABLE), param(ID(STATE_BITS)) * param(ID(STATE_NUM)));
				param(ID(TRANS_NUM));
				param_bits(ID(TRANS_TABLE), param(ID(TRANS_NUM)) * (2*param(ID(STATE_NUM_LOG2)) + param(ID(CTRL_IN_WIDTH)) + param(ID(CTRL_OUT_WIDTH))));
				port(ID(CLK), 1);
				port(ID(ARST), 1);
				port(ID(CTRL_IN), param(ID(CTRL_IN_WIDTH)));
				port(ID(CTRL_OUT), param(ID(CTRL_OUT_WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($memrd)) {
				param(ID(MEMID));
				param_bool(ID(CLK_ENABLE));
				param_bool(ID(CLK_POLARITY));
				param_bool(ID(TRANSPARENT));
				port(ID(CLK), 1);
				port(ID(EN), 1);
				port(ID(ADDR), param(ID(ABITS)));
				port(ID(DATA), param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($memwr)) {
				param(ID(MEMID));
				param_bool(ID(CLK_ENABLE));
				param_bool(ID(CLK_POLARITY));
				param(ID(PRIORITY));
				port(ID(CLK), 1);
				port(ID(EN), param(ID(WIDTH)));
				port(ID(ADDR), param(ID(ABITS)));
				port(ID(DATA), param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($meminit)) {
				param(ID(MEMID));
				param(ID(PRIORITY));
				port(ID(ADDR), param(ID(ABITS)));
				port(ID(DATA), param(ID(WIDTH)) * param(ID(WORDS)));
				check_expected();
				return;
			}

			if (cell->type == ID($mem)) {
				param(ID(MEMID));
				param(ID(SIZE));
				param(ID(OFFSET));
				param(ID(INIT));
				param_bits(ID(RD_CLK_ENABLE), max(1, param(ID(RD_PORTS))));
				param_bits(ID(RD_CLK_POLARITY), max(1, param(ID(RD_PORTS))));
				param_bits(ID(RD_TRANSPARENT), max(1, param(ID(RD_PORTS))));
				param_bits(ID(WR_CLK_ENABLE), max(1, param(ID(WR_PORTS))));
				param_bits(ID(WR_CLK_POLARITY), max(1, param(ID(WR_PORTS))));
				port(ID(RD_CLK), param(ID(RD_PORTS)));
				port(ID(RD_EN), param(ID(RD_PORTS)));
				port(ID(RD_ADDR), param(ID(RD_PORTS)) * param(ID(ABITS)));
				port(ID(RD_DATA), param(ID(RD_PORTS)) * param(ID(WIDTH)));
				port(ID(WR_CLK), param(ID(WR_PORTS)));
				port(ID(WR_EN), param(ID(WR_PORTS)) * param(ID(WIDTH)));
				port(ID(WR_ADDR), param(ID(WR_PORTS)) * param(ID(ABITS)));
				port(ID(WR_DATA), param(ID(WR_PORTS)) * param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($tribuf)) {
				port(ID::A, param(ID(WIDTH)));
				port(ID::Y, param(ID(WIDTH)));
				port(ID(EN), 1);
				check_expected();
				return;
			}

			if (cell->type.in(ID($assert), ID($assume), ID($live), ID($fair), ID($cover))) {
				port(ID::A, 1);
				port(ID(EN), 1);
				check_expected();
				return;
			}

			if (cell->type == ID($initstate)) {
				port(ID::Y, 1);
				check_expected();
				return;
			}

			if (cell->type.in(ID($anyconst), ID($anyseq), ID($allconst), ID($allseq))) {
				port(ID::Y, param(ID(WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($equiv)) {
				port(ID::A, 1);
				port(ID::B, 1);
				port(ID::Y, 1);
				check_expected();
				return;
			}

			if (cell->type.in(ID($specify2), ID($specify3))) {
				param_bool(ID(FULL));
				param_bool(ID(SRC_DST_PEN));
				param_bool(ID(SRC_DST_POL));
				param(ID(T_RISE_MIN));
				param(ID(T_RISE_TYP));
				param(ID(T_RISE_MAX));
				param(ID(T_FALL_MIN));
				param(ID(T_FALL_TYP));
				param(ID(T_FALL_MAX));
				port(ID(EN), 1);
				port(ID(SRC), param(ID(SRC_WIDTH)));
				port(ID(DST), param(ID(DST_WIDTH)));
				if (cell->type == ID($specify3)) {
					param_bool(ID(EDGE_EN));
					param_bool(ID(EDGE_POL));
					param_bool(ID(DAT_DST_PEN));
					param_bool(ID(DAT_DST_POL));
					port(ID(DAT), param(ID(DST_WIDTH)));
				}
				check_expected();
				return;
			}

			if (cell->type == ID($specrule)) {
				param(ID(TYPE));
				param_bool(ID(SRC_PEN));
				param_bool(ID(SRC_POL));
				param_bool(ID(DST_PEN));
				param_bool(ID(DST_POL));
				param(ID(T_LIMIT));
				param(ID(T_LIMIT2));
				port(ID(SRC_EN), 1);
				port(ID(DST_EN), 1);
				port(ID(SRC), param(ID(SRC_WIDTH)));
				port(ID(DST), param(ID(DST_WIDTH)));
				check_expected();
				return;
			}

			if (cell->type == ID($_BUF_))    { check_gate("AY"); return; }
			if (cell->type == ID($_NOT_))    { check_gate("AY"); return; }
			if (cell->type == ID($_AND_))    { check_gate("ABY"); return; }
			if (cell->type == ID($_NAND_))   { check_gate("ABY"); return; }
			if (cell->type == ID($_OR_))     { check_gate("ABY"); return; }
			if (cell->type == ID($_NOR_))    { check_gate("ABY"); return; }
			if (cell->type == ID($_XOR_))    { check_gate("ABY"); return; }
			if (cell->type == ID($_XNOR_))   { check_gate("ABY"); return; }
			if (cell->type == ID($_ANDNOT_)) { check_gate("ABY"); return; }
			if (cell->type == ID($_ORNOT_))  { check_gate("ABY"); return; }
			if (cell->type == ID($_MUX_))    { check_gate("ABSY"); return; }
			if (cell->type == ID($_NMUX_))   { check_gate("ABSY"); return; }
			if (cell->type == ID($_AOI3_))   { check_gate("ABCY"); return; }
			if (cell->type == ID($_OAI3_))   { check_gate("ABCY"); return; }
			if (cell->type == ID($_AOI4_))   { check_gate("ABCDY"); return; }
			if (cell->type == ID($_OAI4_))   { check_gate("ABCDY"); return; }

			if (cell->type == ID($_TBUF_))  { check_gate("AYE"); return; }

			if (cell->type == ID($_MUX4_))  { check_gate("ABCDSTY"); return; }
			if (cell->type == ID($_MUX8_))  { check_gate("ABCDEFGHSTUY"); return; }
			if (cell->type == ID($_MUX16_)) { check_gate("ABCDEFGHIJKLMNOPSTUVY"); return; }

			if (cell->type == ID($_SR_NN_)) { check_gate("SRQ"); return; }
			if (cell->type == ID($_SR_NP_)) { check_gate("SRQ"); return; }
			if (cell->type == ID($_SR_PN_)) { check_gate("SRQ"); return; }
			if (cell->type == ID($_SR_PP_)) { check_gate("SRQ"); return; }

			if (cell->type == ID($_FF_))    { check_gate("DQ");  return; }
			if (cell->type == ID($_DFF_N_)) { check_gate("DQC"); return; }
			if (cell->type == ID($_DFF_P_)) { check_gate("DQC"); return; }

			if (cell->type == ID($_DFFE_NN_)) { check_gate("DQCE"); return; }
			if (cell->type == ID($_DFFE_NP_)) { check_gate("DQCE"); return; }
			if (cell->type == ID($_DFFE_PN_)) { check_gate("DQCE"); return; }
			if (cell->type == ID($_DFFE_PP_)) { check_gate("DQCE"); return; }

			if (cell->type == ID($_DFF_NN0_)) { check_gate("DQCR"); return; }
			if (cell->type == ID($_DFF_NN1_)) { check_gate("DQCR"); return; }
			if (cell->type == ID($_DFF_NP0_)) { check_gate("DQCR"); return; }
			if (cell->type == ID($_DFF_NP1_)) { check_gate("DQCR"); return; }
			if (cell->type == ID($_DFF_PN0_)) { check_gate("DQCR"); return; }
			if (cell->type == ID($_DFF_PN1_)) { check_gate("DQCR"); return; }
			if (cell->type == ID($_DFF_PP0_)) { check_gate("DQCR"); return; }
			if (cell->type == ID($_DFF_PP1_)) { check_gate("DQCR"); return; }

			if (cell->type == ID($_DFFSR_NNN_)) { check_gate("CSRDQ"); return; }
			if (cell->type == ID($_DFFSR_NNP_)) { check_gate("CSRDQ"); return; }
			if (cell->type == ID($_DFFSR_NPN_)) { check_gate("CSRDQ"); return; }
			if (cell->type == ID($_DFFSR_NPP_)) { check_gate("CSRDQ"); return; }
			if (cell->type == ID($_DFFSR_PNN_)) { check_gate("CSRDQ"); return; }
			if (cell->type == ID($_DFFSR_PNP_)) { check_gate("CSRDQ"); return; }
			if (cell->type == ID($_DFFSR_PPN_)) { check_gate("CSRDQ"); return; }
			if (cell->type == ID($_DFFSR_PPP_)) { check_gate("CSRDQ"); return; }

			if (cell->type == ID($_DLATCH_N_)) { check_gate("EDQ"); return; }
			if (cell->type == ID($_DLATCH_P_)) { check_gate("EDQ"); return; }

			if (cell->type == ID($_DLATCHSR_NNN_)) { check_gate("ESRDQ"); return; }
			if (cell->type == ID($_DLATCHSR_NNP_)) { check_gate("ESRDQ"); return; }
			if (cell->type == ID($_DLATCHSR_NPN_)) { check_gate("ESRDQ"); return; }
			if (cell->type == ID($_DLATCHSR_NPP_)) { check_gate("ESRDQ"); return; }
			if (cell->type == ID($_DLATCHSR_PNN_)) { check_gate("ESRDQ"); return; }
			if (cell->type == ID($_DLATCHSR_PNP_)) { check_gate("ESRDQ"); return; }
			if (cell->type == ID($_DLATCHSR_PPN_)) { check_gate("ESRDQ"); return; }
			if (cell->type == ID($_DLATCHSR_PPP_)) { check_gate("ESRDQ"); return; }

			error(__LINE__);
		}
	};
}
#endif

void RTLIL::Module::sort()
{
	wires_.sort(sort_by_id_str());
	cells_.sort(sort_by_id_str());
	avail_parameters.sort(sort_by_id_str());
	memories.sort(sort_by_id_str());
	processes.sort(sort_by_id_str());
	for (auto &it : cells_)
		it.second->sort();
	for (auto &it : wires_)
		it.second->attributes.sort(sort_by_id_str());
	for (auto &it : memories)
		it.second->attributes.sort(sort_by_id_str());
}

void RTLIL::Module::check()
{
#ifndef NDEBUG
	std::vector<bool> ports_declared;
	for (auto &it : wires_) {
		log_assert(this == it.second->module);
		log_assert(it.first == it.second->name);
		log_assert(!it.first.empty());
		log_assert(it.second->width >= 0);
		log_assert(it.second->port_id >= 0);
		for (auto &it2 : it.second->attributes)
			log_assert(!it2.first.empty());
		if (it.second->port_id) {
			log_assert(GetSize(ports) >= it.second->port_id);
			log_assert(ports.at(it.second->port_id-1) == it.first);
			log_assert(it.second->port_input || it.second->port_output);
			if (GetSize(ports_declared) < it.second->port_id)
				ports_declared.resize(it.second->port_id);
			log_assert(ports_declared[it.second->port_id-1] == false);
			ports_declared[it.second->port_id-1] = true;
		} else
			log_assert(!it.second->port_input && !it.second->port_output);
	}
	for (auto port_declared : ports_declared)
		log_assert(port_declared == true);
	log_assert(GetSize(ports) == GetSize(ports_declared));

