1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
|
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2008 Stefan Wildemann <stefan.wildemann@kontron.com>
* Copyright (C) 2008 Claus Gindhart <claus.gindhart@kontron.com>
* Copyright (C) 2008 Dominik Geyer <dominik.geyer@kontron.com>
* Copyright (C) 2008 coresystems GmbH <info@coresystems.de>
* Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
* Copyright (C) 2011 Stefan Tauner
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <string.h>
#include <stdlib.h>
#include "flash.h"
#include "programmer.h"
#include "hwaccess_physmap.h"
#include "spi.h"
#include "ich_descriptors.h"
/* Apollo Lake */
#define APL_REG_FREG12 0xe0 /* 32 Bytes Flash Region 12 */
/* Sunrise Point */
/* Added HSFS Status bits */
#define HSFS_WRSDIS_OFF 11 /* 11: Flash Configuration Lock-Down */
#define HSFS_WRSDIS (0x1 << HSFS_WRSDIS_OFF)
#define HSFS_PRR34_LOCKDN_OFF 12 /* 12: PRR3 PRR4 Lock-Down */
#define HSFS_PRR34_LOCKDN (0x1 << HSFS_PRR34_LOCKDN_OFF)
/* HSFS_BERASE vanished */
/*
* HSFC and HSFS 16-bit registers are combined into the 32-bit
* BIOS_HSFSTS_CTL register in the Sunrise Point datasheet,
* however we still treat them separately in order to reuse code.
*/
/* Changed HSFC Control bits */
#define PCH100_HSFC_FCYCLE_OFF (17 - 16) /* 1-4: FLASH Cycle */
#define PCH100_HSFC_FCYCLE (0xf << PCH100_HSFC_FCYCLE_OFF)
/* New HSFC Control bit */
#define HSFC_WET_OFF (21 - 16) /* 5: Write Enable Type */
#define HSFC_WET (0x1 << HSFC_WET_OFF)
#define PCH100_FADDR_FLA 0x07ffffff
#define PCH100_REG_DLOCK 0x0c /* 32 Bits Discrete Lock Bits */
#define DLOCK_BMWAG_LOCKDN_OFF 0
#define DLOCK_BMWAG_LOCKDN (0x1 << DLOCK_BMWAG_LOCKDN_OFF)
#define DLOCK_BMRAG_LOCKDN_OFF 1
#define DLOCK_BMRAG_LOCKDN (0x1 << DLOCK_BMRAG_LOCKDN_OFF)
#define DLOCK_SBMWAG_LOCKDN_OFF 2
#define DLOCK_SBMWAG_LOCKDN (0x1 << DLOCK_SBMWAG_LOCKDN_OFF)
#define DLOCK_SBMRAG_LOCKDN_OFF 3
#define DLOCK_SBMRAG_LOCKDN (0x1 << DLOCK_SBMRAG_LOCKDN_OFF)
#define DLOCK_PR0_LOCKDN_OFF 8
#define DLOCK_PR0_LOCKDN (0x1 << DLOCK_PR0_LOCKDN_OFF)
#define DLOCK_PR1_LOCKDN_OFF 9
#define DLOCK_PR1_LOCKDN (0x1 << DLOCK_PR1_LOCKDN_OFF)
#define DLOCK_PR2_LOCKDN_OFF 10
#define DLOCK_PR2_LOCKDN (0x1 << DLOCK_PR2_LOCKDN_OFF)
#define DLOCK_PR3_LOCKDN_OFF 11
#define DLOCK_PR3_LOCKDN (0x1 << DLOCK_PR3_LOCKDN_OFF)
#define DLOCK_PR4_LOCKDN_OFF 12
#define DLOCK_PR4_LOCKDN (0x1 << DLOCK_PR4_LOCKDN_OFF)
#define DLOCK_SSEQ_LOCKDN_OFF 16
#define DLOCK_SSEQ_LOCKDN (0x1 << DLOCK_SSEQ_LOCKDN_OFF)
#define PCH100_REG_FPR0 0x84 /* 32 Bits Protected Range 0 */
#define PCH100_REG_GPR0 0x98 /* 32 Bits Global Protected Range 0 */
#define PCH100_REG_SSFSC 0xA0 /* 32 Bits Status (8) + Control (24) */
#define PCH100_REG_PREOP 0xA4 /* 16 Bits */
#define PCH100_REG_OPTYPE 0xA6 /* 16 Bits */
#define PCH100_REG_OPMENU 0xA8 /* 64 Bits */
/* ICH9 controller register definition */
#define ICH9_REG_HSFS 0x04 /* 16 Bits Hardware Sequencing Flash Status */
#define HSFS_FDONE_OFF 0 /* 0: Flash Cycle Done */
#define HSFS_FDONE (0x1 << HSFS_FDONE_OFF)
#define HSFS_FCERR_OFF 1 /* 1: Flash Cycle Error */
#define HSFS_FCERR (0x1 << HSFS_FCERR_OFF)
#define HSFS_AEL_OFF 2 /* 2: Access Error Log */
#define HSFS_AEL (0x1 << HSFS_AEL_OFF)
#define HSFS_BERASE_OFF 3 /* 3-4: Block/Sector Erase Size */
#define HSFS_BERASE (0x3 << HSFS_BERASE_OFF)
#define HSFS_SCIP_OFF 5 /* 5: SPI Cycle In Progress */
#define HSFS_SCIP (0x1 << HSFS_SCIP_OFF)
/* 6-12: reserved */
#define HSFS_FDOPSS_OFF 13 /* 13: Flash Descriptor Override Pin-Strap Status */
#define HSFS_FDOPSS (0x1 << HSFS_FDOPSS_OFF)
#define HSFS_FDV_OFF 14 /* 14: Flash Descriptor Valid */
#define HSFS_FDV (0x1 << HSFS_FDV_OFF)
#define HSFS_FLOCKDN_OFF 15 /* 15: Flash Configuration Lock-Down */
#define HSFS_FLOCKDN (0x1 << HSFS_FLOCKDN_OFF)
#define ICH9_REG_HSFC 0x06 /* 16 Bits Hardware Sequencing Flash Control */
#define HSFC_FGO_OFF 0 /* 0: Flash Cycle Go */
#define HSFC_FGO (0x1 << HSFC_FGO_OFF)
#define HSFC_FCYCLE_OFF 1 /* 1-2: FLASH Cycle */
#define HSFC_FCYCLE (0x3 << HSFC_FCYCLE_OFF)
/* 3-7: reserved */
#define HSFC_FDBC_OFF 8 /* 8-13: Flash Data Byte Count */
#define HSFC_FDBC (0x3f << HSFC_FDBC_OFF)
/* 14: reserved */
#define HSFC_SME_OFF 15 /* 15: SPI SMI# Enable */
#define HSFC_SME (0x1 << HSFC_SME_OFF)
#define ICH9_REG_FADDR 0x08 /* 32 Bits */
#define ICH9_FADDR_FLA 0x01ffffff
#define ICH9_REG_FDATA0 0x10 /* 64 Bytes */
#define ICH9_REG_FRAP 0x50 /* 32 Bytes Flash Region Access Permissions */
#define ICH9_REG_FREG0 0x54 /* 32 Bytes Flash Region 0 */
#define ICH9_REG_PR0 0x74 /* 32 Bytes Protected Range 0 */
#define PR_WP_OFF 31 /* 31: write protection enable */
#define PR_RP_OFF 15 /* 15: read protection enable */
#define ICH9_REG_SSFS 0x90 /* 08 Bits */
#define SSFS_SCIP_OFF 0 /* SPI Cycle In Progress */
#define SSFS_SCIP (0x1 << SSFS_SCIP_OFF)
#define SSFS_FDONE_OFF 2 /* Cycle Done Status */
#define SSFS_FDONE (0x1 << SSFS_FDONE_OFF)
#define SSFS_FCERR_OFF 3 /* Flash Cycle Error */
#define SSFS_FCERR (0x1 << SSFS_FCERR_OFF)
#define SSFS_AEL_OFF 4 /* Access Error Log */
#define SSFS_AEL (0x1 << SSFS_AEL_OFF)
/* The following bits are reserved in SSFS: 1,5-7. */
#define SSFS_RESERVED_MASK 0x000000e2
#define ICH9_REG_SSFC 0x91 /* 24 Bits */
/* We combine SSFS and SSFC to one 32-bit word,
* therefore SSFC bits are off by 8. */
/* 0: reserved */
#define SSFC_SCGO_OFF (1 + 8) /* 1: SPI Cycle Go */
#define SSFC_SCGO (0x1 << SSFC_SCGO_OFF)
#define SSFC_ACS_OFF (2 + 8) /* 2: Atomic Cycle Sequence */
#define SSFC_ACS (0x1 << SSFC_ACS_OFF)
#define SSFC_SPOP_OFF (3 + 8) /* 3: Sequence Prefix Opcode Pointer */
#define SSFC_SPOP (0x1 << SSFC_SPOP_OFF)
#define SSFC_COP_OFF (4 + 8) /* 4-6: Cycle Opcode Pointer */
#define SSFC_COP (0x7 << SSFC_COP_OFF)
/* 7: reserved */
#define SSFC_DBC_OFF (8 + 8) /* 8-13: Data Byte Count */
#define SSFC_DBC (0x3f << SSFC_DBC_OFF)
#define SSFC_DS_OFF (14 + 8) /* 14: Data Cycle */
#define SSFC_DS (0x1 << SSFC_DS_OFF)
#define SSFC_SME_OFF (15 + 8) /* 15: SPI SMI# Enable */
#define SSFC_SME (0x1 << SSFC_SME_OFF)
#define SSFC_SCF_OFF (16 + 8) /* 16-18: SPI Cycle Frequency */
#define SSFC_SCF (0x7 << SSFC_SCF_OFF)
#define SSFC_SCF_20MHZ 0x00000000
#define SSFC_SCF_33MHZ 0x01000000
/* 19-23: reserved */
#define SSFC_RESERVED_MASK 0xf8008100
#define ICH9_REG_PREOP 0x94 /* 16 Bits */
#define ICH9_REG_OPTYPE 0x96 /* 16 Bits */
#define ICH9_REG_OPMENU 0x98 /* 64 Bits */
#define ICH9_REG_BBAR 0xA0 /* 32 Bits BIOS Base Address Configuration */
#define BBAR_MASK 0x00ffff00 /* 8-23: Bottom of System Flash */
#define ICH8_REG_VSCC 0xC1 /* 32 Bits Vendor Specific Component Capabilities */
#define ICH9_REG_LVSCC 0xC4 /* 32 Bits Host Lower Vendor Specific Component Capabilities */
#define ICH9_REG_UVSCC 0xC8 /* 32 Bits Host Upper Vendor Specific Component Capabilities */
/* The individual fields of the VSCC registers are defined in the file
* ich_descriptors.h. The reason is that the same layout is also used in the
* flash descriptor to define the properties of the different flash chips
* supported. The BIOS (or the ME?) is responsible to populate the ICH registers
* with the information from the descriptor on startup depending on the actual
* chip(s) detected. */
#define ICH9_REG_FPB 0xD0 /* 32 Bits Flash Partition Boundary */
#define FPB_FPBA_OFF 0 /* 0-12: Block/Sector Erase Size */
#define FPB_FPBA (0x1FFF << FPB_FPBA_OFF)
// ICH9R SPI commands
#define SPI_OPCODE_TYPE_READ_NO_ADDRESS 0
#define SPI_OPCODE_TYPE_WRITE_NO_ADDRESS 1
#define SPI_OPCODE_TYPE_READ_WITH_ADDRESS 2
#define SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS 3
// ICH7 registers
#define ICH7_REG_SPIS 0x00 /* 16 Bits */
#define SPIS_SCIP 0x0001
#define SPIS_GRANT 0x0002
#define SPIS_CDS 0x0004
#define SPIS_FCERR 0x0008
#define SPIS_RESERVED_MASK 0x7ff0
/* VIA SPI is compatible with ICH7, but maxdata
to transfer is 16 bytes.
