1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
-- GHDL Run Time (GRT) - binary balanced tree.
-- Copyright (C) 2002 - 2014 Tristan Gingold
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program. If not, see <gnu.org/licenses>.
--
-- As a special exception, if other files instantiate generics from this
-- unit, or you link this unit with other files to produce an executable,
-- this unit does not by itself cause the resulting executable to be
-- covered by the GNU General Public License. This exception does not
-- however invalidate any other reasons why the executable file might be
-- covered by the GNU Public License.
with Grt.Errors; use Grt.Errors;
package body Grt.Avls is
function Get_Height (Tree: AVL_Tree; N : AVL_Nid) return Ghdl_I32 is
begin
if N = AVL_Nil then
return 0;
else
return Tree (N).Height;
end if;
end Get_Height;
pragma Inline (Get_Height);
procedure Check_AVL (Tree : AVL_Tree; N : AVL_Nid)
is
L, R : AVL_Nid;
Lh, Rh : Ghdl_I32;
H : Ghdl_I32;
begin
if N = AVL_Nil then
return;
end if;
L := Tree (N).Left;
R := Tree (N).Right;
H := Tree (N).Height;
if L = AVL_Nil and R = AVL_Nil then
if H /= 1 then
Internal_Error ("check_AVL(1)");
end if;
elsif L = AVL_Nil then
Check_AVL (Tree, R);
if H /= Get_Height (Tree, R) + 1 or H > 2 then
Internal_Error ("check_AVL(2)");
end if;
elsif R = AVL_Nil then
Check_AVL (Tree, L);
if H /= Get_Height (Tree, L) + 1 or H > 2 then
Internal_Error ("check_AVL(3)");
end if;
else
Check_AVL (Tree, L);
Check_AVL (Tree, R);
Lh := Get_Height (Tree, L);
Rh := Get_Height (Tree, R);
if Ghdl_I32'Max (Lh, Rh) + 1 /= H then
Internal_Error ("check_AVL(4)");
end if;
if Rh - Lh > 1 or Rh - Lh < -1 then
Internal_Error ("check_AVL(5)");
end if;
end if;
end Check_AVL;
procedure Compute_Height (Tree : in out AVL_Tree; N : AVL_Nid)
is
begin
Tree (N).Height :=
Ghdl_I32'Max (Get_Height (Tree, Tree (N).Left),
Get_Height (Tree, Tree (N).Right)) + 1;
end Compute_Height;
procedure Simple_Rotate_Right (Tree : in out AVL_Tree; N : AVL_Nid)
is
R : AVL_Nid;
V : AVL_Value;
begin
-- Rotate nodes.
R := Tree (N).Right;
Tree (N).Right := Tree (R).Right;
Tree (R).Right := Tree (R).Left;
Tree (R).Left := Tree (N).Left;
Tree (N).Left := R;
-- Swap vals.
V := Tree (N).Val;
Tree (N).Val := Tree (R).Val;
Tree (R).Val := V;
-- Adjust bal.
Compute_Height (Tree, R);
Compute_Height (Tree, N);
end Simple_Rotate_Right;
procedure Simple_Rotate_Left (Tree : in out AVL_Tree; N : AVL_Nid)
is
L : AVL_Nid;
V : AVL_Value;
begin
L := Tree (N).Left;
Tree (N).Left := Tree (L).Left;
Tree (L).Left := Tree (L).Right;
Tree (L).Right := Tree (N).Right;
Tree (N).Right := L;
V := Tree (N).Val;
Tree (N).Val := Tree (L).Val;
Tree (L).Val := V;
Compute_Height (Tree, L);
Compute_Height (Tree, N);
end Simple_Rotate_Left;
procedure Double_Rotate_Right (Tree : in out AVL_Tree; N : AVL_Nid)
is
R : AVL_Nid;
begin
R := Tree (N).Right;
Simple_Rotate_Left (Tree, R);
Simple_Rotate_Right (Tree, N);
end Double_Rotate_Right;
procedure Double_Rotate_Left (Tree : in out AVL_Tree; N : AVL_Nid)
is
L : AVL_Nid;
begin
L := Tree (N).Left;
Simple_Rotate_Right (Tree, L);
Simple_Rotate_Left (Tree, N);
end Double_Rotate_Left;
procedure Insert (Tree : in out AVL_Tree;
Cmp : AVL_Compare_Func;
Val : AVL_Nid;
N : AVL_Nid;
Res : out AVL_Nid)
is
Diff : Integer;
Op_Ch, Ch : AVL_Nid;
begin
Diff := Cmp.all (Tree (Val).Val, Tree (N).Val);
if Diff = 0 then
Res := N;
return;
end if;
if Diff < 0 then
if Tree (N).Left = AVL_Nil then
Tree (N).Left := Val;
Compute_Height (Tree, N);
-- N is balanced.
Res := Val;
else
Ch := Tree (N).Left;
Op_Ch := Tree (N).Right;
Insert (Tree, Cmp, Val, Ch, Res);
if Res /= Val then
return;
end if;
if Get_Height (Tree, Ch) - Get_Height (Tree, Op_Ch) = 2 then
-- Rotate
if Get_Height (Tree, Tree (Ch).Left)
> Get_Height (Tree, Tree (Ch).Right)
then
Simple_Rotate_Left (Tree, N);
else
Double_Rotate_Left (Tree, N);
end if;
else
Compute_Height (Tree, N);
end if;
end if;
else
if Tree (N).Right = AVL_Nil then
Tree (N).Right := Val;
Compute_Height (Tree, N);
-- N is balanced.
Res := Val;
else
Ch := Tree (N).Right;
Op_Ch := Tree (N).Left;
Insert (Tree, Cmp, Val, Ch, Res);
if Res /= Val then
return;
end if;
if Get_Height (Tree, Ch) - Get_Height (Tree, Op_Ch) = 2 then
-- Rotate
if Get_Height (Tree, Tree (Ch).Right)
> Get_Height (Tree, Tree (Ch).Left)
then
Simple_Rotate_Right (Tree, N);
else
Double_Rotate_Right (Tree, N);
end if;
else
Compute_Height (Tree, N);
end if;
end if;
end if;
end Insert;
procedure Get_Node (Tree : in out AVL_Tree;
Cmp : AVL_Compare_Func;
N : AVL_Nid;
Res : out AVL_Nid)
is
begin
if Tree'First /= AVL_Root or N /= Tree'Last then
Internal_Error ("avls.get_node");
end if;
Insert (Tree, Cmp, N, AVL_Root, Res);
pragma Debug (Check_AVL (Tree, AVL_Root));
end Get_Node;
function Find_Node (Tree : AVL_Tree;
Cmp : AVL_Compare_Func;
Val : AVL_Value) return AVL_Nid
is
N : AVL_Nid;
Diff : Integer;
begin
N := AVL_Root;
if Tree'Last < AVL_Root then
return AVL_Nil;
end if;
loop
Diff := Cmp.all (Val, Tree (N).Val);
if Diff = 0 then
return N;
end if;
if Diff < 0 then
N := Tree (N).Left;
else
N := Tree (N).Right;
end if;
if N = AVL_Nil then
return AVL_Nil;
end if;
end loop;
end Find_Node;
end Grt.Avls;
|