	for (auto &it : memories) {
		log_assert(it.first == it.second->name);
		log_assert(!it.first.empty());
		log_assert(it.second->width >= 0);
		log_assert(it.second->size >= 0);
		for (auto &it2 : it.second->attributes)
			log_assert(!it2.first.empty());
	}

	for (auto &it : cells_) {
		log_assert(this == it.second->module);
		log_assert(it.first == it.second->name);
		log_assert(!it.first.empty());
		log_assert(!it.second->type.empty());
		for (auto &it2 : it.second->connections()) {
			log_assert(!it2.first.empty());
			it2.second.check();
		}
		for (auto &it2 : it.second->attributes)
			log_assert(!it2.first.empty());
		for (auto &it2 : it.second->parameters)
			log_assert(!it2.first.empty());
		InternalCellChecker checker(this, it.second);
		checker.check();
	}

	for (auto &it : processes) {
		log_assert(it.first == it.second->name);
		log_assert(!it.first.empty());
		log_assert(it.second->root_case.compare.empty());
		std::vector<CaseRule*> all_cases = {&it.second->root_case};
		for (size_t i = 0; i < all_cases.size(); i++) {
			for (auto &switch_it : all_cases[i]->switches) {
				for (auto &case_it : switch_it->cases) {
					for (auto &compare_it : case_it->compare) {
						log_assert(switch_it->signal.size() == compare_it.size());
					}
					all_cases.push_back(case_it);
				}
			}
		}
		for (auto &sync_it : it.second->syncs) {
			switch (sync_it->type) {
				case SyncType::ST0:
				case SyncType::ST1:
				case SyncType::STp:
				case SyncType::STn:
				case SyncType::STe:
					log_assert(!sync_it->signal.empty());
					break;
				case SyncType::STa:
				case SyncType::STg:
				case SyncType::STi:
					log_assert(sync_it->signal.empty());
					break;
			}
		}
	}

	for (auto &it : connections_) {
		log_assert(it.first.size() == it.second.size());
		log_assert(!it.first.has_const());
		it.first.check();
		it.second.check();
	}

	for (auto &it : attributes)
		log_assert(!it.first.empty());
#endif
}

void RTLIL::Module::optimize()
{
}

void RTLIL::Module::cloneInto(RTLIL::Module *new_mod) const
{
	log_assert(new_mod->refcount_wires_ == 0);
	log_assert(new_mod->refcount_cells_ == 0);

	new_mod->avail_parameters = avail_parameters;

	for (auto &conn : connections_)
		new_mod->connect(conn);

	for (auto &attr : attributes)
		new_mod->attributes[attr.first] = attr.second;

	for (auto &it : wires_)
		new_mod->addWire(it.first, it.second);

	for (auto &it : memories)
		new_mod->memories[it.first] = new RTLIL::Memory(*it.second);

	for (auto &it : cells_)
		new_mod->addCell(it.first, it.second);

	for (auto &it : processes)
		new_mod->processes[it.first] = it.second->clone();

	struct RewriteSigSpecWorker
	{
		RTLIL::Module *mod;
		void operator()(RTLIL::SigSpec &sig)
		{
			std::vector<RTLIL::SigChunk> chunks = sig.chunks();
			for (auto &c : chunks)
				if (c.wire != NULL)
					c.wire = mod->wires_.at(c.wire->name);
			sig = chunks;
		}
	};

	RewriteSigSpecWorker rewriteSigSpecWorker;
	rewriteSigSpecWorker.mod = new_mod;
	new_mod->rewrite_sigspecs(rewriteSigSpecWorker);
	new_mod->fixup_ports();
}

RTLIL::Module *RTLIL::Module::clone() const
{
	RTLIL::Module *new_mod = new RTLIL::Module;
	new_mod->name = name;
	cloneInto(new_mod);
	return new_mod;
}

bool RTLIL::Module::has_memories() const
{
	return !memories.empty();
}

bool RTLIL::Module::has_processes() const
{
	return !processes.empty();
}

bool RTLIL::Module::has_memories_warn() const
{
	if (!memories.empty())
		log_warning("Ignoring module %s because it contains memories (run 'memory' command first).\n", log_id(this));
	return !memories.empty();
}

bool RTLIL::Module::has_processes_warn() const
{
	if (!processes.empty())
		log_warning("Ignoring module %s because it contains processes (run 'proc' command first).\n", log_id(this));
	return !processes.empty();
}

std::vector<RTLIL::Wire*> RTLIL::Module::selected_wires() const
{
	std::vector<RTLIL::Wire*> result;
	result.reserve(wires_.size());
	for (auto &it : wires_)
		if (design->selected(this, it.second))
			result.push_back(it.second);
	return result;
}

std::vector<RTLIL::Cell*> RTLIL::Module::selected_cells() const
{
	std::vector<RTLIL::Cell*> result;
	result.reserve(wires_.size());
	for (auto &it : cells_)
		if (design->selected(this, it.second))
			result.push_back(it.second);
	return result;
}

void RTLIL::Module::add(RTLIL::Wire *wire)
{
	log_assert(!wire->name.empty());
	log_assert(count_id(wire->name) == 0);
	log_assert(refcount_wires_ == 0);
	wires_[wire->name] = wire;
	wire->module = this;
}

void RTLIL::Module::add(RTLIL::Cell *cell)
{
	log_assert(!cell->name.empty());
	log_assert(count_id(cell->name) == 0);
	log_assert(refcount_cells_ == 0);
	cells_[cell->name] = cell;
	cell->module = this;
}

void RTLIL::Module::remove(const pool<RTLIL::Wire*> &wires)
{
	log_assert(refcount_wires_ == 0);

	struct DeleteWireWorker
	{
		RTLIL::Module *module;
		const pool<RTLIL::Wire*> *wires_p;

		void operator()(RTLIL::SigSpec &sig) {
			std::vector<RTLIL::SigChunk> chunks = sig;
			for (auto &c : chunks)
				if (c.wire != NULL && wires_p->count(c.wire)) {
					c.wire = module->addWire(NEW_ID, c.width);
					c.offset = 0;
				}
			sig = chunks;
		}

		void operator()(RTLIL::SigSpec &lhs, RTLIL::SigSpec &rhs) {
			log_assert(GetSize(lhs) == GetSize(rhs));
			RTLIL::SigSpec new_lhs, new_rhs;
			for (int i = 0; i < GetSize(lhs); i++) {
				RTLIL::SigBit lhs_bit = lhs[i];
				if (lhs_bit.wire != nullptr && wires_p->count(lhs_bit.wire))
					continue;
				RTLIL::SigBit rhs_bit = rhs[i];
				if (rhs_bit.wire != nullptr && wires_p->count(rhs_bit.wire))
					continue;
				new_lhs.append(lhs_bit);
				new_rhs.append(rhs_bit);
			}
			lhs = new_lhs;
			rhs = new_rhs;
		}
	};

	DeleteWireWorker delete_wire_worker;
	delete_wire_worker.module = this;
	delete_wire_worker.wires_p = &wires;
	rewrite_sigspecs2(delete_wire_worker);

	for (auto &it : wires) {
		log_assert(wires_.count(it->name) != 0);
		wires_.erase(it->name);
		delete it;
	}
}

void RTLIL::Module::remove(RTLIL::Cell *cell)
{
	while (!cell->connections_.empty())
		cell->unsetPort(cell->connections_.begin()->first);

	log_assert(cells_.count(cell->name) != 0);
	log_assert(refcount_cells_ == 0);
	cells_.erase(cell->name);
	delete cell;
}

void RTLIL::Module::rename(RTLIL::Wire *wire, RTLIL::IdString new_name)
{
	log_assert(wires_[wire->name] == wire);
	log_assert(refcount_wires_ == 0);
	wires_.erase(wire->name);
	wire->name = new_name;
	add(wire);
}

void RTLIL::Module::rename(RTLIL::Cell *cell, RTLIL::IdString new_name)
{
	log_assert(cells_[cell->name] == cell);
	log_assert(refcount_wires_ == 0);
	cells_.erase(cell->name);
	cell->name = new_name;
	add(cell);
}

void RTLIL::Module::rename(RTLIL::IdString old_name, RTLIL::IdString new_name)
{
	log_assert(count_id(old_name) != 0);
	if (wires_.count(old_name))
		rename(wires_.at(old_name), new_name);
	else if (cells_.count(old_name))
		rename(cells_.at(old_name), new_name);
	else
		log_abort();
}

void RTLIL::Module::swap_names(RTLIL::Wire *w1, RTLIL::Wire *w2)
{
	log_assert(wires_[w1->name] == w1);
	log_assert(wires_[w2->name] == w2);
	log_assert(refcount_wires_ == 0);

	wires_.erase(w1->name);
	wires_.erase(w2->name);

	std::swap(w1->name, w2->name);

	wires_[w1->name] = w1;
	wires_[w2->name] = w2;
}

void RTLIL::Module::swap_names(RTLIL::Cell *c1, RTLIL::Cell *c2)
{
	log_assert(cells_[c1->name] == c1);
	log_assert(cells_[c2->name] == c2);
	log_assert(refcount_cells_ == 0);

	cells_.erase(c1->name);
	cells_.erase(c2->name);

	std::swap(c1->name, c2->name);

	cells_[c1->name] = c1;
	cells_[c2->name] = c2;
}

RTLIL::IdString RTLIL::Module::uniquify(RTLIL::IdString name)
{
	int index = 0;
	return uniquify(name, index);
}

RTLIL::IdString RTLIL::Module::uniquify(RTLIL::IdString name, int &index)
{
	if (index == 0) {
		if (count_id(name) == 0)
			return name;
		index++;
	}

	while (1) {
		RTLIL::IdString new_name = stringf("%s_%d", name.c_str(), index);
		if (count_id(new_name) == 0)
			return new_name;
		index++;
	}
}

static bool fixup_ports_compare(const RTLIL::Wire *a, const RTLIL::Wire *b)
{
	if (a->port_id && !b->port_id)
		return true;
	if (!a->port_id && b->port_id)
		return false;

	if (a->port_id == b->port_id)
		return a->name < b->name;
	return a->port_id < b->port_id;
}

void RTLIL::Module::connect(const RTLIL::SigSig &conn)
{
	for (auto mon : monitors)
		mon->notify_connect(this, conn);

	if (design)
		for (auto mon : design->monitors)
			mon->notify_connect(this, conn);

	// ignore all attempts to assign constants to other constants
	if (conn.first.has_const()) {
		RTLIL::SigSig new_conn;
		for (int i = 0; i < GetSize(conn.first); i++)
			if (conn.first[i].wire) {
				new_conn.first.append(conn.first[i]);
				new_conn.second.append(conn.second[i]);
			}
		if (GetSize(new_conn.first))
			connect(new_conn);
		return;
	}

	if (yosys_xtrace) {
		log("#X# Connect (SigSig) in %s: %s = %s (%d bits)\n", log_id(this), log_signal(conn.first), log_signal(conn.second), GetSize(conn.first));
		log_backtrace("-X- ", yosys_xtrace-1);
	}

	log_assert(GetSize(conn.first) == GetSize(conn.second));
	connections_.push_back(conn);
}

void RTLIL::Module::connect(const RTLIL::SigSpec &lhs, const RTLIL::SigSpec &rhs)
{
	connect(RTLIL::SigSig(lhs, rhs));
}

void RTLIL::Module::new_connections(const std::vector<RTLIL::SigSig> &new_conn)
{
	for (auto mon : monitors)
		mon->notify_connect(this, new_conn);

	if (design)
		for (auto mon : design->monitors)
			mon->notify_connect(this, new_conn);

	if (yosys_xtrace) {
		log("#X# New connections vector in %s:\n", log_id(this));
		for (auto &conn: new_conn)
			log("#X#    %s = %s (%d bits)\n", log_signal(conn.first), log_signal(conn.second), GetSize(conn.first));
		log_backtrace("-X- ", yosys_xtrace-1);
	}

	connections_ = new_conn;
}

const std::vector<RTLIL::SigSig> &RTLIL::Module::connections() const
{
	return connections_;
}

void RTLIL::Module::fixup_ports()
{
	std::vector<RTLIL::Wire*> all_ports;

	for (auto &w : wires_)
		if (w.second->port_input || w.second->port_output)
			all_ports.push_back(w.second);
		else
			w.second->port_id = 0;

	std::sort(all_ports.begin(), all_ports.end(), fixup_ports_compare);

	ports.clear();
	for (size_t i = 0; i < all_ports.size(); i++) {
		ports.push_back(all_ports[i]->name);
		all_ports[i]->port_id = i+1;
	}
}