DATA byte count on ICH7 is 8:13, on VIA 8:11
bit 12 is port select CS0 CS1
bit 13 is FAST READ enable
bit 7 is used with fast read and one shot controls CS de-assert?
*/
#define ICH7_REG_SPIC 0x02 /* 16 Bits */
#define SPIC_SCGO 0x0002
#define SPIC_ACS 0x0004
#define SPIC_SPOP 0x0008
#define SPIC_DS 0x4000
#define ICH7_REG_SPIA 0x04 /* 32 Bits */
#define ICH7_REG_SPID0 0x08 /* 64 Bytes */
#define ICH7_REG_PREOP 0x54 /* 16 Bits */
#define ICH7_REG_OPTYPE 0x56 /* 16 Bits */
#define ICH7_REG_OPMENU 0x58 /* 64 Bits */
enum ich_access_protection {
NO_PROT = 0,
READ_PROT = 1,
WRITE_PROT = 2,
LOCKED = 3,
};
/* ICH SPI configuration lock-down. May be set during chipset enabling. */
static int ichspi_lock = 0;
static enum ich_chipset ich_generation = CHIPSET_ICH_UNKNOWN;
static uint32_t ichspi_bbar;
static void *ich_spibar = NULL;
typedef struct _OPCODE {
uint8_t opcode; //This commands spi opcode
uint8_t spi_type; //This commands spi type
uint8_t atomic; //Use preop: (0: none, 1: preop0, 2: preop1
} OPCODE;
/* Suggested opcode definition:
* Preop 1: Write Enable
* Preop 2: Write Status register enable
*
* OP 0: Write address
* OP 1: Read Address
* OP 2: ERASE block
* OP 3: Read Status register
* OP 4: Read ID
* OP 5: Write Status register
* OP 6: chip private (read JEDEC id)
* OP 7: Chip erase
*/
typedef struct _OPCODES {
uint8_t preop[2];
OPCODE opcode[8];
} OPCODES;
static OPCODES *curopcodes = NULL;
/* HW access functions */
static uint32_t REGREAD32(int X)
{
return mmio_readl(ich_spibar + X);
}
static uint16_t REGREAD16(int X)
{
return mmio_readw(ich_spibar + X);
}
static uint16_t REGREAD8(int X)
{
return mmio_readb(ich_spibar + X);
}
#define REGWRITE32(off, val) mmio_writel(val, ich_spibar+(off))
#define REGWRITE16(off, val) mmio_writew(val, ich_spibar+(off))
#define REGWRITE8(off, val) mmio_writeb(val, ich_spibar+(off))
/* Common SPI functions */
static int find_opcode(OPCODES *op, uint8_t opcode)
{
int a;
if (op == NULL) {
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
return -1;
}
for (a = 0; a < 8; a++) {
if (op->opcode[a].opcode == opcode)
return a;
}
return -1;
}
static int find_preop(OPCODES *op, uint8_t preop)
{
int a;
if (op == NULL) {
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
return -1;
}
for (a = 0; a < 2; a++) {
if (op->preop[a] == preop)
return a;
}
return -1;
}
/* for pairing opcodes with their required preop */
struct preop_opcode_pair {
uint8_t preop;
uint8_t opcode;
};
/* List of opcodes which need preopcodes and matching preopcodes. Unused. */
const struct preop_opcode_pair pops[] = {
{JEDEC_WREN, JEDEC_BYTE_PROGRAM},
{JEDEC_WREN, JEDEC_SE}, /* sector erase */
{JEDEC_WREN, JEDEC_BE_52}, /* block erase */
{JEDEC_WREN, JEDEC_BE_D8}, /* block erase */
{JEDEC_WREN, JEDEC_CE_60}, /* chip erase */
{JEDEC_WREN, JEDEC_CE_C7}, /* chip erase */
/* FIXME: WRSR requires either EWSR or WREN depending on chip type. */
{JEDEC_WREN, JEDEC_WRSR},
{JEDEC_EWSR, JEDEC_WRSR},
{0,}
};
/* Reasonable default configuration. Needs ad-hoc modifications if we
* encounter unlisted opcodes. Fun.
*/
static OPCODES O_ST_M25P = {
{
JEDEC_WREN,
JEDEC_EWSR,
},
{
{JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte
{JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data
{JEDEC_SE, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector
{JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg
{JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature
{JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register
{JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID
{JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase
}
};
/* List of opcodes with their corresponding spi_type
* It is used to reprogram the chipset OPCODE table on-the-fly if an opcode
* is needed which is currently not in the chipset OPCODE table
*/
static OPCODE POSSIBLE_OPCODES[] = {
{JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte
{JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data
{JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector
{JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg
{JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature
{JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register
{JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID
{JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase
{JEDEC_SE, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Sector erase
{JEDEC_BE_52, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Block erase
{JEDEC_AAI_WORD_PROGRAM, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Auto Address Increment
};
static OPCODES O_EXISTING = {};
/* pretty printing functions */
static void prettyprint_opcodes(OPCODES *ops)
{
OPCODE oc;
const char *t;
const char *a;
uint8_t i;
static const char *const spi_type[4] = {
"read w/o addr",
"write w/o addr",
"read w/ addr",
"write w/ addr"
};
static const char *const atomic_type[3] = {
"none",
" 0 ",
" 1 "
};
if (ops == NULL)
return;
msg_pdbg2(" OP Type Pre-OP\n");
for (i = 0; i < 8; i++) {
oc = ops->opcode[i];
t = (oc.spi_type > 3) ? "invalid" : spi_type[oc.spi_type];
a = (oc.atomic > 2) ? "invalid" : atomic_type[oc.atomic];
msg_pdbg2("op[%d]: 0x%02x, %s, %s\n", i, oc.opcode, t, a);
}
msg_pdbg2("Pre-OP 0: 0x%02x, Pre-OP 1: 0x%02x\n", ops->preop[0],
ops->preop[1]);
}
#define _pprint_reg(bit, mask, off, val, sep) msg_pdbg("%s=%d" sep, #bit, (val & mask) >> off)
#define pprint_reg(reg, bit, val, sep) _pprint_reg(bit, reg##_##bit, reg##_##bit##_OFF, val, sep)
static void prettyprint_ich9_reg_hsfs(uint16_t reg_val, enum ich_chipset ich_gen)
{
msg_pdbg("HSFS: ");
pprint_reg(HSFS, FDONE, reg_val, ", ");
pprint_reg(HSFS, FCERR, reg_val, ", ");
pprint_reg(HSFS, AEL, reg_val, ", ");
switch (ich_gen) {
case CHIPSET_100_SERIES_SUNRISE_POINT:
case CHIPSET_C620_SERIES_LEWISBURG:
case CHIPSET_300_SERIES_CANNON_POINT:
case CHIPSET_400_SERIES_COMET_POINT:
case CHIPSET_500_SERIES_TIGER_POINT:
case CHIPSET_ELKHART_LAKE:
break;
default:
pprint_reg(HSFS, BERASE, reg_val, ", ");
break;
}
pprint_reg(HSFS, SCIP, reg_val, ", ");
switch (ich_gen) {
case CHIPSET_100_SERIES_SUNRISE_POINT:
case CHIPSET_C620_SERIES_LEWISBURG:
case CHIPSET_300_SERIES_CANNON_POINT:
case CHIPSET_400_SERIES_COMET_POINT:
case CHIPSET_500_SERIES_TIGER_POINT:
case CHIPSET_ELKHART_LAKE:
pprint_reg(HSFS, PRR34_LOCKDN, reg_val, ", ");
pprint_reg(HSFS, WRSDIS, reg_val, ", ");
break;
default:
break;
}
pprint_reg(HSFS, FDOPSS, reg_val, ", ");
pprint_reg(HSFS, FDV, reg_val, ", ");
pprint_reg(HSFS, FLOCKDN, reg_val, "\n");
}
static void prettyprint_ich9_reg_hsfc(uint16_t reg_val, enum ich_chipset ich_gen)
{
msg_pdbg("HSFC: ");
pprint_reg(HSFC, FGO, reg_val, ", ");
switch (ich_gen) {
case CHIPSET_100_SERIES_SUNRISE_POINT:
case CHIPSET_C620_SERIES_LEWISBURG:
case CHIPSET_300_SERIES_CANNON_POINT:
case CHIPSET_400_SERIES_COMET_POINT:
case CHIPSET_500_SERIES_TIGER_POINT:
case CHIPSET_ELKHART_LAKE:
_pprint_reg(HSFC, PCH100_HSFC_FCYCLE, PCH100_HSFC_FCYCLE_OFF, reg_val, ", ");
pprint_reg(HSFC, WET, reg_val, ", ");
break;
default:
pprint_reg(HSFC, FCYCLE, reg_val, ", ");
break;
}
pprint_reg(HSFC, FDBC, reg_val, ", ");
pprint_reg(HSFC, SME, reg_val, "\n");
}
static void prettyprint_ich9_reg_ssfs(uint32_t reg_val)
{
msg_pdbg("SSFS: ");
pprint_reg(SSFS, SCIP, reg_val, ", ");
pprint_reg(SSFS, FDONE, reg_val, ", ");
pprint_reg(SSFS, FCERR, reg_val, ", ");
pprint_reg(SSFS, AEL, reg_val, "\n");
}
static void prettyprint_ich9_reg_ssfc(uint32_t reg_val)
{
msg_pdbg("SSFC: ");
pprint_reg(SSFC, SCGO, reg_val, ", ");
pprint_reg(SSFC, ACS, reg_val, ", ");
pprint_reg(SSFC, SPOP, reg_val, ", ");
pprint_reg(SSFC, COP, reg_val, ", ");
pprint_reg(SSFC, DBC, reg_val, ", ");
pprint_reg(SSFC, SME, reg_val, ", ");
pprint_reg(SSFC, SCF, reg_val, "\n");
}
static void prettyprint_pch100_reg_dlock(const uint32_t reg_val)
{
msg_pdbg("DLOCK: ");
pprint_reg(DLOCK, BMWAG_LOCKDN, reg_val, ", ");
pprint_reg(DLOCK, BMRAG_LOCKDN, reg_val, ", ");
pprint_reg(DLOCK, SBMWAG_LOCKDN, reg_val, ", ");
pprint_reg(DLOCK, SBMRAG_LOCKDN, reg_val, ",\n ");
pprint_reg(DLOCK, PR0_LOCKDN, reg_val, ", ");
pprint_reg(DLOCK, PR1_LOCKDN, reg_val, ", ");
pprint_reg(DLOCK, PR2_LOCKDN, reg_val, ", ");
pprint_reg(DLOCK, PR3_LOCKDN, reg_val, ", ");
pprint_reg(DLOCK, PR4_LOCKDN, reg_val, ",\n ");
pprint_reg(DLOCK, SSEQ_LOCKDN, reg_val, "\n");
}
static struct swseq_data {
size_t reg_ssfsc;
size_t reg_preop;
size_t reg_optype;
size_t reg_opmenu;
} swseq_data;
static uint8_t lookup_spi_type(uint8_t opcode)
{
unsigned int a;
for (a = 0; a < ARRAY_SIZE(POSSIBLE_OPCODES); a++) {
if (POSSIBLE_OPCODES[a].opcode == opcode)
return POSSIBLE_OPCODES[a].spi_type;
}
return 0xFF;
}
static int program_opcodes(OPCODES *op, int enable_undo, enum ich_chipset ich_gen)
{
uint8_t a;
uint16_t preop, optype;
uint32_t opmenu[2];
/* Program Prefix Opcodes */
/* 0:7 Prefix Opcode 1 */
preop = (op->preop[0]);
/* 8:16 Prefix Opcode 2 */
preop |= ((uint16_t) op->preop[1]) << 8;
/* Program Opcode Types 0 - 7 */
optype = 0;
for (a = 0; a < 8; a++) {
optype |= ((uint16_t) op->opcode[a].spi_type) << (a * 2);
}
/* Program Allowable Opcodes 0 - 3 */
opmenu[0] = 0;
for (a = 0; a < 4; a++) {
opmenu[0] |= ((uint32_t) op->opcode[a].opcode) << (a * 8);
}
/* Program Allowable Opcodes 4 - 7 */
opmenu[1] = 0;
for (a = 4; a < 8; a++) {
opmenu[1] |= ((uint32_t) op->opcode[a].opcode) << ((a - 4) * 8);
}
msg_pdbg2("\n%s: preop=%04x optype=%04x opmenu=%08x%08x\n", __func__, preop, optype, opmenu[0], opmenu[1]);
switch (ich_gen) {
case CHIPSET_ICH7:
case CHIPSET_TUNNEL_CREEK:
case CHIPSET_CENTERTON:
/* Register undo only for enable_undo=1, i.e. first call. */
if (enable_undo) {
rmmio_valw(ich_spibar + ICH7_REG_PREOP);
rmmio_valw(ich_spibar + ICH7_REG_OPTYPE);
rmmio_vall(ich_spibar + ICH7_REG_OPMENU);
rmmio_vall(ich_spibar + ICH7_REG_OPMENU + 4);
}
mmio_writew(preop, ich_spibar + ICH7_REG_PREOP);
mmio_writew(optype, ich_spibar + ICH7_REG_OPTYPE);
mmio_writel(opmenu[0], ich_spibar + ICH7_REG_OPMENU);
mmio_writel(opmenu[1], ich_spibar + ICH7_REG_OPMENU + 4);
break;
case CHIPSET_ICH8:
default: /* Future version might behave the same */
/* Register undo only for enable_undo=1, i.e. first call. */
if (enable_undo) {
rmmio_valw(ich_spibar + swseq_data.reg_preop);
rmmio_valw(ich_spibar + swseq_data.reg_optype);
rmmio_vall(ich_spibar + swseq_data.reg_opmenu);
rmmio_vall(ich_spibar + swseq_data.reg_opmenu + 4);
}
mmio_writew(preop, ich_spibar + swseq_data.reg_preop);
mmio_writew(optype, ich_spibar + swseq_data.reg_optype);
mmio_writel(opmenu[0], ich_spibar + swseq_data.reg_opmenu);
mmio_writel(opmenu[1], ich_spibar + swseq_data.reg_opmenu + 4);
break;
}
return 0;
}
static int reprogram_opcode_on_the_fly(uint8_t opcode, unsigned int writecnt, unsigned int readcnt)
{
uint8_t spi_type;
spi_type = lookup_spi_type(opcode);
if (spi_type > 3) {
/* Try to guess spi type from read/write sizes.
* The following valid writecnt/readcnt combinations exist:
* writecnt = 4, readcnt >= 0
* writecnt = 1, readcnt >= 0
* writecnt >= 4, readcnt = 0
* writecnt >= 1, readcnt = 0
* writecnt >= 1 is guaranteed for all commands.
*/
if (readcnt == 0)
/* if readcnt=0 and writecount >= 4, we don't know if it is WRITE_NO_ADDRESS
* or WRITE_WITH_ADDRESS. But if we use WRITE_NO_ADDRESS and the first 3 data
* bytes are actual the address, they go to the bus anyhow
*/
spi_type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
else if (writecnt == 1) // and readcnt is > 0
spi_type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
else if (writecnt == 4) // and readcnt is > 0
spi_type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
else // we have an invalid case
return SPI_INVALID_LENGTH;
}
int oppos = 2; // use original JEDEC_BE_D8 offset
curopcodes->opcode[oppos].opcode = opcode;
curopcodes->opcode[oppos].spi_type = spi_type;
program_opcodes(curopcodes, 0, ich_generation);
oppos = find_opcode(curopcodes, opcode);
msg_pdbg2("on-the-fly OPCODE (0x%02X) re-programmed, op-pos=%d\n", opcode, oppos);
return oppos;
}
/*
* Returns -1 if at least one mandatory opcode is inaccessible, 0 otherwise.
* FIXME: this should also check for
* - at least one probing opcode (RDID (incl. AT25F variants?), REMS, RES?)
* - at least one erasing opcode (lots.)
* - at least one program opcode (BYTE_PROGRAM, AAI_WORD_PROGRAM, ...?)
* - necessary preops? (EWSR, WREN, ...?)
*/
static int ich_missing_opcodes(void)
{
uint8_t ops[] = {
JEDEC_READ,
JEDEC_RDSR,
0
};
int i = 0;
while (ops[i] != 0) {
msg_pspew("checking for opcode 0x%02x\n", ops[i]);
if (find_opcode(curopcodes, ops[i]) == -1)
return -1;
i++;
}
return 0;
}
/*
* Try to set BBAR (BIOS Base Address Register), but read back the value in case
* it didn't stick.
*/
static void ich_set_bbar(uint32_t min_addr, enum ich_chipset ich_gen)
{
int bbar_off;
switch (ich_gen) {
case CHIPSET_ICH7:
case CHIPSET_TUNNEL_CREEK:
case CHIPSET_CENTERTON:
bbar_off = 0x50;
break;
case CHIPSET_ICH8:
case CHIPSET_BAYTRAIL:
msg_pdbg("BBAR offset is unknown!\n");
return;
case CHIPSET_ICH9:
default: /* Future version might behave the same */
bbar_off = ICH9_REG_BBAR;
break;
}
ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & ~BBAR_MASK;
if (ichspi_bbar) {
msg_pdbg("Reserved bits in BBAR not zero: 0x%08x\n",
ichspi_bbar);
}
min_addr &= BBAR_MASK;
ichspi_bbar |= min_addr;
rmmio_writel(ichspi_bbar, ich_spibar + bbar_off);
ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & BBAR_MASK;
/* We don't have any option except complaining. And if the write
* failed, the restore will fail as well, so no problem there.
*/
if (ichspi_bbar != min_addr)
msg_perr("Setting BBAR to 0x%08x failed! New value: 0x%08x.\n",
min_addr, ichspi_bbar);
}
/* Create a struct OPCODES based on what we find in the locked down chipset. */
static int generate_opcodes(OPCODES * op, enum ich_chipset ich_gen)
{
int a;
uint16_t preop, optype;
uint32_t opmenu[2];
if (op == NULL) {
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
return -1;
}
switch (ich_gen) {
case CHIPSET_ICH7:
case CHIPSET_TUNNEL_CREEK:
case CHIPSET_CENTERTON:
preop = REGREAD16(ICH7_REG_PREOP);
optype = REGREAD16(ICH7_REG_OPTYPE);
opmenu[0] = REGREAD32(ICH7_REG_OPMENU);
opmenu[1] = REGREAD32(ICH7_REG_OPMENU + 4);
break;
case CHIPSET_ICH8:
default: /* Future version might behave the same */
preop = REGREAD16(swseq_data.reg_preop);
optype = REGREAD16(swseq_data.reg_optype);
opmenu[0] = REGREAD32(swseq_data.reg_opmenu);
opmenu[1] = REGREAD32(swseq_data.reg_opmenu + 4);
break;
}
op->preop[0] = (uint8_t) preop;
op->preop[1] = (uint8_t) (preop >> 8);
for (a = 0; a < 8; a++) {
op->opcode[a].spi_type = (uint8_t) (optype & 0x3);
optype >>= 2;
}
for (a = 0; a < 4; a++) {
op->opcode[a].opcode = (uint8_t) (opmenu[0] & 0xff);
opmenu[0] >>= 8;
}
for (a = 4; a < 8; a++) {
op->opcode[a].opcode = (uint8_t) (opmenu[1] & 0xff);
opmenu[1] >>= 8;
}
/* No preopcodes used by default. */
for (a = 0; a < 8; a++)
op->opcode[a].atomic = 0;
return 0;
}
/* This function generates OPCODES from or programs OPCODES to ICH according to
* the chipset's SPI configuration lock.