RTLIL::Wire *RTLIL::Module::addWire(RTLIL::IdString name, int width)
{
	RTLIL::Wire *wire = new RTLIL::Wire;
	wire->name = name;
	wire->width = width;
	add(wire);
	return wire;
}

RTLIL::Wire *RTLIL::Module::addWire(RTLIL::IdString name, const RTLIL::Wire *other)
{
	RTLIL::Wire *wire = addWire(name);
	wire->width = other->width;
	wire->start_offset = other->start_offset;
	wire->port_id = other->port_id;
	wire->port_input = other->port_input;
	wire->port_output = other->port_output;
	wire->upto = other->upto;
	wire->attributes = other->attributes;
	return wire;
}

RTLIL::Cell *RTLIL::Module::addCell(RTLIL::IdString name, RTLIL::IdString type)
{
	RTLIL::Cell *cell = new RTLIL::Cell;
	cell->name = name;
	cell->type = type;
	add(cell);
	return cell;
}

RTLIL::Cell *RTLIL::Module::addCell(RTLIL::IdString name, const RTLIL::Cell *other)
{
	RTLIL::Cell *cell = addCell(name, other->type);
	cell->connections_ = other->connections_;
	cell->parameters = other->parameters;
	cell->attributes = other->attributes;
	return cell;
}

#define DEF_METHOD(_func, _y_size, _type) \
	RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_y, bool is_signed, const std::string &src) { \
		RTLIL::Cell *cell = addCell(name, _type);           \
		cell->parameters[ID(A_SIGNED)] = is_signed;         \
		cell->parameters[ID(A_WIDTH)] = sig_a.size();       \
		cell->parameters[ID(Y_WIDTH)] = sig_y.size();       \
		cell->setPort(ID::A, sig_a);                        \
		cell->setPort(ID::Y, sig_y);                        \
		cell->set_src_attribute(src);                       \
		return cell;                                        \
	} \
	RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig_a, bool is_signed, const std::string &src) { \
		RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size);    \
		add ## _func(name, sig_a, sig_y, is_signed, src);   \
		return sig_y;                                       \
	}
DEF_METHOD(Not,        sig_a.size(), ID($not))
DEF_METHOD(Pos,        sig_a.size(), ID($pos))
DEF_METHOD(Neg,        sig_a.size(), ID($neg))
DEF_METHOD(ReduceAnd,  1, ID($reduce_and))
DEF_METHOD(ReduceOr,   1, ID($reduce_or))
DEF_METHOD(ReduceXor,  1, ID($reduce_xor))
DEF_METHOD(ReduceXnor, 1, ID($reduce_xnor))
DEF_METHOD(ReduceBool, 1, ID($reduce_bool))
DEF_METHOD(LogicNot,   1, ID($logic_not))
#undef DEF_METHOD

#define DEF_METHOD(_func, _y_size, _type) \
	RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_y, bool is_signed, const std::string &src) { \
		RTLIL::Cell *cell = addCell(name, _type);           \
		cell->parameters[ID(A_SIGNED)] = is_signed;         \
		cell->parameters[ID(B_SIGNED)] = is_signed;         \
		cell->parameters[ID(A_WIDTH)] = sig_a.size();       \
		cell->parameters[ID(B_WIDTH)] = sig_b.size();       \
		cell->parameters[ID(Y_WIDTH)] = sig_y.size();       \
		cell->setPort(ID::A, sig_a);                        \
		cell->setPort(ID::B, sig_b);                        \
		cell->setPort(ID::Y, sig_y);                        \
		cell->set_src_attribute(src);                       \
		return cell;                                        \
	} \
	RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, bool is_signed, const std::string &src) { \
		RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size);         \
		add ## _func(name, sig_a, sig_b, sig_y, is_signed, src); \
		return sig_y;                                            \
	}
DEF_METHOD(And,      max(sig_a.size(), sig_b.size()), ID($and))
DEF_METHOD(Or,       max(sig_a.size(), sig_b.size()), ID($or))
DEF_METHOD(Xor,      max(sig_a.size(), sig_b.size()), ID($xor))
DEF_METHOD(Xnor,     max(sig_a.size(), sig_b.size()), ID($xnor))
DEF_METHOD(Shl,      sig_a.size(), ID($shl))
DEF_METHOD(Shr,      sig_a.size(), ID($shr))
DEF_METHOD(Sshl,     sig_a.size(), ID($sshl))
DEF_METHOD(Sshr,     sig_a.size(), ID($sshr))
DEF_METHOD(Shift,    sig_a.size(), ID($shift))
DEF_METHOD(Shiftx,   sig_a.size(), ID($shiftx))
DEF_METHOD(Lt,       1, ID($lt))
DEF_METHOD(Le,       1, ID($le))
DEF_METHOD(Eq,       1, ID($eq))
DEF_METHOD(Ne,       1, ID($ne))
DEF_METHOD(Eqx,      1, ID($eqx))
DEF_METHOD(Nex,      1, ID($nex))
DEF_METHOD(Ge,       1, ID($ge))
DEF_METHOD(Gt,       1, ID($gt))
DEF_METHOD(Add,      max(sig_a.size(), sig_b.size()), ID($add))
DEF_METHOD(Sub,      max(sig_a.size(), sig_b.size()), ID($sub))
DEF_METHOD(Mul,      max(sig_a.size(), sig_b.size()), ID($mul))
DEF_METHOD(Div,      max(sig_a.size(), sig_b.size()), ID($div))
DEF_METHOD(Mod,      max(sig_a.size(), sig_b.size()), ID($mod))
DEF_METHOD(LogicAnd, 1, ID($logic_and))
DEF_METHOD(LogicOr,  1, ID($logic_or))
#undef DEF_METHOD

#define DEF_METHOD(_func, _type, _pmux) \
	RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_s, RTLIL::SigSpec sig_y, const std::string &src) { \
		RTLIL::Cell *cell = addCell(name, _type);                 \
		cell->parameters[ID(WIDTH)] = sig_a.size();               \
		if (_pmux) cell->parameters[ID(S_WIDTH)] = sig_s.size();  \
		cell->setPort(ID::A, sig_a);                              \
		cell->setPort(ID::B, sig_b);                              \
		cell->setPort(ID(S), sig_s);                              \
		cell->setPort(ID::Y, sig_y);                              \
		cell->set_src_attribute(src);                             \
		return cell;                                              \
	} \
	RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_s, const std::string &src) { \
		RTLIL::SigSpec sig_y = addWire(NEW_ID, sig_a.size());     \
		add ## _func(name, sig_a, sig_b, sig_s, sig_y, src);      \
		return sig_y;                                             \
	}
DEF_METHOD(Mux,      ID($mux),        0)
DEF_METHOD(Pmux,     ID($pmux),       1)
#undef DEF_METHOD

#define DEF_METHOD_2(_func, _type, _P1, _P2) \
	RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigBit sig1, RTLIL::SigBit sig2, const std::string &src) { \
		RTLIL::Cell *cell = addCell(name, _type);         \
		cell->setPort("\\" #_P1, sig1);                   \
		cell->setPort("\\" #_P2, sig2);                   \
		cell->set_src_attribute(src);                     \
		return cell;                                      \
	} \
	RTLIL::SigBit RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigBit sig1, const std::string &src) { \
		RTLIL::SigBit sig2 = addWire(NEW_ID);             \
		add ## _func(name, sig1, sig2, src);              \
		return sig2;                                      \
	}
#define DEF_METHOD_3(_func, _type, _P1, _P2, _P3) \
	RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigBit sig1, RTLIL::SigBit sig2, RTLIL::SigBit sig3, const std::string &src) { \
		RTLIL::Cell *cell = addCell(name, _type);         \
		cell->setPort("\\" #_P1, sig1);                   \
		cell->setPort("\\" #_P2, sig2);                   \
		cell->setPort("\\" #_P3, sig3);                   \
		cell->set_src_attribute(src);                     \
		return cell;                                      \
	} \
	RTLIL::SigBit RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigBit sig1, RTLIL::SigBit sig2, const std::string &src) { \
		RTLIL::SigBit sig3 = addWire(NEW_ID);             \
		add ## _func(name, sig1, sig2, sig3, src);        \
		return sig3;                                      \
	}
#define DEF_METHOD_4(_func, _type, _P1, _P2, _P3, _P4) \
	RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigBit sig1, RTLIL::SigBit sig2, RTLIL::SigBit sig3, RTLIL::SigBit sig4, const std::string &src) { \
		RTLIL::Cell *cell = addCell(name, _type);         \
		cell->setPort("\\" #_P1, sig1);                   \
		cell->setPort("\\" #_P2, sig2);                   \
		cell->setPort("\\" #_P3, sig3);                   \
		cell->setPort("\\" #_P4, sig4);                   \
		cell->set_src_attribute(src);                     \
		return cell;                                      \
	} \
	RTLIL::SigBit RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigBit sig1, RTLIL::SigBit sig2, RTLIL::SigBit sig3, const std::string &src) { \
		RTLIL::SigBit sig4 = addWire(NEW_ID);             \
		add ## _func(name, sig1, sig2, sig3, sig4, src);  \
		return sig4;                                      \
	}
#define DEF_METHOD_5(_func, _type, _P1, _P2, _P3, _P4, _P5) \
	RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigBit sig1, RTLIL::SigBit sig2, RTLIL::SigBit sig3, RTLIL::SigBit sig4, RTLIL::SigBit sig5, const std::string &src) { \
		RTLIL::Cell *cell = addCell(name, _type);         \
		cell->setPort("\\" #_P1, sig1);                   \
		cell->setPort("\\" #_P2, sig2);                   \
		cell->setPort("\\" #_P3, sig3);                   \
		cell->setPort("\\" #_P4, sig4);                   \
		cell->setPort("\\" #_P5, sig5);                   \
		cell->set_src_attribute(src);                     \
		return cell;                                      \
	} \
	RTLIL::SigBit RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigBit sig1, RTLIL::SigBit sig2, RTLIL::SigBit sig3, RTLIL::SigBit sig4, const std::string &src) { \
		RTLIL::SigBit sig5 = addWire(NEW_ID);                  \
		add ## _func(name, sig1, sig2, sig3, sig4, sig5, src); \
		return sig5;                                           \
	}
DEF_METHOD_2(BufGate,    ID($_BUF_),    A, Y)
DEF_METHOD_2(NotGate,    ID($_NOT_),    A, Y)
DEF_METHOD_3(AndGate,    ID($_AND_),    A, B, Y)
DEF_METHOD_3(NandGate,   ID($_NAND_),   A, B, Y)
DEF_METHOD_3(OrGate,     ID($_OR_),     A, B, Y)
DEF_METHOD_3(NorGate,    ID($_NOR_),    A, B, Y)
DEF_METHOD_3(XorGate,    ID($_XOR_),    A, B, Y)
DEF_METHOD_3(XnorGate,   ID($_XNOR_),   A, B, Y)
DEF_METHOD_3(AndnotGate, ID($_ANDNOT_), A, B, Y)
DEF_METHOD_3(OrnotGate,  ID($_ORNOT_),  A, B, Y)
DEF_METHOD_4(MuxGate,    ID($_MUX_),    A, B, S, Y)
DEF_METHOD_4(NmuxGate,   ID($_NMUX_),   A, B, S, Y)
DEF_METHOD_4(Aoi3Gate,   ID($_AOI3_),   A, B, C, Y)
DEF_METHOD_4(Oai3Gate,   ID($_OAI3_),   A, B, C, Y)
DEF_METHOD_5(Aoi4Gate,   ID($_AOI4_),   A, B, C, D, Y)
DEF_METHOD_5(Oai4Gate,   ID($_OAI4_),   A, B, C, D, Y)
#undef DEF_METHOD_2
#undef DEF_METHOD_3
#undef DEF_METHOD_4
#undef DEF_METHOD_5