*
* It should be called before ICH sends any spi command.
*/
static int ich_init_opcodes(enum ich_chipset ich_gen)
{
int rc = 0;
OPCODES *curopcodes_done;
if (curopcodes)
return 0;
if (ichspi_lock) {
msg_pdbg("Reading OPCODES... ");
curopcodes_done = &O_EXISTING;
rc = generate_opcodes(curopcodes_done, ich_gen);
} else {
msg_pdbg("Programming OPCODES... ");
curopcodes_done = &O_ST_M25P;
rc = program_opcodes(curopcodes_done, 1, ich_gen);
}
if (rc) {
curopcodes = NULL;
msg_perr("failed\n");
return 1;
} else {
curopcodes = curopcodes_done;
msg_pdbg("done\n");
prettyprint_opcodes(curopcodes);
return 0;
}
}
/* Fill len bytes from the data array into the fdata/spid registers.
*
* Note that using len > flash->mst->spi.max_data_write will trash the registers
* following the data registers.
*/
static void ich_fill_data(const uint8_t *data, int len, int reg0_off)
{
uint32_t temp32 = 0;
int i;
if (len <= 0)
return;
for (i = 0; i < len; i++) {
if ((i % 4) == 0)
temp32 = 0;
temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8);
if ((i % 4) == 3) /* 32 bits are full, write them to regs. */
REGWRITE32(reg0_off + (i - (i % 4)), temp32);
}
i--;
if ((i % 4) != 3) /* Write remaining data to regs. */
REGWRITE32(reg0_off + (i - (i % 4)), temp32);
}
/* Read len bytes from the fdata/spid register into the data array.
*
* Note that using len > flash->mst->spi.max_data_read will return garbage or
* may even crash.
*/
static void ich_read_data(uint8_t *data, int len, int reg0_off)
{
int i;
uint32_t temp32 = 0;
for (i = 0; i < len; i++) {
if ((i % 4) == 0)
temp32 = REGREAD32(reg0_off + i);
data[i] = (temp32 >> ((i % 4) * 8)) & 0xff;
}
}
static int ich7_run_opcode(OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data, int maxdata)
{
int write_cmd = 0;
int timeout;
uint32_t temp32;
uint16_t temp16;
uint64_t opmenu;
int opcode_index;
/* Is it a write command? */
if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
|| (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
write_cmd = 1;
}
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
while ((REGREAD16(ICH7_REG_SPIS) & SPIS_SCIP) && --timeout) {
programmer_delay(10);
}
if (!timeout) {
msg_perr("Error: SCIP never cleared!\n");
return 1;
}
/* Program offset in flash into SPIA while preserving reserved bits. */
temp32 = REGREAD32(ICH7_REG_SPIA) & ~0x00FFFFFF;
REGWRITE32(ICH7_REG_SPIA, (offset & 0x00FFFFFF) | temp32);
/* Program data into SPID0 to N */
if (write_cmd && (datalength != 0))
ich_fill_data(data, datalength, ICH7_REG_SPID0);
/* Assemble SPIS */
temp16 = REGREAD16(ICH7_REG_SPIS);
/* keep reserved bits */
temp16 &= SPIS_RESERVED_MASK;
/* clear error status registers */
temp16 |= (SPIS_CDS | SPIS_FCERR);
REGWRITE16(ICH7_REG_SPIS, temp16);
/* Assemble SPIC */
temp16 = 0;
if (datalength != 0) {
temp16 |= SPIC_DS;
temp16 |= ((uint32_t) ((datalength - 1) & (maxdata - 1))) << 8;
}
/* Select opcode */
opmenu = REGREAD32(ICH7_REG_OPMENU);
opmenu |= ((uint64_t)REGREAD32(ICH7_REG_OPMENU + 4)) << 32;
for (opcode_index = 0; opcode_index < 8; opcode_index++) {
if ((opmenu & 0xff) == op.opcode) {
break;
}
opmenu >>= 8;
}
if (opcode_index == 8) {
msg_pdbg("Opcode %x not found.\n", op.opcode);
return 1;
}
temp16 |= ((uint16_t) (opcode_index & 0x07)) << 4;
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
/* Handle Atomic. Atomic commands include three steps:
- sending the preop (mainly EWSR or WREN)
- sending the main command
- waiting for the busy bit (WIP) to be cleared
This means the timeout must be sufficient for chip erase
of slow high-capacity chips.
*/
switch (op.atomic) {
case 2:
/* Select second preop. */
temp16 |= SPIC_SPOP;
/* Fall through. */
case 1:
/* Atomic command (preop+op) */
temp16 |= SPIC_ACS;
timeout = 100 * 1000 * 60; /* 60 seconds */
break;
}
/* Start */
temp16 |= SPIC_SCGO;
/* write it */
REGWRITE16(ICH7_REG_SPIC, temp16);
/* Wait for Cycle Done Status or Flash Cycle Error. */
while (((REGREAD16(ICH7_REG_SPIS) & (SPIS_CDS | SPIS_FCERR)) == 0) &&
--timeout) {
programmer_delay(10);
}
if (!timeout) {
msg_perr("timeout, ICH7_REG_SPIS=0x%04x\n", REGREAD16(ICH7_REG_SPIS));
return 1;
}
/* FIXME: make sure we do not needlessly cause transaction errors. */
temp16 = REGREAD16(ICH7_REG_SPIS);
if (temp16 & SPIS_FCERR) {
msg_perr("Transaction error!\n");
/* keep reserved bits */
temp16 &= SPIS_RESERVED_MASK;
REGWRITE16(ICH7_REG_SPIS, temp16 | SPIS_FCERR);
return 1;
}
if ((!write_cmd) && (datalength != 0))
ich_read_data(data, datalength, ICH7_REG_SPID0);
return 0;
}
static int ich9_run_opcode(OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data)
{
int write_cmd = 0;
int timeout;
uint32_t temp32;
uint64_t opmenu;
int opcode_index;
/* Is it a write command? */
if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
|| (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
write_cmd = 1;
}
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
while ((REGREAD8(swseq_data.reg_ssfsc) & SSFS_SCIP) && --timeout) {
programmer_delay(10);
}
if (!timeout) {
msg_perr("Error: SCIP never cleared!\n");
return 1;
}
/* Program offset in flash into FADDR while preserve the reserved bits
* and clearing the 25. address bit which is only useable in hwseq. */
temp32 = REGREAD32(ICH9_REG_FADDR) & ~0x01FFFFFF;
REGWRITE32(ICH9_REG_FADDR, (offset & 0x00FFFFFF) | temp32);
/* Program data into FDATA0 to N */
if (write_cmd && (datalength != 0))
ich_fill_data(data, datalength, ICH9_REG_FDATA0);
/* Assemble SSFS + SSFC */
temp32 = REGREAD32(swseq_data.reg_ssfsc);
/* Keep reserved bits only */
temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
/* Clear cycle done and cycle error status registers */
temp32 |= (SSFS_FDONE | SSFS_FCERR);
REGWRITE32(swseq_data.reg_ssfsc, temp32);
/* Use 20 MHz */
temp32 |= SSFC_SCF_20MHZ;
/* Set data byte count (DBC) and data cycle bit (DS) */
if (datalength != 0) {
uint32_t datatemp;
temp32 |= SSFC_DS;
datatemp = ((((uint32_t)datalength - 1) << SSFC_DBC_OFF) & SSFC_DBC);
temp32 |= datatemp;
}
/* Select opcode */
opmenu = REGREAD32(swseq_data.reg_opmenu);
opmenu |= ((uint64_t)REGREAD32(swseq_data.reg_opmenu + 4)) << 32;
for (opcode_index = 0; opcode_index < 8; opcode_index++) {
if ((opmenu & 0xff) == op.opcode) {
break;
}
opmenu >>= 8;
}
if (opcode_index == 8) {
msg_pdbg("Opcode %x not found.\n", op.opcode);
return 1;
}
temp32 |= ((uint32_t) (opcode_index & 0x07)) << (8 + 4);
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
/* Handle Atomic. Atomic commands include three steps:
- sending the preop (mainly EWSR or WREN)
- sending the main command
- waiting for the busy bit (WIP) to be cleared
This means the timeout must be sufficient for chip erase
of slow high-capacity chips.
*/
switch (op.atomic) {
case 2:
/* Select second preop. */
temp32 |= SSFC_SPOP;
/* Fall through. */
case 1:
/* Atomic command (preop+op) */
temp32 |= SSFC_ACS;
timeout = 100 * 1000 * 60; /* 60 seconds */
break;
}
/* Start */
temp32 |= SSFC_SCGO;
/* write it */
REGWRITE32(swseq_data.reg_ssfsc, temp32);
/* Wait for Cycle Done Status or Flash Cycle Error. */
while (((REGREAD32(swseq_data.reg_ssfsc) & (SSFS_FDONE | SSFS_FCERR)) == 0) &&
--timeout) {
programmer_delay(10);
}
if (!timeout) {
msg_perr("timeout, REG_SSFS=0x%08x\n", REGREAD32(swseq_data.reg_ssfsc));
return 1;
}
/* FIXME make sure we do not needlessly cause transaction errors. */
temp32 = REGREAD32(swseq_data.reg_ssfsc);
if (temp32 & SSFS_FCERR) {
msg_perr("Transaction error!\n");
prettyprint_ich9_reg_ssfs(temp32);
prettyprint_ich9_reg_ssfc(temp32);
/* keep reserved bits */
temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
/* Clear the transaction error. */
REGWRITE32(swseq_data.reg_ssfsc, temp32 | SSFS_FCERR);
return 1;
}
if ((!write_cmd) && (datalength != 0))
ich_read_data(data, datalength, ICH9_REG_FDATA0);
return 0;
}
static int run_opcode(const struct flashctx *flash, OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data)
{
/* max_data_read == max_data_write for all Intel/VIA SPI masters */
uint8_t maxlength = flash->mst->spi.max_data_read;
if (ich_generation == CHIPSET_ICH_UNKNOWN) {
msg_perr("%s: unsupported chipset\n", __func__);
return -1;
}
if (datalength > maxlength) {
msg_perr("%s: Internal command size error for "
"opcode 0x%02x, got datalength=%i, want <=%i\n",
__func__, op.opcode, datalength, maxlength);
return SPI_INVALID_LENGTH;
}
switch (ich_generation) {
case CHIPSET_ICH7:
case CHIPSET_TUNNEL_CREEK:
case CHIPSET_CENTERTON:
return ich7_run_opcode(op, offset, datalength, data, maxlength);
case CHIPSET_ICH8:
default: /* Future version might behave the same */
return ich9_run_opcode(op, offset, datalength, data);
}
}
static int ich_spi_send_command(const struct flashctx *flash, unsigned int writecnt,
unsigned int readcnt,
const unsigned char *writearr,
unsigned char *readarr)
{
int result;
int opcode_index = -1;
const unsigned char cmd = *writearr;
OPCODE *opcode;
uint32_t addr = 0;
uint8_t *data;
int count;
/* find cmd in opcodes-table */
opcode_index = find_opcode(curopcodes, cmd);
if (opcode_index == -1) {
if (!ichspi_lock)
opcode_index = reprogram_opcode_on_the_fly(cmd, writecnt, readcnt);
if (opcode_index == SPI_INVALID_LENGTH) {
msg_pdbg("OPCODE 0x%02x has unsupported length, will not execute.\n", cmd);
return SPI_INVALID_LENGTH;
} else if (opcode_index == -1) {
msg_pdbg("Invalid OPCODE 0x%02x, will not execute.\n", cmd);
return SPI_INVALID_OPCODE;
}
}
opcode = &(curopcodes->opcode[opcode_index]);
/* The following valid writecnt/readcnt combinations exist:
* writecnt = 4, readcnt >= 0
* writecnt = 1, readcnt >= 0
* writecnt >= 4, readcnt = 0
* writecnt >= 1, readcnt = 0
* writecnt >= 1 is guaranteed for all commands.
*/
if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS) &&
(writecnt != 4)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got writecnt=%i, want =4\n", __func__, cmd, writecnt);
return SPI_INVALID_LENGTH;
}
if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_NO_ADDRESS) &&
(writecnt != 1)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got writecnt=%i, want =1\n", __func__, cmd, writecnt);
return SPI_INVALID_LENGTH;
}
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) &&
(writecnt < 4)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got writecnt=%i, want >=4\n", __func__, cmd, writecnt);
return SPI_INVALID_LENGTH;
}
if (((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
(opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) &&
(readcnt)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got readcnt=%i, want =0\n", __func__, cmd, readcnt);
return SPI_INVALID_LENGTH;
}
/* Translate read/write array/count.
* The maximum data length is identical for the maximum read length and
* for the maximum write length excluding opcode and address. Opcode and
* address are stored in separate registers, not in the data registers
* and are thus not counted towards data length. The only exception
* applies if the opcode definition (un)intentionally classifies said
* opcode incorrectly as non-address opcode or vice versa. */
if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) {
data = (uint8_t *) (writearr + 1);
count = writecnt - 1;
} else if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
data = (uint8_t *) (writearr + 4);
count = writecnt - 4;
} else {
data = (uint8_t *) readarr;
count = readcnt;
}
/* if opcode-type requires an address */
if (cmd == JEDEC_REMS || cmd == JEDEC_RES) {
addr = ichspi_bbar;
} else if (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS ||
opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
/* BBAR may cut part of the chip off at the lower end. */
const uint32_t valid_base = ichspi_bbar & ((flash->chip->total_size * 1024) - 1);
const uint32_t addr_offset = ichspi_bbar - valid_base;
/* Highest address we can program is (2^24 - 1). */
const uint32_t valid_end = (1 << 24) - addr_offset;
addr = writearr[1] << 16 | writearr[2] << 8 | writearr[3];
const uint32_t addr_end = addr + count;
if (addr < valid_base ||
addr_end < addr || /* integer overflow check */
addr_end > valid_end) {
msg_perr("%s: Addressed region 0x%06x-0x%06x not in allowed range 0x%06x-0x%06x\n",
__func__, addr, addr_end - 1, valid_base, valid_end - 1);
return SPI_INVALID_ADDRESS;
}
addr += addr_offset;
}
result = run_opcode(flash, *opcode, addr, count, data);
if (result) {
msg_pdbg("Running OPCODE 0x%02x failed ", opcode->opcode);
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
(opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS)) {
msg_pdbg("at address 0x%06x ", addr);
}
msg_pdbg("(payload length was %d).\n", count);
/* Print out the data array if it contains data to write.
* Errors are detected before the received data is read back into
* the array so it won't make sense to print it then. */
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
(opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) {
int i;
msg_pspew("The data was:\n");
for (i = 0; i < count; i++){
msg_pspew("%3d: 0x%02x\n", i, data[i]);
}
}
}
return result;
}
static struct hwseq_data {
uint32_t size_comp0;
uint32_t size_comp1;
uint32_t addr_mask;
bool only_4k;
uint32_t hsfc_fcycle;
} hwseq_data;
/* Sets FLA in FADDR to (addr & hwseq_data.addr_mask) without touching other bits. */
static void ich_hwseq_set_addr(uint32_t addr)
{
uint32_t addr_old = REGREAD32(ICH9_REG_FADDR) & ~hwseq_data.addr_mask;
REGWRITE32(ICH9_REG_FADDR, (addr & hwseq_data.addr_mask) | addr_old);
}
/* Sets FADDR.FLA to 'addr' and returns the erase block size in bytes
* of the block containing this address. May return nonsense if the address is
* not valid. The erase block size for a specific address depends on the flash
* partition layout as specified by FPB and the partition properties as defined
* by UVSCC and LVSCC respectively. An alternative to implement this method
* would be by querying FPB and the respective VSCC register directly.
*/
static uint32_t ich_hwseq_get_erase_block_size(unsigned int addr)
{
uint8_t enc_berase;
static const uint32_t dec_berase[4] = {
256,
4 * 1024,
8 * 1024,
64 * 1024
};
if (hwseq_data.only_4k) {
return 4 * 1024;
}
ich_hwseq_set_addr(addr);
enc_berase = (REGREAD16(ICH9_REG_HSFS) & HSFS_BERASE) >> HSFS_BERASE_OFF;
return dec_berase[enc_berase];
}
/* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals.
Resets all error flags in HSFS.
Returns 0 if the cycle completes successfully without errors within
timeout us, 1 on errors. */
static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout,
unsigned int len,
enum ich_chipset ich_gen)
{
uint16_t hsfs;
uint32_t addr;
timeout /= 8; /* scale timeout duration to counter */
while ((((hsfs = REGREAD16(ICH9_REG_HSFS)) &
(HSFS_FDONE | HSFS_FCERR)) == 0) &&
--timeout) {
programmer_delay(8);
}
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
if (!timeout) {
addr = REGREAD32(ICH9_REG_FADDR) & hwseq_data.addr_mask;
msg_perr("Timeout error between offset 0x%08x and "
"0x%08x (= 0x%08x + %d)!\n",
addr, addr + len - 1, addr, len - 1);
prettyprint_ich9_reg_hsfs(hsfs, ich_gen);
prettyprint_ich9_reg_hsfc(REGREAD16(ICH9_REG_HSFC), ich_gen);
return 1;
}
if (hsfs & HSFS_FCERR) {
addr = REGREAD32(ICH9_REG_FADDR) & hwseq_data.addr_mask;
msg_perr("Transaction error between offset 0x%08x and "
"0x%08x (= 0x%08x + %d)!\n",
addr, addr + len - 1, addr, len - 1);
prettyprint_ich9_reg_hsfs(hsfs, ich_gen);
prettyprint_ich9_reg_hsfc(REGREAD16(ICH9_REG_HSFC), ich_gen);
return 1;
}
return 0;
}
static int ich_hwseq_probe(struct flashctx *flash)
{
uint32_t total_size, boundary;
uint32_t erase_size_low, size_low, erase_size_high, size_high;
struct block_eraser *eraser;
total_size = hwseq_data.size_comp0 + hwseq_data.size_comp1;
msg_cdbg("Hardware sequencing reports %d attached SPI flash chip",
(hwseq_data.size_comp1 != 0) ? 2 : 1);
if (hwseq_data.size_comp1 != 0)
msg_cdbg("s with a combined");
else
msg_cdbg(" with a");
msg_cdbg(" density of %d kB.\n", total_size / 1024);
flash->chip->total_size = total_size / 1024;
eraser = &(flash->chip->block_erasers[0]);
if (!hwseq_data.only_4k)
boundary = (REGREAD32(ICH9_REG_FPB) & FPB_FPBA) << 12;
else
boundary = 0;
size_high = total_size - boundary;
erase_size_high = ich_hwseq_get_erase_block_size(boundary);
if (boundary == 0) {
msg_cdbg2("There is only one partition containing the whole "
"address space (0x%06x - 0x%06x).\n", 0, size_high-1);
eraser->eraseblocks[0].size = erase_size_high;
eraser->eraseblocks[0].count = size_high / erase_size_high;
msg_cdbg2("There are %d erase blocks with %d B each.\n",
size_high / erase_size_high, erase_size_high);
} else {
msg_cdbg2("The flash address space (0x%06x - 0x%06x) is divided "
"at address 0x%06x in two partitions.\n",
0, total_size-1, boundary);
size_low = total_size - size_high;
erase_size_low = ich_hwseq_get_erase_block_size(0);
eraser->eraseblocks[0].size = erase_size_low;
eraser->eraseblocks[0].count = size_low / erase_size_low;
msg_cdbg("The first partition ranges from 0x%06x to 0x%06x.\n", 0, size_low-1);
msg_cdbg("In that range are %d erase blocks with %d B each.\n",
size_low / erase_size_low, erase_size_low);
eraser->eraseblocks[1].size = erase_size_high;
eraser->eraseblocks[1].count = size_high / erase_size_high;
msg_cdbg("The second partition ranges from 0x%06x to 0x%06x.\n",
boundary, total_size-1);
msg_cdbg("In that range are %d erase blocks with %d B each.\n",
size_high / erase_size_high, erase_size_high);
}
flash->chip->tested = TEST_OK_PREW;
return 1;
}
static int ich_hwseq_block_erase(struct flashctx *flash, unsigned int addr,
unsigned int len)
{
uint32_t erase_block;
uint16_t hsfc;
uint32_t timeout = 5000 * 1000; /* 5 s for max 64 kB */
erase_block = ich_hwseq_get_erase_block_size(addr);
if (len != erase_block) {