RTLIL::Cell* RTLIL::Module::addPow(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_y, bool a_signed, bool b_signed, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($pow));
	cell->parameters[ID(A_SIGNED)] = a_signed;
	cell->parameters[ID(B_SIGNED)] = b_signed;
	cell->parameters[ID(A_WIDTH)] = sig_a.size();
	cell->parameters[ID(B_WIDTH)] = sig_b.size();
	cell->parameters[ID(Y_WIDTH)] = sig_y.size();
	cell->setPort(ID::A, sig_a);
	cell->setPort(ID::B, sig_b);
	cell->setPort(ID::Y, sig_y);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addSlice(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_y, RTLIL::Const offset, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($slice));
	cell->parameters[ID(A_WIDTH)] = sig_a.size();
	cell->parameters[ID(Y_WIDTH)] = sig_y.size();
	cell->parameters[ID(OFFSET)] = offset;
	cell->setPort(ID::A, sig_a);
	cell->setPort(ID::Y, sig_y);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addConcat(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_y, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($concat));
	cell->parameters[ID(A_WIDTH)] = sig_a.size();
	cell->parameters[ID(B_WIDTH)] = sig_b.size();
	cell->setPort(ID::A, sig_a);
	cell->setPort(ID::B, sig_b);
	cell->setPort(ID::Y, sig_y);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addLut(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_y, RTLIL::Const lut, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($lut));
	cell->parameters[ID(LUT)] = lut;
	cell->parameters[ID(WIDTH)] = sig_a.size();
	cell->setPort(ID::A, sig_a);
	cell->setPort(ID::Y, sig_y);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addTribuf(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_y, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($tribuf));
	cell->parameters[ID(WIDTH)] = sig_a.size();
	cell->setPort(ID::A, sig_a);
	cell->setPort(ID(EN), sig_en);
	cell->setPort(ID::Y, sig_y);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addAssert(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_en, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($assert));
	cell->setPort(ID::A, sig_a);
	cell->setPort(ID(EN), sig_en);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addAssume(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_en, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($assume));
	cell->setPort(ID::A, sig_a);
	cell->setPort(ID(EN), sig_en);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addLive(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_en, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($live));
	cell->setPort(ID::A, sig_a);
	cell->setPort(ID(EN), sig_en);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addFair(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_en, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($fair));
	cell->setPort(ID::A, sig_a);
	cell->setPort(ID(EN), sig_en);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addCover(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_en, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($cover));
	cell->setPort(ID::A, sig_a);
	cell->setPort(ID(EN), sig_en);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addEquiv(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_y, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($equiv));
	cell->setPort(ID::A, sig_a);
	cell->setPort(ID::B, sig_b);
	cell->setPort(ID::Y, sig_y);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addSr(RTLIL::IdString name, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr, RTLIL::SigSpec sig_q, bool set_polarity, bool clr_polarity, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($sr));
	cell->parameters[ID(SET_POLARITY)] = set_polarity;
	cell->parameters[ID(CLR_POLARITY)] = clr_polarity;
	cell->parameters[ID(WIDTH)] = sig_q.size();
	cell->setPort(ID(SET), sig_set);
	cell->setPort(ID(CLR), sig_clr);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addFf(RTLIL::IdString name, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($ff));
	cell->parameters[ID(WIDTH)] = sig_q.size();
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addDff(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($dff));
	cell->parameters[ID(CLK_POLARITY)] = clk_polarity;
	cell->parameters[ID(WIDTH)] = sig_q.size();
	cell->setPort(ID(CLK), sig_clk);
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addDffe(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity, bool en_polarity, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($dffe));
	cell->parameters[ID(CLK_POLARITY)] = clk_polarity;
	cell->parameters[ID(EN_POLARITY)] = en_polarity;
	cell->parameters[ID(WIDTH)] = sig_q.size();
	cell->setPort(ID(CLK), sig_clk);
	cell->setPort(ID(EN), sig_en);
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addDffsr(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr,
		RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity, bool set_polarity, bool clr_polarity, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($dffsr));
	cell->parameters[ID(CLK_POLARITY)] = clk_polarity;
	cell->parameters[ID(SET_POLARITY)] = set_polarity;
	cell->parameters[ID(CLR_POLARITY)] = clr_polarity;
	cell->parameters[ID(WIDTH)] = sig_q.size();
	cell->setPort(ID(CLK), sig_clk);
	cell->setPort(ID(SET), sig_set);
	cell->setPort(ID(CLR), sig_clr);
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addAdff(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_arst, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q,
		RTLIL::Const arst_value, bool clk_polarity, bool arst_polarity, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($adff));
	cell->parameters[ID(CLK_POLARITY)] = clk_polarity;
	cell->parameters[ID(ARST_POLARITY)] = arst_polarity;
	cell->parameters[ID(ARST_VALUE)] = arst_value;
	cell->parameters[ID(WIDTH)] = sig_q.size();
	cell->setPort(ID(CLK), sig_clk);
	cell->setPort(ID(ARST), sig_arst);
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addDlatch(RTLIL::IdString name, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool en_polarity, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($dlatch));
	cell->parameters[ID(EN_POLARITY)] = en_polarity;
	cell->parameters[ID(WIDTH)] = sig_q.size();
	cell->setPort(ID(EN), sig_en);
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addDlatchsr(RTLIL::IdString name, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr,
		RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool en_polarity, bool set_polarity, bool clr_polarity, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($dlatchsr));
	cell->parameters[ID(EN_POLARITY)] = en_polarity;
	cell->parameters[ID(SET_POLARITY)] = set_polarity;
	cell->parameters[ID(CLR_POLARITY)] = clr_polarity;
	cell->parameters[ID(WIDTH)] = sig_q.size();
	cell->setPort(ID(EN), sig_en);
	cell->setPort(ID(SET), sig_set);
	cell->setPort(ID(CLR), sig_clr);
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addFfGate(RTLIL::IdString name, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, ID($_FF_));
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addDffGate(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, stringf("$_DFF_%c_", clk_polarity ? 'P' : 'N'));
	cell->setPort(ID(C), sig_clk);
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addDffeGate(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity, bool en_polarity, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, stringf("$_DFFE_%c%c_", clk_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N'));
	cell->setPort(ID(C), sig_clk);
	cell->setPort(ID(E), sig_en);
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addDffsrGate(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr,
		RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity, bool set_polarity, bool clr_polarity, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, stringf("$_DFFSR_%c%c%c_", clk_polarity ? 'P' : 'N', set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N'));
	cell->setPort(ID(C), sig_clk);
	cell->setPort(ID(S), sig_set);
	cell->setPort(ID(R), sig_clr);
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addAdffGate(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_arst, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q,
		bool arst_value, bool clk_polarity, bool arst_polarity, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, stringf("$_DFF_%c%c%c_", clk_polarity ? 'P' : 'N', arst_polarity ? 'P' : 'N', arst_value ? '1' : '0'));
	cell->setPort(ID(C), sig_clk);
	cell->setPort(ID(R), sig_arst);
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addDlatchGate(RTLIL::IdString name, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool en_polarity, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, stringf("$_DLATCH_%c_", en_polarity ? 'P' : 'N'));
	cell->setPort(ID(E), sig_en);
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::Cell* RTLIL::Module::addDlatchsrGate(RTLIL::IdString name, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr,
		RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool en_polarity, bool set_polarity, bool clr_polarity, const std::string &src)
{
	RTLIL::Cell *cell = addCell(name, stringf("$_DLATCHSR_%c%c%c_", en_polarity ? 'P' : 'N', set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N'));
	cell->setPort(ID(E), sig_en);
	cell->setPort(ID(S), sig_set);
	cell->setPort(ID(R), sig_clr);
	cell->setPort(ID(D), sig_d);
	cell->setPort(ID(Q), sig_q);
	cell->set_src_attribute(src);
	return cell;
}

RTLIL::SigSpec RTLIL::Module::Anyconst(RTLIL::IdString name, int width, const std::string &src)
{
	RTLIL::SigSpec sig = addWire(NEW_ID, width);
	Cell *cell = addCell(name, ID($anyconst));
	cell->setParam(ID(WIDTH), width);
	cell->setPort(ID::Y, sig);
	cell->set_src_attribute(src);
	return sig;
}

RTLIL::SigSpec RTLIL::Module::Anyseq(RTLIL::IdString name, int width, const std::string &src)
{
	RTLIL::SigSpec sig = addWire(NEW_ID, width);
	Cell *cell = addCell(name, ID($anyseq));
	cell->setParam(ID(WIDTH), width);
	cell->setPort(ID::Y, sig);
	cell->set_src_attribute(src);
	return sig;
}

RTLIL::SigSpec RTLIL::Module::Allconst(RTLIL::IdString name, int width, const std::string &src)
{
	RTLIL::SigSpec sig = addWire(NEW_ID, width);
	Cell *cell = addCell(name, ID($allconst));
	cell->setParam(ID(WIDTH), width);
	cell->setPort(ID::Y, sig);
	cell->set_src_attribute(src);
	return sig;
}

RTLIL::SigSpec RTLIL::Module::Allseq(RTLIL::IdString name, int width, const std::string &src)
{
	RTLIL::SigSpec sig = addWire(NEW_ID, width);
	Cell *cell = addCell(name, ID($allseq));
	cell->setParam(ID(WIDTH), width);
	cell->setPort(ID::Y, sig);
	cell->set_src_attribute(src);
	return sig;
}

RTLIL::SigSpec RTLIL::Module::Initstate(RTLIL::IdString name, const std::string &src)
{
	RTLIL::SigSpec sig = addWire(NEW_ID);
	Cell *cell = addCell(name, ID($initstate));
	cell->setPort(ID::Y, sig);
	cell->set_src_attribute(src);
	return sig;
}

RTLIL::Wire::Wire()
{
	static unsigned int hashidx_count = 123456789;
	hashidx_count = mkhash_xorshift(hashidx_count);
	hashidx_ = hashidx_count;

	module = nullptr;
	width = 1;
	start_offset = 0;
	port_id = 0;
	port_input = false;
	port_output = false;
	upto = false;

#ifdef WITH_PYTHON
	RTLIL::Wire::get_all_wires()->insert(std::pair<unsigned int, RTLIL::Wire*>(hashidx_, this));
#endif
}

RTLIL::Wire::~Wire()
{
#ifdef WITH_PYTHON
	RTLIL::Wire::get_all_wires()->erase(hashidx_);
#endif
}

#ifdef WITH_PYTHON
static std::map<unsigned int, RTLIL::Wire*> all_wires;
std::map<unsigned int, RTLIL::Wire*> *RTLIL::Wire::get_all_wires(void)
{
	return &all_wires;
}
#endif

RTLIL::Memory::Memory()
{
	static unsigned int hashidx_count = 123456789;
	hashidx_count = mkhash_xorshift(hashidx_count);
	hashidx_ = hashidx_count;

	width = 1;
	start_offset = 0;
	size = 0;
#ifdef WITH_PYTHON
	RTLIL::Memory::get_all_memorys()->insert(std::pair<unsigned int, RTLIL::Memory*>(hashidx_, this));
#endif
}

RTLIL::Cell::Cell() : module(nullptr)
{
	static unsigned int hashidx_count = 123456789;
	hashidx_count = mkhash_xorshift(hashidx_count);
	hashidx_ = hashidx_count;