msg_cerr("Erase block size for address 0x%06x is %d B, "
"but requested erase block size is %d B. "
"Not erasing anything.\n", addr, erase_block, len);
return -1;
}
/* Although the hardware supports this (it would erase the whole block
* containing the address) we play safe here. */
if (addr % erase_block != 0) {
msg_cerr("Erase address 0x%06x is not aligned to the erase "
"block boundary (any multiple of %d). "
"Not erasing anything.\n", addr, erase_block);
return -1;
}
if (addr + len > flash->chip->total_size * 1024) {
msg_perr("Request to erase some inaccessible memory address(es)"
" (addr=0x%x, len=%d). Not erasing anything.\n", addr, len);
return -1;
}
msg_pdbg("Erasing %d bytes starting at 0x%06x.\n", len, addr);
ich_hwseq_set_addr(addr);
/* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
if (REGREAD8(ICH9_REG_HSFS) & HSFS_SCIP) {
msg_perr("Error: SCIP bit is unexpectedly set.\n");
return -1;
}
hsfc = REGREAD16(ICH9_REG_HSFC);
hsfc &= ~hwseq_data.hsfc_fcycle; /* clear operation */
hsfc |= (0x3 << HSFC_FCYCLE_OFF); /* set erase operation */
hsfc |= HSFC_FGO; /* start */
msg_pdbg("HSFC used for block erasing: ");
prettyprint_ich9_reg_hsfc(hsfc, ich_generation);
REGWRITE16(ICH9_REG_HSFC, hsfc);
if (ich_hwseq_wait_for_cycle_complete(timeout, len, ich_generation))
return -1;
return 0;
}
static int ich_hwseq_read(struct flashctx *flash, uint8_t *buf,
unsigned int addr, unsigned int len)
{
uint16_t hsfc;
uint16_t timeout = 100 * 60;
uint8_t block_len;
if (addr + len > flash->chip->total_size * 1024) {
msg_perr("Request to read from an inaccessible memory address "
"(addr=0x%x, len=%d).\n", addr, len);
return -1;
}
msg_pdbg("Reading %d bytes starting at 0x%06x.\n", len, addr);
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
while (len > 0) {
/* Obey programmer limit... */
block_len = min(len, flash->mst->opaque.max_data_read);
/* as well as flash chip page borders as demanded in the Intel datasheets. */
block_len = min(block_len, 256 - (addr & 0xFF));
ich_hwseq_set_addr(addr);
if (REGREAD8(ICH9_REG_HSFS) & HSFS_SCIP) {
msg_perr("Error: SCIP bit is unexpectedly set.\n");
return -1;
}
hsfc = REGREAD16(ICH9_REG_HSFC);
hsfc &= ~hwseq_data.hsfc_fcycle; /* set read operation */
hsfc &= ~HSFC_FDBC; /* clear byte count */
/* set byte count */
hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
hsfc |= HSFC_FGO; /* start */
REGWRITE16(ICH9_REG_HSFC, hsfc);
if (ich_hwseq_wait_for_cycle_complete(timeout, block_len, ich_generation))
return 1;
ich_read_data(buf, block_len, ICH9_REG_FDATA0);
addr += block_len;
buf += block_len;
len -= block_len;
}
return 0;
}
static int ich_hwseq_write(struct flashctx *flash, const uint8_t *buf, unsigned int addr, unsigned int len)
{
uint16_t hsfc;
uint16_t timeout = 100 * 60;
uint8_t block_len;
if (addr + len > flash->chip->total_size * 1024) {
msg_perr("Request to write to an inaccessible memory address "
"(addr=0x%x, len=%d).\n", addr, len);
return -1;
}
msg_pdbg("Writing %d bytes starting at 0x%06x.\n", len, addr);
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
while (len > 0) {
ich_hwseq_set_addr(addr);
/* Obey programmer limit... */
block_len = min(len, flash->mst->opaque.max_data_write);
/* as well as flash chip page borders as demanded in the Intel datasheets. */
block_len = min(block_len, 256 - (addr & 0xFF));
ich_fill_data(buf, block_len, ICH9_REG_FDATA0);
if (REGREAD8(ICH9_REG_HSFS) & HSFS_SCIP) {
msg_perr("Error: SCIP bit is unexpectedly set.\n");
return -1;
}
hsfc = REGREAD16(ICH9_REG_HSFC);
hsfc &= ~hwseq_data.hsfc_fcycle; /* clear operation */
hsfc |= (0x2 << HSFC_FCYCLE_OFF); /* set write operation */
hsfc &= ~HSFC_FDBC; /* clear byte count */
/* set byte count */
hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
hsfc |= HSFC_FGO; /* start */
REGWRITE16(ICH9_REG_HSFC, hsfc);
if (ich_hwseq_wait_for_cycle_complete(timeout, block_len, ich_generation))
return -1;
addr += block_len;
buf += block_len;
len -= block_len;
}
return 0;
}
static int ich_spi_send_multicommand(const struct flashctx *flash,
struct spi_command *cmds)
{
int ret = 0;
int i;
int oppos, preoppos;
for (; (cmds->writecnt || cmds->readcnt) && !ret; cmds++) {
if ((cmds + 1)->writecnt || (cmds + 1)->readcnt) {
/* Next command is valid. */
preoppos = find_preop(curopcodes, cmds->writearr[0]);
oppos = find_opcode(curopcodes, (cmds + 1)->writearr[0]);
if ((oppos == -1) && (preoppos != -1)) {
/* Current command is listed as preopcode in
* ICH struct OPCODES, but next command is not
* listed as opcode in that struct.
* Check for command sanity, then
* try to reprogram the ICH opcode list.
*/
if (find_preop(curopcodes,
(cmds + 1)->writearr[0]) != -1) {
msg_perr("%s: Two subsequent "
"preopcodes 0x%02x and 0x%02x, "
"ignoring the first.\n",
__func__, cmds->writearr[0],
(cmds + 1)->writearr[0]);
continue;
}
/* If the chipset is locked down, we'll fail
* during execution of the next command anyway.
* No need to bother with fixups.
*/
if (!ichspi_lock) {
oppos = reprogram_opcode_on_the_fly((cmds + 1)->writearr[0], (cmds + 1)->writecnt, (cmds + 1)->readcnt);
if (oppos == -1)
continue;
curopcodes->opcode[oppos].atomic = preoppos + 1;
continue;
}
}
if ((oppos != -1) && (preoppos != -1)) {
/* Current command is listed as preopcode in
* ICH struct OPCODES and next command is listed
* as opcode in that struct. Match them up.
*/
curopcodes->opcode[oppos].atomic = preoppos + 1;
continue;
}
/* If none of the above if-statements about oppos or
* preoppos matched, this is a normal opcode.
*/
}
ret = ich_spi_send_command(flash, cmds->writecnt, cmds->readcnt,
cmds->writearr, cmds->readarr);
/* Reset the type of all opcodes to non-atomic. */
for (i = 0; i < 8; i++)
curopcodes->opcode[i].atomic = 0;
}
return ret;
}
#define ICH_BMWAG(x) ((x >> 24) & 0xff)
#define ICH_BMRAG(x) ((x >> 16) & 0xff)
#define ICH_BRWA(x) ((x >> 8) & 0xff)
#define ICH_BRRA(x) ((x >> 0) & 0xff)
static const enum ich_access_protection access_perms_to_protection[] = {
LOCKED, WRITE_PROT, READ_PROT, NO_PROT
};
static const char *const access_names[] = {
"locked", "read-only", "write-only", "read-write"
};
static enum ich_access_protection ich9_handle_frap(uint32_t frap, unsigned int i)
{
const int rwperms_unknown = ARRAY_SIZE(access_names);
static const char *const region_names[] = {
"Flash Descriptor", "BIOS", "Management Engine",
"Gigabit Ethernet", "Platform Data", "Device Expansion",
"BIOS2", "unknown", "EC/BMC",
};
const char *const region_name = i < ARRAY_SIZE(region_names) ? region_names[i] : "unknown";
uint32_t base, limit;
int rwperms;
const int offset = i < 12
? ICH9_REG_FREG0 + i * 4
: APL_REG_FREG12 + (i - 12) * 4;
uint32_t freg = mmio_readl(ich_spibar + offset);
if (i < 8) {
rwperms = (((ICH_BRWA(frap) >> i) & 1) << 1) |
(((ICH_BRRA(frap) >> i) & 1) << 0);
} else {
/* Datasheets don't define any access bits for regions > 7. We
can't rely on the actual descriptor settings either as there
are several overrides for them (those by other masters are
not even readable by us, *shrug*). */
rwperms = rwperms_unknown;
}
base = ICH_FREG_BASE(freg);
limit = ICH_FREG_LIMIT(freg);
if (base > limit || (freg == 0 && i > 0)) {
/* this FREG is disabled */
msg_pdbg2("0x%02X: 0x%08x FREG%u: %s region is unused.\n",
offset, freg, i, region_name);
return NO_PROT;
}
msg_pdbg("0x%02X: 0x%08x ", offset, freg);
if (rwperms == 0x3) {
msg_pdbg("FREG%u: %s region (0x%08x-0x%08x) is %s.\n", i,
region_name, base, limit, access_names[rwperms]);
return NO_PROT;
}
if (rwperms == rwperms_unknown) {
msg_pdbg("FREG%u: %s region (0x%08x-0x%08x) has unknown permissions.\n",
i, region_name, base, limit);
return NO_PROT;
}
msg_pinfo("FREG%u: %s region (0x%08x-0x%08x) is %s.\n", i,
region_name, base, limit, access_names[rwperms]);
return access_perms_to_protection[rwperms];
}
/* In contrast to FRAP and the master section of the descriptor the bits
* in the PR registers have an inverted meaning. The bits in FRAP
* indicate read and write access _grant_. Here they indicate read
* and write _protection_ respectively. If both bits are 0 the address
* bits are ignored.