	// log("#memtrace# %p\n", this);
	memhasher();

#ifdef WITH_PYTHON
	RTLIL::Cell::get_all_cells()->insert(std::pair<unsigned int, RTLIL::Cell*>(hashidx_, this));
#endif
}

RTLIL::Cell::~Cell()
{
#ifdef WITH_PYTHON
	RTLIL::Cell::get_all_cells()->erase(hashidx_);
#endif
}

#ifdef WITH_PYTHON
static std::map<unsigned int, RTLIL::Cell*> all_cells;
std::map<unsigned int, RTLIL::Cell*> *RTLIL::Cell::get_all_cells(void)
{
	return &all_cells;
}
#endif

bool RTLIL::Cell::hasPort(RTLIL::IdString portname) const
{
	return connections_.count(portname) != 0;
}

void RTLIL::Cell::unsetPort(RTLIL::IdString portname)
{
	RTLIL::SigSpec signal;
	auto conn_it = connections_.find(portname);

	if (conn_it != connections_.end())
	{
		for (auto mon : module->monitors)
			mon->notify_connect(this, conn_it->first, conn_it->second, signal);

		if (module->design)
			for (auto mon : module->design->monitors)
				mon->notify_connect(this, conn_it->first, conn_it->second, signal);

		if (yosys_xtrace) {
			log("#X# Unconnect %s.%s.%s\n", log_id(this->module), log_id(this), log_id(portname));
			log_backtrace("-X- ", yosys_xtrace-1);
		}

		connections_.erase(conn_it);
	}
}

void RTLIL::Cell::setPort(RTLIL::IdString portname, RTLIL::SigSpec signal)
{
	auto conn_it = connections_.find(portname);

	if (conn_it == connections_.end()) {
		connections_[portname] = RTLIL::SigSpec();
		conn_it = connections_.find(portname);
		log_assert(conn_it != connections_.end());
	} else
	if (conn_it->second == signal)
		return;

	for (auto mon : module->monitors)
		mon->notify_connect(this, conn_it->first, conn_it->second, signal);

	if (module->design)
		for (auto mon : module->design->monitors)
			mon->notify_connect(this, conn_it->first, conn_it->second, signal);

	if (yosys_xtrace) {
		log("#X# Connect %s.%s.%s = %s (%d)\n", log_id(this->module), log_id(this), log_id(portname), log_signal(signal), GetSize(signal));
		log_backtrace("-X- ", yosys_xtrace-1);
	}

	conn_it->second = signal;
}

const RTLIL::SigSpec &RTLIL::Cell::getPort(RTLIL::IdString portname) const
{
	return connections_.at(portname);
}

const dict<RTLIL::IdString, RTLIL::SigSpec> &RTLIL::Cell::connections() const
{
	return connections_;
}

bool RTLIL::Cell::known() const
{
	if (yosys_celltypes.cell_known(type))
		return true;
	if (module && module->design && module->design->module(type))
		return true;
	return false;
}

bool RTLIL::Cell::input(RTLIL::IdString portname) const
{
	if (yosys_celltypes.cell_known(type))
		return yosys_celltypes.cell_input(type, portname);
	if (module && module->design) {
		RTLIL::Module *m = module->design->module(type);
		RTLIL::Wire *w = m ? m->wire(portname) : nullptr;
		return w && w->port_input;
	}
	return false;
}

bool RTLIL::Cell::output(RTLIL::IdString portname) const
{
	if (yosys_celltypes.cell_known(type))
		return yosys_celltypes.cell_output(type, portname);
	if (module && module->design) {
		RTLIL::Module *m = module->design->module(type);
		RTLIL::Wire *w = m ? m->wire(portname) : nullptr;
		return w && w->port_output;
	}
	return false;
}

bool RTLIL::Cell::hasParam(RTLIL::IdString paramname) const
{
	return parameters.count(paramname) != 0;
}

void RTLIL::Cell::unsetParam(RTLIL::IdString paramname)
{
	parameters.erase(paramname);
}

void RTLIL::Cell::setParam(RTLIL::IdString paramname, RTLIL::Const value)
{
	parameters[paramname] = value;
}

const RTLIL::Const &RTLIL::Cell::getParam(RTLIL::IdString paramname) const
{
	return parameters.at(paramname);
}

void RTLIL::Cell::sort()
{
	connections_.sort(sort_by_id_str());
	parameters.sort(sort_by_id_str());
	attributes.sort(sort_by_id_str());
}

void RTLIL::Cell::check()
{
#ifndef NDEBUG
	InternalCellChecker checker(NULL, this);
	checker.check();
#endif
}

void RTLIL::Cell::fixup_parameters(bool set_a_signed, bool set_b_signed)
{
	if (!type.begins_with("$") || type.begins_with("$_") || type.begins_with("$paramod") || type.begins_with("$fmcombine") ||
			type.begins_with("$verific$") || type.begins_with("$array:") || type.begins_with("$extern:"))
		return;

	if (type == ID($mux) || type == ID($pmux)) {
		parameters[ID(WIDTH)] = GetSize(connections_[ID::Y]);
		if (type == ID($pmux))
			parameters[ID(S_WIDTH)] = GetSize(connections_[ID(S)]);
		check();
		return;
	}

	if (type == ID($lut) || type == ID($sop)) {
		parameters[ID(WIDTH)] = GetSize(connections_[ID::A]);
		return;
	}

	if (type == ID($fa)) {
		parameters[ID(WIDTH)] = GetSize(connections_[ID::Y]);
		return;
	}

	if (type == ID($lcu)) {
		parameters[ID(WIDTH)] = GetSize(connections_[ID(CO)]);
		return;
	}

	bool signedness_ab = !type.in(ID($slice), ID($concat), ID($macc));

	if (connections_.count(ID::A)) {
		if (signedness_ab) {
			if (set_a_signed)
				parameters[ID(A_SIGNED)] = true;
			else if (parameters.count(ID(A_SIGNED)) == 0)
				parameters[ID(A_SIGNED)] = false;
		}
		parameters[ID(A_WIDTH)] = GetSize(connections_[ID::A]);
	}

	if (connections_.count(ID::B)) {
		if (signedness_ab) {
			if (set_b_signed)
				parameters[ID(B_SIGNED)] = true;
			else if (parameters.count(ID(B_SIGNED)) == 0)
				parameters[ID(B_SIGNED)] = false;
		}
		parameters[ID(B_WIDTH)] = GetSize(connections_[ID::B]);
	}

	if (connections_.count(ID::Y))
		parameters[ID(Y_WIDTH)] = GetSize(connections_[ID::Y]);

	if (connections_.count(ID(Q)))
		parameters[ID(WIDTH)] = GetSize(connections_[ID(Q)]);

	check();
}

RTLIL::SigChunk::SigChunk()
{
	wire = NULL;
	width = 0;
	offset = 0;
}

RTLIL::SigChunk::SigChunk(const RTLIL::Const &value)
{
	wire = NULL;
	data = value.bits;
	width = GetSize(data);
	offset = 0;
}

RTLIL::SigChunk::SigChunk(RTLIL::Wire *wire)
{
	log_assert(wire != nullptr);
	this->wire = wire;
	this->width = wire->width;
	this->offset = 0;
}

RTLIL::SigChunk::SigChunk(RTLIL::Wire *wire, int offset, int width)
{
	log_assert(wire != nullptr);
	this->wire = wire;
	this->width = width;
	this->offset = offset;
}

RTLIL::SigChunk::SigChunk(const std::string &str)
{
	wire = NULL;
	data = RTLIL::Const(str).bits;
	width = GetSize(data);
	offset = 0;
}

RTLIL::SigChunk::SigChunk(int val, int width)
{
	wire = NULL;
	data = RTLIL::Const(val, width).bits;
	this->width = GetSize(data);
	offset = 0;
}

RTLIL::SigChunk::SigChunk(RTLIL::State bit, int width)
{
	wire = NULL;
	data = RTLIL::Const(bit, width).bits;
	this->width = GetSize(data);
	offset = 0;
}

RTLIL::SigChunk::SigChunk(RTLIL::SigBit bit)
{
	wire = bit.wire;
	offset = 0;
	if (wire == NULL)
		data = RTLIL::Const(bit.data).bits;
	else
		offset = bit.offset;
	width = 1;
}

RTLIL::SigChunk::SigChunk(const RTLIL::SigChunk &sigchunk) : data(sigchunk.data)
{
	wire = sigchunk.wire;
	data = sigchunk.data;
	width = sigchunk.width;
	offset = sigchunk.offset;
}

RTLIL::SigChunk RTLIL::SigChunk::extract(int offset, int length) const
{
	RTLIL::SigChunk ret;
	if (wire) {
		ret.wire = wire;
		ret.offset = this->offset + offset;
		ret.width = length;
	} else {
		for (int i = 0; i < length; i++)
			ret.data.push_back(data[offset+i]);
		ret.width = length;
	}
	return ret;
}

bool RTLIL::SigChunk::operator <(const RTLIL::SigChunk &other) const
{
	if (wire && other.wire)
		if (wire->name != other.wire->name)
			return wire->name < other.wire->name;

	if (wire != other.wire)
		return wire < other.wire;

	if (offset != other.offset)
		return offset < other.offset;

	if (width != other.width)
		return width < other.width;

	return data < other.data;
}

bool RTLIL::SigChunk::operator ==(const RTLIL::SigChunk &other) const
{
	return wire == other.wire && width == other.width && offset == other.offset && data == other.data;
}

bool RTLIL::SigChunk::operator !=(const RTLIL::SigChunk &other) const
{
	if (*this == other)
		return false;
	return true;
}

RTLIL::SigSpec::SigSpec()
{
	width_ = 0;
	hash_ = 0;
}

RTLIL::SigSpec::SigSpec(const RTLIL::SigSpec &other)
{
	*this = other;
}

RTLIL::SigSpec::SigSpec(std::initializer_list<RTLIL::SigSpec> parts)
{
	cover("kernel.rtlil.sigspec.init.list");

	width_ = 0;
	hash_ = 0;

	std::vector<RTLIL::SigSpec> parts_vec(parts.begin(), parts.end());
	for (auto it = parts_vec.rbegin(); it != parts_vec.rend(); it++)
		append(*it);
}

const RTLIL::SigSpec &RTLIL::SigSpec::operator=(const RTLIL::SigSpec &other)
{
	cover("kernel.rtlil.sigspec.assign");

	width_ = other.width_;
	hash_ = other.hash_;
	chunks_ = other.chunks_;
	bits_.clear();

	if (!other.bits_.empty())
	{
		RTLIL::SigChunk *last = NULL;
		int last_end_offset = 0;

		for (auto &bit : other.bits_) {
			if (last && bit.wire == last->wire) {
				if (bit.wire == NULL) {
					last->data.push_back(bit.data);
					last->width++;
					continue;
				} else if (last_end_offset == bit.offset) {
					last_end_offset++;
					last->width++;
					continue;
				}
			}
			chunks_.push_back(bit);
			last = &chunks_.back();
			last_end_offset = bit.offset + 1;
		}

		check();
	}

	return *this;
}

RTLIL::SigSpec::SigSpec(const RTLIL::Const &value)
{
	cover("kernel.rtlil.sigspec.init.const");

	chunks_.push_back(RTLIL::SigChunk(value));
	width_ = chunks_.back().width;
	hash_ = 0;
	check();
}

RTLIL::SigSpec::SigSpec(const RTLIL::SigChunk &chunk)
{
	cover("kernel.rtlil.sigspec.init.chunk");

	chunks_.push_back(chunk);
	width_ = chunks_.back().width;
	hash_ = 0;
	check();
}

RTLIL::SigSpec::SigSpec(RTLIL::Wire *wire)
{
	cover("kernel.rtlil.sigspec.init.wire");

	chunks_.push_back(RTLIL::SigChunk(wire));
	width_ = chunks_.back().width;
	hash_ = 0;
	check();
}