*/
#define ICH_PR_PERMS(pr) (((~((pr) >> PR_RP_OFF) & 1) << 0) | \
((~((pr) >> PR_WP_OFF) & 1) << 1))
static enum ich_access_protection ich9_handle_pr(const size_t reg_pr0, unsigned int i)
{
uint8_t off = reg_pr0 + (i * 4);
uint32_t pr = mmio_readl(ich_spibar + off);
unsigned int rwperms = ICH_PR_PERMS(pr);
/* From 5 on we have GPR registers and start from 0 again. */
const char *const prefix = i >= 5 ? "G" : "";
if (i >= 5)
i -= 5;
if (rwperms == 0x3) {
msg_pdbg2("0x%02X: 0x%08x (%sPR%u is unused)\n", off, pr, prefix, i);
return NO_PROT;
}
msg_pdbg("0x%02X: 0x%08x ", off, pr);
msg_pwarn("%sPR%u: Warning: 0x%08x-0x%08x is %s.\n", prefix, i, ICH_FREG_BASE(pr),
ICH_FREG_LIMIT(pr), access_names[rwperms]);
return access_perms_to_protection[rwperms];
}
/* Set/Clear the read and write protection enable bits of PR register @i
* according to @read_prot and @write_prot. */
static void ich9_set_pr(const size_t reg_pr0, int i, int read_prot, int write_prot)
{
void *addr = ich_spibar + reg_pr0 + (i * 4);
uint32_t old = mmio_readl(addr);
uint32_t new;
msg_gspew("PR%u is 0x%08x", i, old);
new = old & ~((1 << PR_RP_OFF) | (1 << PR_WP_OFF));
if (read_prot)
new |= (1 << PR_RP_OFF);
if (write_prot)
new |= (1 << PR_WP_OFF);
if (old == new) {
msg_gspew(" already.\n");
return;
}
msg_gspew(", trying to set it to 0x%08x ", new);
rmmio_writel(new, addr);
msg_gspew("resulted in 0x%08x.\n", mmio_readl(addr));
}
static const struct spi_master spi_master_ich7 = {
.max_data_read = 64,
.max_data_write = 64,
.command = ich_spi_send_command,
.multicommand = ich_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
.write_aai = default_spi_write_aai,
};
static const struct spi_master spi_master_ich9 = {
.max_data_read = 64,
.max_data_write = 64,
.command = ich_spi_send_command,
.multicommand = ich_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
.write_aai = default_spi_write_aai,
};
static const struct opaque_master opaque_master_ich_hwseq = {
.max_data_read = 64,
.max_data_write = 64,
.probe = ich_hwseq_probe,
.read = ich_hwseq_read,
.write = ich_hwseq_write,
.erase = ich_hwseq_block_erase,
};
static int init_ich7_spi(void *spibar, enum ich_chipset ich_gen)
{
unsigned int i;
msg_pdbg("0x00: 0x%04x (SPIS)\n", mmio_readw(spibar + 0));
msg_pdbg("0x02: 0x%04x (SPIC)\n", mmio_readw(spibar + 2));
msg_pdbg("0x04: 0x%08x (SPIA)\n", mmio_readl(spibar + 4));
ichspi_bbar = mmio_readl(spibar + 0x50);
msg_pdbg("0x50: 0x%08x (BBAR)\n", ichspi_bbar);
msg_pdbg("0x54: 0x%04x (PREOP)\n", mmio_readw(spibar + 0x54));
msg_pdbg("0x56: 0x%04x (OPTYPE)\n", mmio_readw(spibar + 0x56));
msg_pdbg("0x58: 0x%08x (OPMENU)\n", mmio_readl(spibar + 0x58));
msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n", mmio_readl(spibar + 0x5c));
for (i = 0; i < 3; i++) {
int offs;
offs = 0x60 + (i * 4);
msg_pdbg("0x%02x: 0x%08x (PBR%u)\n", offs, mmio_readl(spibar + offs), i);
}
if (mmio_readw(spibar) & (1 << 15)) {
msg_pwarn("WARNING: SPI Configuration Lockdown activated.\n");
ichspi_lock = 1;
}
ich_init_opcodes(ich_gen);
ich_set_bbar(0, ich_gen);
register_spi_master(&spi_master_ich7, NULL);
return 0;
}
enum ich_spi_mode {
ich_auto,
ich_hwseq,
ich_swseq
};
static int get_ich_spi_mode_param(enum ich_spi_mode *ich_spi_mode)
{
char *const arg = extract_programmer_param("ich_spi_mode");
if (arg && !strcmp(arg, "hwseq")) {
*ich_spi_mode = ich_hwseq;
msg_pspew("user selected hwseq\n");
} else if (arg && !strcmp(arg, "swseq")) {
*ich_spi_mode = ich_swseq;
msg_pspew("user selected swseq\n");
} else if (arg && !strcmp(arg, "auto")) {
msg_pspew("user selected auto\n");
*ich_spi_mode = ich_auto;
} else if (arg && !strlen(arg)) {
msg_perr("Missing argument for ich_spi_mode.\n");
free(arg);
return ERROR_FATAL;
} else if (arg) {
msg_perr("Unknown argument for ich_spi_mode: %s\n", arg);
free(arg);
return ERROR_FATAL;
}
free(arg);
return 0;
}
static void init_chipset_properties(struct swseq_data *swseq, struct hwseq_data *hwseq,
size_t *num_freg, size_t *num_pr, size_t *reg_pr0,
enum ich_chipset ich_gen)
{
/* Moving registers / bits */
switch (ich_gen) {
case CHIPSET_100_SERIES_SUNRISE_POINT:
case CHIPSET_C620_SERIES_LEWISBURG:
case CHIPSET_300_SERIES_CANNON_POINT:
case CHIPSET_400_SERIES_COMET_POINT:
case CHIPSET_500_SERIES_TIGER_POINT:
case CHIPSET_600_SERIES_ALDER_POINT:
case CHIPSET_APOLLO_LAKE:
case CHIPSET_GEMINI_LAKE:
case CHIPSET_ELKHART_LAKE:
*num_pr = 6; /* Includes GPR0 */
*reg_pr0 = PCH100_REG_FPR0;
swseq->reg_ssfsc = PCH100_REG_SSFSC;
swseq->reg_preop = PCH100_REG_PREOP;
swseq->reg_optype = PCH100_REG_OPTYPE;
swseq->reg_opmenu = PCH100_REG_OPMENU;
hwseq->addr_mask = PCH100_FADDR_FLA;
hwseq->only_4k = true;
hwseq->hsfc_fcycle = PCH100_HSFC_FCYCLE;
break;
default:
*num_pr = 5;
*reg_pr0 = ICH9_REG_PR0;
swseq->reg_ssfsc = ICH9_REG_SSFS;
swseq->reg_preop = ICH9_REG_PREOP;
swseq->reg_optype = ICH9_REG_OPTYPE;
swseq->reg_opmenu = ICH9_REG_OPMENU;
hwseq->addr_mask = ICH9_FADDR_FLA;
hwseq->only_4k = false;
hwseq->hsfc_fcycle = HSFC_FCYCLE;
break;
}
switch (ich_gen) {
case CHIPSET_100_SERIES_SUNRISE_POINT:
*num_freg = 10;
break;
case CHIPSET_C620_SERIES_LEWISBURG:
*num_freg = 12; /* 12 MMIO regs, but 16 regions in FD spec */
break;
case CHIPSET_300_SERIES_CANNON_POINT:
case CHIPSET_400_SERIES_COMET_POINT:
case CHIPSET_500_SERIES_TIGER_POINT:
case CHIPSET_600_SERIES_ALDER_POINT:
case CHIPSET_APOLLO_LAKE:
case CHIPSET_GEMINI_LAKE:
case CHIPSET_ELKHART_LAKE:
*num_freg = 16;
break;
default:
*num_freg = 5;
break;
}
}
static int init_ich_default(void *spibar, enum ich_chipset ich_gen)
{
unsigned int i;
uint16_t tmp2;
uint32_t tmp;
int ich_spi_rw_restricted = 0;
int desc_valid = 0;
struct ich_descriptors desc = { 0 };
enum ich_spi_mode ich_spi_mode = ich_auto;
size_t num_freg, num_pr, reg_pr0;
init_chipset_properties(&swseq_data, &hwseq_data, &num_freg, &num_pr, ®_pr0, ich_gen);
int ret = get_ich_spi_mode_param(&ich_spi_mode);
if (ret)
return ret;
tmp2 = mmio_readw(spibar + ICH9_REG_HSFS);
msg_pdbg("0x04: 0x%04x (HSFS)\n", tmp2);
prettyprint_ich9_reg_hsfs(tmp2, ich_gen);
if (tmp2 & HSFS_FLOCKDN) {
msg_pinfo("SPI Configuration is locked down.\n");
ichspi_lock = 1;
}
if (tmp2 & HSFS_FDV)
desc_valid = 1;
if (!(tmp2 & HSFS_FDOPSS) && desc_valid)
msg_pinfo("The Flash Descriptor Override Strap-Pin is set. Restrictions implied by\n"
"the Master Section of the flash descriptor are NOT in effect. Please note\n"
"that Protected Range (PR) restrictions still apply.\n");
ich_init_opcodes(ich_gen);
if (desc_valid) {
tmp2 = mmio_readw(spibar + ICH9_REG_HSFC);
msg_pdbg("0x06: 0x%04x (HSFC)\n", tmp2);
prettyprint_ich9_reg_hsfc(tmp2, ich_gen);
}
tmp = mmio_readl(spibar + ICH9_REG_FADDR);
msg_pdbg2("0x08: 0x%08x (FADDR)\n", tmp);
switch (ich_gen) {
case CHIPSET_100_SERIES_SUNRISE_POINT:
case CHIPSET_C620_SERIES_LEWISBURG:
case CHIPSET_300_SERIES_CANNON_POINT:
case CHIPSET_400_SERIES_COMET_POINT:
case CHIPSET_500_SERIES_TIGER_POINT:
case CHIPSET_600_SERIES_ALDER_POINT:
case CHIPSET_APOLLO_LAKE:
case CHIPSET_GEMINI_LAKE:
case CHIPSET_ELKHART_LAKE:
tmp = mmio_readl(spibar + PCH100_REG_DLOCK);
msg_pdbg("0x0c: 0x%08x (DLOCK)\n", tmp);
prettyprint_pch100_reg_dlock(tmp);
break;
default:
break;
}
if (desc_valid) {
tmp = mmio_readl(spibar + ICH9_REG_FRAP);
msg_pdbg("0x50: 0x%08x (FRAP)\n", tmp);
msg_pdbg("BMWAG 0x%02x, ", ICH_BMWAG(tmp));
msg_pdbg("BMRAG 0x%02x, ", ICH_BMRAG(tmp));
msg_pdbg("BRWA 0x%02x, ", ICH_BRWA(tmp));
msg_pdbg("BRRA 0x%02x\n", ICH_BRRA(tmp));
/* Handle FREGx and FRAP registers */
for (i = 0; i < num_freg; i++)
ich_spi_rw_restricted |= ich9_handle_frap(tmp, i);
if (ich_spi_rw_restricted)
msg_pinfo("Not all flash regions are freely accessible by flashrom. This is "
"most likely\ndue to an active ME. Please see "
"https://flashrom.org/ME for details.\n");
}
/* Handle PR registers */
for (i = 0; i < num_pr; i++) {
/* if not locked down try to disable PR locks first */
if (!ichspi_lock)
ich9_set_pr(reg_pr0, i, 0, 0);
ich_spi_rw_restricted |= ich9_handle_pr(reg_pr0, i);
}
switch (ich_spi_rw_restricted) {
case WRITE_PROT:
msg_pwarn("At least some flash regions are write protected. For write operations,\n"
"you should use a flash layout and include only writable regions. See\n"
"manpage for more details.\n");
break;
case READ_PROT:
case LOCKED:
msg_pwarn("At least some flash regions are read protected. You have to use a flash\n"
"layout and include only accessible regions. For write operations, you'll\n"
"additionally need the --noverify-all switch. See manpage for more details.\n");
break;
}
tmp = mmio_readl(spibar + swseq_data.reg_ssfsc);
msg_pdbg("0x%zx: 0x%02x (SSFS)\n", swseq_data.reg_ssfsc, tmp & 0xff);
prettyprint_ich9_reg_ssfs(tmp);
if (tmp & SSFS_FCERR) {
msg_pdbg("Clearing SSFS.FCERR\n");
mmio_writeb(SSFS_FCERR, spibar + swseq_data.reg_ssfsc);
}
msg_pdbg("0x%zx: 0x%06x (SSFC)\n", swseq_data.reg_ssfsc + 1, tmp >> 8);
prettyprint_ich9_reg_ssfc(tmp);
msg_pdbg("0x%zx: 0x%04x (PREOP)\n",
swseq_data.reg_preop, mmio_readw(spibar + swseq_data.reg_preop));
msg_pdbg("0x%zx: 0x%04x (OPTYPE)\n",
swseq_data.reg_optype, mmio_readw(spibar + swseq_data.reg_optype));
msg_pdbg("0x%zx: 0x%08x (OPMENU)\n",
swseq_data.reg_opmenu, mmio_readl(spibar + swseq_data.reg_opmenu));
msg_pdbg("0x%zx: 0x%08x (OPMENU+4)\n",
swseq_data.reg_opmenu + 4, mmio_readl(spibar + swseq_data.reg_opmenu + 4));
if (desc_valid) {
switch (ich_gen) {
case CHIPSET_ICH8:
case CHIPSET_100_SERIES_SUNRISE_POINT:
case CHIPSET_C620_SERIES_LEWISBURG:
case CHIPSET_300_SERIES_CANNON_POINT:
case CHIPSET_400_SERIES_COMET_POINT:
case CHIPSET_500_SERIES_TIGER_POINT:
case CHIPSET_600_SERIES_ALDER_POINT:
case CHIPSET_APOLLO_LAKE:
case CHIPSET_GEMINI_LAKE:
case CHIPSET_BAYTRAIL:
case CHIPSET_ELKHART_LAKE:
break;
default:
ichspi_bbar = mmio_readl(spibar + ICH9_REG_BBAR);
msg_pdbg("0x%x: 0x%08x (BBAR)\n", ICH9_REG_BBAR, ichspi_bbar);
ich_set_bbar(0, ich_gen);
break;
}
if (ich_gen == CHIPSET_ICH8) {
tmp = mmio_readl(spibar + ICH8_REG_VSCC);
msg_pdbg("0x%x: 0x%08x (VSCC)\n", ICH8_REG_VSCC, tmp);
msg_pdbg("VSCC: ");
prettyprint_ich_reg_vscc(tmp, FLASHROM_MSG_DEBUG, true);
} else {
tmp = mmio_readl(spibar + ICH9_REG_LVSCC);
msg_pdbg("0x%x: 0x%08x (LVSCC)\n", ICH9_REG_LVSCC, tmp);
msg_pdbg("LVSCC: ");
prettyprint_ich_reg_vscc(tmp, FLASHROM_MSG_DEBUG, true);
tmp = mmio_readl(spibar + ICH9_REG_UVSCC);
msg_pdbg("0x%x: 0x%08x (UVSCC)\n", ICH9_REG_UVSCC, tmp);
msg_pdbg("UVSCC: ");
prettyprint_ich_reg_vscc(tmp, FLASHROM_MSG_DEBUG, false);
}
switch (ich_gen) {
case CHIPSET_ICH8:
case CHIPSET_100_SERIES_SUNRISE_POINT:
case CHIPSET_C620_SERIES_LEWISBURG:
case CHIPSET_300_SERIES_CANNON_POINT:
case CHIPSET_400_SERIES_COMET_POINT:
case CHIPSET_500_SERIES_TIGER_POINT:
case CHIPSET_600_SERIES_ALDER_POINT:
case CHIPSET_APOLLO_LAKE:
case CHIPSET_GEMINI_LAKE:
case CHIPSET_ELKHART_LAKE:
break;
default:
tmp = mmio_readl(spibar + ICH9_REG_FPB);
msg_pdbg("0x%x: 0x%08x (FPB)\n", ICH9_REG_FPB, tmp);
break;
}
if (read_ich_descriptors_via_fdo(ich_gen, spibar, &desc) == ICH_RET_OK)
prettyprint_ich_descriptors(ich_gen, &desc);
/* If the descriptor is valid and indicates multiple
* flash devices we need to use hwseq to be able to
* access the second flash device.
*/
if (ich_spi_mode == ich_auto && desc.content.NC != 0) {
msg_pinfo("Enabling hardware sequencing due to multiple flash chips detected.\n");
ich_spi_mode = ich_hwseq;
}
}
if (ich_spi_mode == ich_auto && ichspi_lock &&
ich_missing_opcodes()) {
msg_pinfo("Enabling hardware sequencing because "
"some important opcode is locked.\n");
ich_spi_mode = ich_hwseq;
}
if (ich_spi_mode == ich_auto &&
(ich_gen == CHIPSET_100_SERIES_SUNRISE_POINT ||
ich_gen == CHIPSET_300_SERIES_CANNON_POINT ||
ich_gen == CHIPSET_400_SERIES_COMET_POINT ||
ich_gen == CHIPSET_500_SERIES_TIGER_POINT ||
ich_gen == CHIPSET_600_SERIES_ALDER_POINT)) {
msg_pdbg("Enabling hardware sequencing by default for 100+ series PCH.\n");
ich_spi_mode = ich_hwseq;
}
if (ich_spi_mode == ich_auto &&
(ich_gen == CHIPSET_APOLLO_LAKE ||
ich_gen == CHIPSET_GEMINI_LAKE ||
ich_gen == CHIPSET_ELKHART_LAKE)) {
msg_pdbg("Enabling hardware sequencing by default for Apollo/Gemini/Elkhart Lake.\n");
ich_spi_mode = ich_hwseq;
}
if (ich_spi_mode == ich_hwseq) {
if (!desc_valid) {
msg_perr("Hardware sequencing was requested "
"but the flash descriptor is not valid. Aborting.\n");
return ERROR_FATAL;
}
int tmpi = getFCBA_component_density(ich_gen, &desc, 0);
if (tmpi < 0) {
msg_perr("Could not determine density of flash component %d.\n", 0);
return ERROR_FATAL;
}
hwseq_data.size_comp0 = tmpi;
tmpi = getFCBA_component_density(ich_gen, &desc, 1);
if (tmpi < 0) {
msg_perr("Could not determine density of flash component %d.\n", 1);
return ERROR_FATAL;
}
hwseq_data.size_comp1 = tmpi;
register_opaque_master(&opaque_master_ich_hwseq, NULL);
} else {
register_spi_master(&spi_master_ich9, NULL);
}
return 0;
}
int ich_init_spi(void *spibar, enum ich_chipset ich_gen)
{
ich_generation = ich_gen;
ich_spibar = spibar;
switch (ich_gen) {
case CHIPSET_ICH7:
case CHIPSET_TUNNEL_CREEK:
case CHIPSET_CENTERTON:
return init_ich7_spi(spibar, ich_gen);
case CHIPSET_ICH8:
default: /* Future version might behave the same */
return init_ich_default(spibar, ich_gen);
}
}
static const struct spi_master spi_master_via = {
.max_data_read = 16,
.max_data_write = 16,
.command = ich_spi_send_command,
.multicommand = ich_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
.write_aai = default_spi_write_aai,
};
int via_init_spi(uint32_t mmio_base)
{
int i;
ich_spibar = rphysmap("VIA SPI MMIO registers", mmio_base, 0x70);
if (ich_spibar == ERROR_PTR)
return ERROR_FATAL;
/* Do we really need no write enable? Like the LPC one at D17F0 0x40 */
/* Not sure if it speaks all these bus protocols. */
internal_buses_supported &= BUS_LPC | BUS_FWH;
ich_generation = CHIPSET_ICH7;
register_spi_master(&spi_master_via, NULL);
msg_pdbg("0x00: 0x%04x (SPIS)\n", mmio_readw(ich_spibar + 0));
msg_pdbg("0x02: 0x%04x (SPIC)\n", mmio_readw(ich_spibar + 2));
msg_pdbg("0x04: 0x%08x (SPIA)\n", mmio_readl(ich_spibar + 4));
for (i = 0; i < 2; i++) {
int offs;
offs = 8 + (i * 8);
msg_pdbg("0x%02x: 0x%08x (SPID%d)\n", offs, mmio_readl(ich_spibar + offs), i);
msg_pdbg("0x%02x: 0x%08x (SPID%d+4)\n", offs + 4,
mmio_readl(ich_spibar + offs + 4), i);
}
ichspi_bbar = mmio_readl(ich_spibar + 0x50);
msg_pdbg("0x50: 0x%08x (BBAR)\n", ichspi_bbar);
msg_pdbg("0x54: 0x%04x (PREOP)\n", mmio_readw(ich_spibar + 0x54));
msg_pdbg("0x56: 0x%04x (OPTYPE)\n", mmio_readw(ich_spibar + 0x56));
msg_pdbg("0x58: 0x%08x (OPMENU)\n", mmio_readl(ich_spibar + 0x58));
msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n", mmio_readl(ich_spibar + 0x5c));
for (i = 0; i < 3; i++) {
int offs;
offs = 0x60 + (i * 4);
msg_pdbg("0x%02x: 0x%08x (PBR%d)\n", offs, mmio_readl(ich_spibar + offs), i);
}
msg_pdbg("0x6c: 0x%04x (CLOCK/DEBUG)\n", mmio_readw(ich_spibar + 0x6c));
if (mmio_readw(ich_spibar) & (1 << 15)) {
msg_pwarn("Warning: SPI Configuration Lockdown activated.\n");
ichspi_lock = 1;
}
ich_set_bbar(0, ich_generation);
ich_init_opcodes(ich_generation);
return 0;
}
|