RTLIL::SigSpec::SigSpec(RTLIL::Wire *wire, int offset, int width)
{
	cover("kernel.rtlil.sigspec.init.wire_part");

	chunks_.push_back(RTLIL::SigChunk(wire, offset, width));
	width_ = chunks_.back().width;
	hash_ = 0;
	check();
}

RTLIL::SigSpec::SigSpec(const std::string &str)
{
	cover("kernel.rtlil.sigspec.init.str");

	chunks_.push_back(RTLIL::SigChunk(str));
	width_ = chunks_.back().width;
	hash_ = 0;
	check();
}

RTLIL::SigSpec::SigSpec(int val, int width)
{
	cover("kernel.rtlil.sigspec.init.int");

	chunks_.push_back(RTLIL::SigChunk(val, width));
	width_ = width;
	hash_ = 0;
	check();
}

RTLIL::SigSpec::SigSpec(RTLIL::State bit, int width)
{
	cover("kernel.rtlil.sigspec.init.state");

	chunks_.push_back(RTLIL::SigChunk(bit, width));
	width_ = width;
	hash_ = 0;
	check();
}

RTLIL::SigSpec::SigSpec(RTLIL::SigBit bit, int width)
{
	cover("kernel.rtlil.sigspec.init.bit");

	if (bit.wire == NULL)
		chunks_.push_back(RTLIL::SigChunk(bit.data, width));
	else
		for (int i = 0; i < width; i++)
			chunks_.push_back(bit);
	width_ = width;
	hash_ = 0;
	check();
}

RTLIL::SigSpec::SigSpec(std::vector<RTLIL::SigChunk> chunks)
{
	cover("kernel.rtlil.sigspec.init.stdvec_chunks");

	width_ = 0;
	hash_ = 0;
	for (auto &c : chunks)
		append(c);
	check();
}

RTLIL::SigSpec::SigSpec(std::vector<RTLIL::SigBit> bits)
{
	cover("kernel.rtlil.sigspec.init.stdvec_bits");

	width_ = 0;
	hash_ = 0;
	for (auto &bit : bits)
		append_bit(bit);
	check();
}

RTLIL::SigSpec::SigSpec(pool<RTLIL::SigBit> bits)
{
	cover("kernel.rtlil.sigspec.init.pool_bits");

	width_ = 0;
	hash_ = 0;
	for (auto &bit : bits)
		append_bit(bit);
	check();
}

RTLIL::SigSpec::SigSpec(std::set<RTLIL::SigBit> bits)
{
	cover("kernel.rtlil.sigspec.init.stdset_bits");

	width_ = 0;
	hash_ = 0;
	for (auto &bit : bits)
		append_bit(bit);
	check();
}

RTLIL::SigSpec::SigSpec(bool bit)
{
	cover("kernel.rtlil.sigspec.init.bool");

	width_ = 0;
	hash_ = 0;
	append_bit(bit);
	check();
}

void RTLIL::SigSpec::pack() const
{
	RTLIL::SigSpec *that = (RTLIL::SigSpec*)this;

	if (that->bits_.empty())
		return;

	cover("kernel.rtlil.sigspec.convert.pack");
	log_assert(that->chunks_.empty());

	std::vector<RTLIL::SigBit> old_bits;
	old_bits.swap(that->bits_);

	RTLIL::SigChunk *last = NULL;
	int last_end_offset = 0;

	for (auto &bit : old_bits) {
		if (last && bit.wire == last->wire) {
			if (bit.wire == NULL) {
				last->data.push_back(bit.data);
				last->width++;
				continue;
			} else if (last_end_offset == bit.offset) {
				last_end_offset++;
				last->width++;
				continue;
			}
		}
		that->chunks_.push_back(bit);
		last = &that->chunks_.back();
		last_end_offset = bit.offset + 1;
	}

	check();
}

void RTLIL::SigSpec::unpack() const
{
	RTLIL::SigSpec *that = (RTLIL::SigSpec*)this;

	if (that->chunks_.empty())
		return;

	cover("kernel.rtlil.sigspec.convert.unpack");
	log_assert(that->bits_.empty());

	that->bits_.reserve(that->width_);
	for (auto &c : that->chunks_)
		for (int i = 0; i < c.width; i++)
			that->bits_.push_back(RTLIL::SigBit(c, i));

	that->chunks_.clear();
	that->hash_ = 0;
}

void RTLIL::SigSpec::updhash() const
{
	RTLIL::SigSpec *that = (RTLIL::SigSpec*)this;

	if (that->hash_ != 0)
		return;

	cover("kernel.rtlil.sigspec.hash");
	that->pack();

	that->hash_ = mkhash_init;
	for (auto &c : that->chunks_)
		if (c.wire == NULL) {
			for (auto &v : c.data)
				that->hash_ = mkhash(that->hash_, v);
		} else {
			that->hash_ = mkhash(that->hash_, c.wire->name.index_);
			that->hash_ = mkhash(that->hash_, c.offset);
			that->hash_ = mkhash(that->hash_, c.width);
		}

	if (that->hash_ == 0)
		that->hash_ = 1;
}

void RTLIL::SigSpec::sort()
{
	unpack();
	cover("kernel.rtlil.sigspec.sort");
	std::sort(bits_.begin(), bits_.end());
}

void RTLIL::SigSpec::sort_and_unify()
{
	unpack();
	cover("kernel.rtlil.sigspec.sort_and_unify");

	// A copy of the bits vector is used to prevent duplicating the logic from
	// SigSpec::SigSpec(std::vector<SigBit>).  This incurrs an extra copy but
	// that isn't showing up as significant in profiles.
	std::vector<SigBit> unique_bits = bits_;
	std::sort(unique_bits.begin(), unique_bits.end());
	auto last = std::unique(unique_bits.begin(), unique_bits.end());
	unique_bits.erase(last, unique_bits.end());

	*this = unique_bits;
}

void RTLIL::SigSpec::replace(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec &with)
{
	replace(pattern, with, this);
}

void RTLIL::SigSpec::replace(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec &with, RTLIL::SigSpec *other) const
{
	log_assert(other != NULL);
	log_assert(width_ == other->width_);
	log_assert(pattern.width_ == with.width_);

	pattern.unpack();
	with.unpack();
	unpack();
	other->unpack();

	for (int i = 0; i < GetSize(pattern.bits_); i++) {
		if (pattern.bits_[i].wire != NULL) {
			for (int j = 0; j < GetSize(bits_); j++) {
				if (bits_[j] == pattern.bits_[i]) {
					other->bits_[j] = with.bits_[i];
				}
			}
		}
	}

	other->check();
}

void RTLIL::SigSpec::replace(const dict<RTLIL::SigBit, RTLIL::SigBit> &rules)
{
	replace(rules, this);
}

void RTLIL::SigSpec::replace(const dict<RTLIL::SigBit, RTLIL::SigBit> &rules, RTLIL::SigSpec *other) const
{
	cover("kernel.rtlil.sigspec.replace_dict");

	log_assert(other != NULL);
	log_assert(width_ == other->width_);

	unpack();
	other->unpack();

	for (int i = 0; i < GetSize(bits_); i++) {
		auto it = rules.find(bits_[i]);
		if (it != rules.end())
			other->bits_[i] = it->second;
	}

	other->check();
}

void RTLIL::SigSpec::replace(const std::map<RTLIL::SigBit, RTLIL::SigBit> &rules)
{
	replace(rules, this);
}

void RTLIL::SigSpec::replace(const std::map<RTLIL::SigBit, RTLIL::SigBit> &rules, RTLIL::SigSpec *other) const
{
	cover("kernel.rtlil.sigspec.replace_map");

	log_assert(other != NULL);
	log_assert(width_ == other->width_);

	unpack();
	other->unpack();

	for (int i = 0; i < GetSize(bits_); i++) {
		auto it = rules.find(bits_[i]);
		if (it != rules.end())
			other->bits_[i] = it->second;
	}

	other->check();
}

void RTLIL::SigSpec::remove(const RTLIL::SigSpec &pattern)
{
	remove2(pattern, NULL);
}

void RTLIL::SigSpec::remove(const RTLIL::SigSpec &pattern, RTLIL::SigSpec *other) const
{
	RTLIL::SigSpec tmp = *this;
	tmp.remove2(pattern, other);
}

void RTLIL::SigSpec::remove2(const RTLIL::SigSpec &pattern, RTLIL::SigSpec *other)
{
	if (other)
		cover("kernel.rtlil.sigspec.remove_other");
	else
		cover("kernel.rtlil.sigspec.remove");

	unpack();
	if (other != NULL) {
		log_assert(width_ == other->width_);
		other->unpack();
	}

	for (int i = GetSize(bits_) - 1; i >= 0; i--)
	{
		if (bits_[i].wire == NULL) continue;

		for (auto &pattern_chunk : pattern.chunks())
			if (bits_[i].wire == pattern_chunk.wire &&
				bits_[i].offset >= pattern_chunk.offset &&
				bits_[i].offset < pattern_chunk.offset + pattern_chunk.width) {
				bits_.erase(bits_.begin() + i);
				width_--;
				if (other != NULL) {
					other->bits_.erase(other->bits_.begin() + i);
					other->width_--;
				}
				break;
			}
	}

	check();
}

void RTLIL::SigSpec::remove(const pool<RTLIL::SigBit> &pattern)
{
	remove2(pattern, NULL);
}

void RTLIL::SigSpec::remove(const pool<RTLIL::SigBit> &pattern, RTLIL::SigSpec *other) const
{
	RTLIL::SigSpec tmp = *this;
	tmp.remove2(pattern, other);
}

void RTLIL::SigSpec::remove2(const pool<RTLIL::SigBit> &pattern, RTLIL::SigSpec *other)
{
	if (other)
		cover("kernel.rtlil.sigspec.remove_other");
	else
		cover("kernel.rtlil.sigspec.remove");

	unpack();

	if (other != NULL) {
		log_assert(width_ == other->width_);
		other->unpack();
	}

	for (int i = GetSize(bits_) - 1; i >= 0; i--) {
		if (bits_[i].wire != NULL && pattern.count(bits_[i])) {
			bits_.erase(bits_.begin() + i);
			width_--;
			if (other != NULL) {
				other->bits_.erase(other->bits_.begin() + i);
				other->width_--;
			}
		}
	}

	check();
}

void RTLIL::SigSpec::remove2(const std::set<RTLIL::SigBit> &pattern, RTLIL::SigSpec *other)
{
	if (other)
		cover("kernel.rtlil.sigspec.remove_other");
	else
		cover("kernel.rtlil.sigspec.remove");

	unpack();

	if (other != NULL) {
		log_assert(width_ == other->width_);
		other->unpack();
	}

	for (int i = GetSize(bits_) - 1; i >= 0; i--) {
		if (bits_[i].wire != NULL && pattern.count(bits_[i])) {
			bits_.erase(bits_.begin() + i);
			width_--;
			if (other != NULL) {
				other->bits_.erase(other->bits_.begin() + i);
				other->width_--;
			}
		}
	}

	check();
}

RTLIL::SigSpec RTLIL::SigSpec::extract(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec *other) const
{
	if (other)
		cover("kernel.rtlil.sigspec.extract_other");
	else
		cover("kernel.rtlil.sigspec.extract");

	log_assert(other == NULL || width_ == other->width_);

	RTLIL::SigSpec ret;
	std::vector<RTLIL::SigBit> bits_match = to_sigbit_vector();

	for (auto& pattern_chunk : pattern.chunks()) {
		if (other) {
			std::vector<RTLIL::SigBit> bits_other = other->to_sigbit_vector();
			for (int i = 0; i < width_; i++)
				if (bits_match[i].wire &&
					bits_match[i].wire == pattern_chunk.wire &&
					bits_match[i].offset >= pattern_chunk.offset &&
					bits_match[i].offset < pattern_chunk.offset + pattern_chunk.width)
					ret.append_bit(bits_other[i]);
		} else {
			for (int i = 0; i < width_; i++)
				if (bits_match[i].wire &&
					bits_match[i].wire == pattern_chunk.wire &&
					bits_match[i].offset >= pattern_chunk.offset &&
					bits_match[i].offset < pattern_chunk.offset + pattern_chunk.width)
					ret.append_bit(bits_match[i]);
		}
	}

	ret.check();
	return ret;
}

RTLIL::SigSpec RTLIL::SigSpec::extract(const pool<RTLIL::SigBit> &pattern, const RTLIL::SigSpec *other) const
{
	if (other)
		cover("kernel.rtlil.sigspec.extract_other");
	else
		cover("kernel.rtlil.sigspec.extract");

	log_assert(other == NULL || width_ == other->width_);

	std::vector<RTLIL::SigBit> bits_match = to_sigbit_vector();
	RTLIL::SigSpec ret;

	if (other) {
		std::vector<RTLIL::SigBit> bits_other = other->to_sigbit_vector();
		for (int i = 0; i < width_; i++)
			if (bits_match[i].wire && pattern.count(bits_match[i]))
				ret.append_bit(bits_other[i]);
	} else {
		for (int i = 0; i < width_; i++)
			if (bits_match[i].wire && pattern.count(bits_match[i]))
				ret.append_bit(bits_match[i]);
	}

	ret.check();
	return ret;
}

void RTLIL::SigSpec::replace(int offset, const RTLIL::SigSpec &with)
{
	cover("kernel.rtlil.sigspec.replace_pos");

	unpack();
	with.unpack();

	log_assert(offset >= 0);
	log_assert(with.width_ >= 0);
	log_assert(offset+with.width_ <= width_);

	for (int i = 0; i < with.width_; i++)
		bits_.at(offset + i) = with.bits_.at(i);

	check();
}

void RTLIL::SigSpec::remove_const()
{
	if (packed())
	{
		cover("kernel.rtlil.sigspec.remove_const.packed");

		std::vector<RTLIL::SigChunk> new_chunks;
		new_chunks.reserve(GetSize(chunks_));

		width_ = 0;
		for (auto &chunk : chunks_)
			if (chunk.wire != NULL) {
				new_chunks.push_back(chunk);
				width_ += chunk.width;
			}

		chunks_.swap(new_chunks);
	}
	else
	{
		cover("kernel.rtlil.sigspec.remove_const.unpacked");

		std::vector<RTLIL::SigBit> new_bits;
		new_bits.reserve(width_);

		for (auto &bit : bits_)
			if (bit.wire != NULL)
				new_bits.push_back(bit);

		bits_.swap(new_bits);
		width_ = bits_.size();
	}

	check();
}

void RTLIL::SigSpec::remove(int offset, int length)
{
	cover("kernel.rtlil.sigspec.remove_pos");

	unpack();

	log_assert(offset >= 0);
	log_assert(length >= 0);
	log_assert(offset + length <= width_);

	bits_.erase(bits_.begin() + offset, bits_.begin() + offset + length);
	width_ = bits_.size();

	check();
}

RTLIL::SigSpec RTLIL::SigSpec::extract(int offset, int length) const
{
	unpack();
	cover("kernel.rtlil.sigspec.extract_pos");
	return std::vector<RTLIL::SigBit>(bits_.begin() + offset, bits_.begin() + offset + length);
}

void RTLIL::SigSpec::append(const RTLIL::SigSpec &signal)
{
	if (signal.width_ == 0)
		return;

	if (width_ == 0) {
		*this = signal;
		return;
	}

	cover("kernel.rtlil.sigspec.append");

	if (packed() != signal.packed()) {
		pack();
		signal.pack();
	}

	if (packed())
		for (auto &other_c : signal.chunks_)
		{
			auto &my_last_c = chunks_.back();
			if (my_last_c.wire == NULL && other_c.wire == NULL) {
				auto &this_data = my_last_c.data;
				auto &other_data = other_c.data;
				this_data.insert(this_data.end(), other_data.begin(), other_data.end());
				my_last_c.width += other_c.width;
			} else
			if (my_last_c.wire == other_c.wire && my_last_c.offset + my_last_c.width == other_c.offset) {
				my_last_c.width += other_c.width;
			} else
				chunks_.push_back(other_c);
		}
	else
		bits_.insert(bits_.end(), signal.bits_.begin(), signal.bits_.end());

	width_ += signal.width_;
	check();
}

void RTLIL::SigSpec::append_bit(const RTLIL::SigBit &bit)
{
	if (packed())
	{
		cover("kernel.rtlil.sigspec.append_bit.packed");

		if (chunks_.size() == 0)
			chunks_.push_back(bit);
		else
			if (bit.wire == NULL)
				if (chunks_.back().wire == NULL) {
					chunks_.back().data.push_back(bit.data);
					chunks_.back().width++;
				} else
					chunks_.push_back(bit);
			else
				if (chunks_.back().wire == bit.wire && chunks_.back().offset + chunks_.back().width == bit.offset)
					chunks_.back().width++;
				else
					chunks_.push_back(bit);
	}
	else
	{
		cover("kernel.rtlil.sigspec.append_bit.unpacked");
		bits_.push_back(bit);
	}

	width_++;
	check();
}

void RTLIL::SigSpec::extend_u0(int width, bool is_signed)
{
	cover("kernel.rtlil.sigspec.extend_u0");

	pack();

	if (width_ > width)
		remove(width, width_ - width);

	if (width_ < width) {
		RTLIL::SigBit padding = width_ > 0 ? (*this)[width_ - 1] : RTLIL::State::Sx;
		if (!is_signed)
			padding = RTLIL::State::S0;
		while (width_ < width)
			append(padding);
	}

}

RTLIL::SigSpec RTLIL::SigSpec::repeat(int num) const
{
	cover("kernel.rtlil.sigspec.repeat");

	RTLIL::SigSpec sig;
	for (int i = 0; i < num; i++)
		sig.append(*this);
	return sig;
}

#ifndef NDEBUG
void RTLIL::SigSpec::check() const
{
	if (width_ > 64)
	{
		cover("kernel.rtlil.sigspec.check.skip");
	}
	else if (packed())
	{
		cover("kernel.rtlil.sigspec.check.packed");

		int w = 0;
		for (size_t i = 0; i < chunks_.size(); i++) {
			const RTLIL::SigChunk chunk = chunks_[i];
			if (chunk.wire == NULL) {
				if (i > 0)
					log_assert(chunks_[i-1].wire != NULL);
				log_assert(chunk.offset == 0);
				log_assert(chunk.data.size() == (size_t)chunk.width);
			} else {
				if (i > 0 && chunks_[i-1].wire == chunk.wire)
					log_assert(chunk.offset != chunks_[i-1].offset + chunks_[i-1].width);
				log_assert(chunk.offset >= 0);
				log_assert(chunk.width >= 0);
				log_assert(chunk.offset + chunk.width <= chunk.wire->width);
				log_assert(chunk.data.size() == 0);
			}
			w += chunk.width;
		}
		log_assert(w == width_);
		log_assert(bits_.empty());
	}
	else
	{
		cover("kernel.rtlil.sigspec.check.unpacked");

		log_assert(width_ == GetSize(bits_));
		log_assert(chunks_.empty());
	}
}
#endif

bool RTLIL::SigSpec::operator <(const RTLIL::SigSpec &other) const
{
	cover("kernel.rtlil.sigspec.comp_lt");

	if (this == &other)
		return false;

	if (width_ != other.width_)
		return width_ < other.width_;

	pack();
	other.pack();

	if (chunks_.size() != other.chunks_.size())
		return chunks_.size() < other.chunks_.size();

	updhash();
	other.updhash();

	if (hash_ != other.hash_)
		return hash_ < other.hash_;

	for (size_t i = 0; i < chunks_.size(); i++)
		if (chunks_[i] != other.chunks_[i]) {
			cover("kernel.rtlil.sigspec.comp_lt.hash_collision");
			return chunks_[i] < other.chunks_[i];
		}

	cover("kernel.rtlil.sigspec.comp_lt.equal");
	return false;
}

bool RTLIL::SigSpec::operator ==(const RTLIL::SigSpec &other) const
{
	cover("kernel.rtlil.sigspec.comp_eq");

	if (this == &other)
		return true;

	if (width_ != other.width_)
		return false;

	pack();
	other.pack();

	if (chunks_.size() != other.chunks_.size())
		return false;

	updhash();
	other.updhash();

	if (hash_ != other.hash_)
		return false;

	for (size_t i = 0; i < chunks_.size(); i++)
		if (chunks_[i] != other.chunks_[i]) {
			cover("kernel.rtlil.sigspec.comp_eq.hash_collision");
			return false;
		}

	cover("kernel.rtlil.sigspec.comp_eq.equal");
	return true;
}

bool RTLIL::SigSpec::is_wire() const
{
	cover("kernel.rtlil.sigspec.is_wire");

	pack();
	return GetSize(chunks_) == 1 && chunks_[0].wire && chunks_[0].wire->width == width_;
}

bool RTLIL::SigSpec::is_chunk() const
{
	cover("kernel.rtlil.sigspec.is_chunk");

	pack();
	return GetSize(chunks_) == 1;
}

bool RTLIL::SigSpec::is_fully_const() const
{
	cover("kernel.rtlil.sigspec.is_fully_const");

	pack();
	for (auto it = chunks_.begin(); it != chunks_.end(); it++)
		if (it->width > 0 && it->wire != NULL)
			return false;
	return true;
}

bool RTLIL::SigSpec::is_fully_zero() const
{
	cover("kernel.rtlil.sigspec.is_fully_zero");

	pack();
	for (auto it = chunks_.begin(); it != chunks_.end(); it++) {
		if (it->width > 0 && it->wire != NULL)
			return false;
		for (size_t i = 0; i < it->data.size(); i++)
			if (it->data[i] != RTLIL::State::S0)
				return false;
	}
	return true;
}

bool RTLIL::SigSpec::is_fully_ones() const
{
	cover("kernel.rtlil.sigspec.is_fully_ones");

	pack();
	for (auto it = chunks_.begin(); it != chunks_.end(); it++) {
		if (it->width > 0 && it->wire != NULL)
			return false;
		for (size_t i = 0; i < it->data.size(); i++)
			if (it->data[i] != RTLIL::State::S1)
				return false;
	}
	return true;
}

bool RTLIL::SigSpec::is_fully_def() const
{
	cover("kernel.rtlil.sigspec.is_fully_def");

	pack();
	for (auto it = chunks_.begin(); it != chunks_.end(); it++) {
		if (it->width > 0 && it->wire != NULL)
			return false;
		for (size_t i = 0; i < it->data.size(); i++)
			if (it->data[i] != RTLIL::State::S0 && it->data[i] != RTLIL::State::S1)
				return false;
	}
	return true;
}

bool RTLIL::SigSpec::is_fully_undef() const
{
	cover("kernel.rtlil.sigspec.is_fully_undef");

	pack();
	for (auto it = chunks_.begin(); it != chunks_.end(); it++) {
		if (it->width > 0 && it->wire != NULL)
			return false;
		for (size_t i = 0; i < it->data.size(); i++)
			if (it->data[i] != RTLIL::State::Sx && it->data[i] != RTLIL::State::Sz)
				return false;
	}
	return true;
}

bool RTLIL::SigSpec::has_const() const
{
	cover("kernel.rtlil.sigspec.has_const");

	pack();
	for (auto it = chunks_.begin(); it != chunks_.end(); it++)
		if (it->width > 0 && it->wire == NULL)
			return true;
	return false;
}

bool RTLIL::SigSpec::has_marked_bits() const
{
	cover("kernel.rtlil.sigspec.has_marked_bits");

	pack();
	for (auto it = chunks_.begin(); it != chunks_.end(); it++)
		if (it->width > 0 && it->wire == NULL) {
			for (size_t i = 0; i < it->data.size(); i++)
				if (it->data[i] == RTLIL::State::Sm)
					return true;
		}
	return false;
}

bool RTLIL::SigSpec::as_bool() const
{
	cover("kernel.rtlil.sigspec.as_bool");

	pack();
	log_assert(is_fully_const() && GetSize(chunks_) <= 1);
	if (width_)
		return RTLIL::Const(chunks_[0].data).as_bool();
	return false;
}

int RTLIL::SigSpec::as_int(bool is_signed) const
{
	cover("kernel.rtlil.sigspec.as_int");

	pack();
	log_assert(is_fully_const() && GetSize(chunks_) <= 1);
	if (width_)
		return RTLIL::Const(chunks_[0].data).as_int(is_signed);
	return 0;
}

std::string RTLIL::SigSpec::as_string() const
{
	cover("kernel.rtlil.sigspec.as_string");

	pack();
	std::string str;
	for (size_t i = chunks_.size(); i > 0; i--) {
		const RTLIL::SigChunk &chunk = chunks_[i-1];
		if (chunk.wire != NULL)
			for (int j = 0; j < chunk.width; j++)
				str += "?";
		else
			str += RTLIL::Const(chunk.data).as_string();
	}
	return str;
}

RTLIL::Const RTLIL::SigSpec::as_const() const
{
	cover("kernel.rtlil.sigspec.as_const");

	pack();
	log_assert(is_fully_const() && GetSize(chunks_) <= 1);
	if (width_)
		return chunks_[0].data;
	return RTLIL::Const();
}

RTLIL::Wire *RTLIL::SigSpec::as_wire() const
{
	cover("kernel.rtlil.sigspec.as_wire");

	pack();
	log_assert(is_wire());
	return chunks_[0].wire;
}

RTLIL::SigChunk RTLIL::SigSpec::as_chunk() const
{
	cover("kernel.rtlil.sigspec.as_chunk");

	pack();
	log_assert(is_chunk());
	return chunks_[0];
}

RTLIL::SigBit RTLIL::SigSpec::as_bit() const
{
	cover("kernel.rtlil.sigspec.as_bit");

	log_assert(width_ == 1);
	if (packed())
		return RTLIL::SigBit(*chunks_.begin());
	else
		return bits_[0];
}

bool RTLIL::SigSpec::match(std::string pattern) const
{
	cover("kernel.rtlil.sigspec.match");

	pack();
	std::string str = as_string();
	log_assert(pattern.size() == str.size());

	for (size_t i = 0; i < pattern.size(); i++) {
		if (pattern[i] == ' ')
			continue;
		if (pattern[i] == '*') {
			if (str[i] != 'z' && str[i] != 'x')
				return false;
			continue;
		}
		if (pattern[i] != str[i])
			return false;
	}

	return true;
}

std::set<RTLIL::SigBit> RTLIL::SigSpec::to_sigbit_set() const
{
	cover("kernel.rtlil.sigspec.to_sigbit_set");

	pack();
	std::set<RTLIL::SigBit> sigbits;
	for (auto &c : chunks_)
		for (int i = 0; i < c.width; i++)
			sigbits.insert(RTLIL::SigBit(c, i));
	return sigbits;
}

pool<RTLIL::SigBit> RTLIL::SigSpec::to_sigbit_pool() const
{
	cover("kernel.rtlil.sigspec.to_sigbit_pool");

	pack();
	pool<RTLIL::SigBit> sigbits;
	for (auto &c : chunks_)
		for (int i = 0; i < c.width; i++)
			sigbits.insert(RTLIL::SigBit(c, i));
	return sigbits;
}

std::vector<RTLIL::SigBit> RTLIL::SigSpec::to_sigbit_vector() const
{
	cover("kernel.rtlil.sigspec.to_sigbit_vector");

	unpack();
	return bits_;
}

std::map<RTLIL::SigBit, RTLIL::SigBit> RTLIL::SigSpec::to_sigbit_map(const RTLIL::SigSpec &other) const
{
	cover("kernel.rtlil.sigspec.to_sigbit_map");

	unpack();
	other.unpack();

	log_assert(width_ == other.width_);

	std::map<RTLIL::SigBit, RTLIL::SigBit> new_map;
	for (int i = 0; i < width_; i++)
		new_map[bits_[i]] = other.bits_[i];

	return new_map;
}

dict<RTLIL::SigBit, RTLIL::SigBit> RTLIL::SigSpec::to_sigbit_dict(const RTLIL::SigSpec &other) const
{
	cover("kernel.rtlil.sigspec.to_sigbit_dict");

	unpack();
	other.unpack();

	log_assert(width_ == other.width_);

	dict<RTLIL::SigBit, RTLIL::SigBit> new_map;
	for (int i = 0; i < width_; i++)
		new_map[bits_[i]] = other.bits_[i];

	return new_map;
}

static void sigspec_parse_split(std::vector<std::string> &tokens, const std::string &text, char sep)
{
	size_t start = 0, end = 0;
	while ((end = text.find(sep, start)) != std::string::npos) {
		tokens.push_back(text.substr(start, end - start));
		start = end + 1;
	}
	tokens.push_back(text.substr(start));
}

static int sigspec_parse_get_dummy_line_num()
{
	return 0;
}

bool RTLIL::SigSpec::parse(RTLIL::SigSpec &sig, RTLIL::Module *module, std::string str)
{
	cover("kernel.rtlil.sigspec.parse");

	AST::current_filename = "input";
	AST::use_internal_line_num();
	AST::set_line_num(0);

	std::vector<std::string> tokens;
	sigspec_parse_split(tokens, str, ',');

	sig = RTLIL::SigSpec();
	for (int tokidx = int(tokens.size())-1; tokidx >= 0; tokidx--)
	{
		std::string netname = tokens[tokidx];
		std::string indices;

		if (netname.size() == 0)
			continue;

		if (('0' <= netname[0] && netname[0] <= '9') || netname[0] == '\'') {
			cover("kernel.rtlil.sigspec.parse.const");
			AST::get_line_num = sigspec_parse_get_dummy_line_num;
			AST::AstNode *ast = VERILOG_FRONTEND::const2ast(netname);
			if (ast == NULL)
				return false;
			sig.append(RTLIL::Const(ast->bits));
			delete ast;
			continue;
		}

		if (module == NULL)
			return false;

		cover("kernel.rtlil.sigspec.parse.net");

		if (netname[0] != '$' && netname[0] != '\\')
			netname = "\\" + netname;

		if (module->wires_.count(netname) == 0) {
			size_t indices_pos = netname.size()-1;
			if (indices_pos > 2 && netname[indices_pos] == ']')
			{
				indices_pos--;
				while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--;
				if (indices_pos > 0 && netname[indices_pos] == ':') {
					indices_pos--;
					while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--;
				}
				if (indices_pos > 0 && netname[indices_pos] == '[') {
					indices = netname.substr(indices_pos);
					netname = netname.substr(0, indices_pos);
				}
			}
		}

		if (module->wires_.count(netname) == 0)
			return false;

		RTLIL::Wire *wire = module->wires_.at(netname);
		if (!indices.empty()) {
			std::vector<std::string> index_tokens;
			sigspec_parse_split(index_tokens, indices.substr(1, indices.size()-2), ':');
			if (index_tokens.size() == 1) {
				cover("kernel.rtlil.sigspec.parse.bit_sel");
				int a = atoi(index_tokens.at(0).c_str());
				if (a < 0 || a >= wire->width)
					return false;
				sig.append(RTLIL::SigSpec(wire, a));
			} else {
				cover("kernel.rtlil.sigspec.parse.part_sel");
				int a = atoi(index_tokens.at(0).c_str());
				int b = atoi(index_tokens.at(1).c_str());
				if (a > b) {
					int tmp = a;
					a = b, b = tmp;
				}
				if (a < 0 || a >= wire->width)
					return false;
				if (b < 0 || b >= wire->width)
					return false;
				sig.append(RTLIL::SigSpec(wire, a, b-a+1));
			}
		} else
			sig.append(wire);
	}

	return true;
}

bool RTLIL::SigSpec::parse_sel(RTLIL::SigSpec &sig, RTLIL::Design *design, RTLIL::Module *module, std::string str)
{
	if (str.empty() || str[0] != '@')
		return parse(sig, module, str);

	cover("kernel.rtlil.sigspec.parse.sel");

	str = RTLIL::escape_id(str.substr(1));
	if (design->selection_vars.count(str) == 0)
		return false;

	sig = RTLIL::SigSpec();
	RTLIL::Selection &sel = design->selection_vars.at(str);
	for (auto &it : module->wires_)
		if (sel.selected_member(module->name, it.first))
			sig.append(it.second);

	return true;
}

bool RTLIL::SigSpec::parse_rhs(const RTLIL::SigSpec &lhs, RTLIL::SigSpec &sig, RTLIL::Module *module, std::string str)
{
	if (str == "0") {
		cover("kernel.rtlil.sigspec.parse.rhs_zeros");
		sig = RTLIL::SigSpec(RTLIL::State::S0, lhs.width_);
		return true;
	}

	if (str == "~0") {
		cover("kernel.rtlil.sigspec.parse.rhs_ones");
		sig = RTLIL::SigSpec(RTLIL::State::S1, lhs.width_);
		return true;
	}

	if (lhs.chunks_.size() == 1) {
		char *p = (char*)str.c_str(), *endptr;
		long int val = strtol(p, &endptr, 10);
		if (endptr && endptr != p && *endptr == 0) {
			sig = RTLIL::SigSpec(val, lhs.width_);
			cover("kernel.rtlil.sigspec.parse.rhs_dec");
			return true;
		}
	}

	return parse(sig, module, str);
}

RTLIL::CaseRule::~CaseRule()
{
	for (auto it = switches.begin(); it != switches.end(); it++)
		delete *it;
}

bool RTLIL::CaseRule::empty() const
{
	return actions.empty() && switches.empty();
}

RTLIL::CaseRule *RTLIL::CaseRule::clone() const
{
	RTLIL::CaseRule *new_caserule = new RTLIL::CaseRule;
	new_caserule->compare = compare;
	new_caserule->actions = actions;
	for (auto &it : switches)
		new_caserule->switches.push_back(it->clone());
	return new_caserule;
}

RTLIL::SwitchRule::~SwitchRule()
{
	for (auto it = cases.begin(); it != cases.end(); it++)
		delete *it;
}

bool RTLIL::SwitchRule::empty() const
{
	return cases.empty();
}

RTLIL::SwitchRule *RTLIL::SwitchRule::clone() const
{
	RTLIL::SwitchRule *new_switchrule = new RTLIL::SwitchRule;
	new_switchrule->signal = signal;
	new_switchrule->attributes = attributes;
	for (auto &it : cases)
		new_switchrule->cases.push_back(it->clone());
	return new_switchrule;

}

RTLIL::SyncRule *RTLIL::SyncRule::clone() const
{
	RTLIL::SyncRule *new_syncrule = new RTLIL::SyncRule;
	new_syncrule->type = type;
	new_syncrule->signal = signal;
	new_syncrule->actions = actions;
	return new_syncrule;
}

RTLIL::Process::~Process()
{
	for (auto it = syncs.begin(); it != syncs.end(); it++)
		delete *it;
}

RTLIL::Process *RTLIL::Process::clone() const
{
	RTLIL::Process *new_proc = new RTLIL::Process;

	new_proc->name = name;
	new_proc->attributes = attributes;

	RTLIL::CaseRule *rc_ptr = root_case.clone();
	new_proc->root_case = *rc_ptr;
	rc_ptr->switches.clear();
	delete rc_ptr;

	for (auto &it : syncs)
		new_proc->syncs.push_back(it->clone());

	return new_proc;
}

#ifdef WITH_PYTHON
RTLIL::Memory::~Memory()
{
	RTLIL::Memory::get_all_memorys()->erase(hashidx_);
}
static std::map<unsigned int, RTLIL::Memory*> all_memorys;
std::map<unsigned int, RTLIL::Memory*> *RTLIL::Memory::get_all_memorys(void)
{
	return &all_memorys;
}
#endif
YOSYS_NAMESPACE_END