aboutsummaryrefslogtreecommitdiffstats
path: root/layout.c
Commit message (Expand)AuthorAgeFilesLines
* Move get_layout() from flashrom.c to layout.cdhendrix2017-10-171-0/+8
* Add option to read ROM layout from IFDNico Huber2017-06-141-9/+9
* Kill doit()Nico Huber2017-06-031-84/+0
* Give layouts their own typeNico Huber2017-06-031-42/+38
* Fix fscanf format string security bug in layout.cCarl-Daniel Hailfinger2016-03-131-1/+1
* Rigorously check integrity of I/O stream dataStefan Tauner2015-12-251-3/+3
* Make read before write configurable (infrastructure part)Stefan Tauner2014-10-191-5/+26
* Add 'const' keyword to chip write and other function prototypesMark Marshall2014-05-091-2/+2
* CID1130008: Resource leak read_romlayout()Stefan Reinauer2014-04-261-0/+1
* layout: Verify layout entries before building a new image using themStefan Tauner2013-09-231-4/+28
* layout: Add a method to cleanup layout data structuresStefan Tauner2013-09-151-0/+16
* layout: Rename romlayout_t to romentry_tStefan Tauner2013-08-301-6/+6
* layout: Rename romimages to num_rom_entriesStefan Tauner2013-08-301-19/+18
* Add a bunch of new/tested stuff and various small changes 14Stefan Tauner2012-09-211-1/+1
* Make struct flashchip a field in struct flashctx instead of a complete copyCarl-Daniel Hailfinger2012-08-251-2/+2
* Move show_id to where it belongsStefan Tauner2012-08-111-101/+0
* Remove exit() call from show_idNiklas Söderlund2012-06-161-1/+1
* Check for duplicate -i argumentsStefan Tauner2012-04-151-9/+25
* Replace --mainboard with -p internal:mainboardCarl-Daniel Hailfinger2012-01-041-11/+14
* Add deferred --image processingLouis Yung-Chieh Lo2011-12-251-13/+72
* layout: change return type and name of find_next_included_romentryStefan Tauner2011-12-251-16/+17
* Use struct flashctx instead of struct flashchip for flash chip accessCarl-Daniel Hailfinger2011-12-141-1/+1
* Explain better what checks are disabled in case we detect a legacy BIOSStefan Tauner2011-05-181-1/+2
* Stop reading layout info when the max layout count has been reachedCarl-Daniel Hailfinger2010-12-041-0/+8
* Change semantics of image building in the layout codeCarl-Daniel Hailfinger2010-11-021-21/+51
* Flashrom torture test scriptDavid Hendricks2010-10-291-1/+1
* Always read the flash chip before writingCarl-Daniel Hailfinger2010-10-191-5/+4
* Add support for building flashrom against libpayloadPatrick Georgi2010-09-301-0/+2
* Split off programmer.h from flash.hCarl-Daniel Hailfinger2010-07-271-0/+1
* Kill global variables, constants and functions if local scope sufficesCarl-Daniel Hailfinger2010-07-031-2/+2
* So far, we have up to 4 different names for the same thing (ignoring capitali...Carl-Daniel Hailfinger2010-05-311-2/+2
* Remove unneeded #include statements completelyCarl-Daniel Hailfinger2010-05-301-15/+16
* One of the problems is that --force had multiple meaningsCarl-Daniel Hailfinger2010-04-281-3/+4
* Internal (onboard) programming was the only feature which could not be disabledCarl-Daniel Hailfinger2009-12-131-0/+4
* Adept layout handling to new programmer infrastructure and fix off-by-one errorCarl-Daniel Hailfinger2009-08-191-6/+5
* Sometimes we want to read/write more than 4 bytes of chip content at onceCarl-Daniel Hailfinger2009-06-051-0/+1
* Drop unused/duplicated #includes and some dead codeUwe Hermann2009-05-161-2/+0
* Don't duplicate option description in README, the manpage already has that infoUwe Hermann2009-04-231-2/+1
* Check return value of fscanf()/fwrite()/fread()Peter Stuge2009-01-121-2/+2
* If you pass a bogus layout file to the -l option flashrom will segfaultUwe Hermann2008-12-221-0/+5
* Coding-style fixes for flashrom, partly indent-aidedUwe Hermann2008-10-181-3/+3
* Fix and clean up coreboot image detection heuristicCarl-Daniel Hailfinger2008-07-111-12/+20
* Minor cosmetics, e.gUwe Hermann2008-07-031-7/+4
* Improve coreboot image detection heuristicCarl-Daniel Hailfinger2008-07-031-1/+13
* Force read unknown flash chipsPeter Stuge2008-06-181-3/+1
* Add missing license header to layout.cUwe Hermann2008-03-041-0/+20
* Rename LinuxBIOS to corebootStefan Reinauer2008-01-181-2/+2
* Some cosmetic cleanups in the flashrom code and outputUwe Hermann2007-10-171-7/+6
* Revert my last cleanup patchUwe Hermann2007-10-101-10/+10
* Cosmetic changes to make the flashrom output more consistentUwe Hermann2007-10-101-10/+10
> 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
/*
 * This file is part of the flashrom project.
 *
 * Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
 * Copyright (C) 2008 coresystems GmbH
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

/*
 * Contains the common SPI chip driver functions
 */

#include <string.h>
#include "flash.h"
#include "flashchips.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "spi.h"
#include "spi4ba.h"

static int spi_rdid(struct flashctx *flash, unsigned char *readarr, int bytes)
{
	static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
	int ret;
	int i;

	ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
	if (ret)
		return ret;
	msg_cspew("RDID returned");
	for (i = 0; i < bytes; i++)
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
	return 0;
}

static int spi_rems(struct flashctx *flash, unsigned char *readarr)
{
	unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 };
	uint32_t readaddr;
	int ret;

	ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE, cmd,
			       readarr);
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
		readaddr = (spi_get_valid_read_addr(flash) + 1) & ~1;
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
		ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE,
				       cmd, readarr);
	}
	if (ret)
		return ret;
	msg_cspew("REMS returned 0x%02x 0x%02x. ", readarr[0], readarr[1]);
	return 0;
}

static int spi_res(struct flashctx *flash, unsigned char *readarr, int bytes)
{
	unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 };
	uint32_t readaddr;
	int ret;
	int i;

	ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
		readaddr = (spi_get_valid_read_addr(flash) + 1) & ~1;
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
		ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
	}
	if (ret)
		return ret;
	msg_cspew("RES returned");
	for (i = 0; i < bytes; i++)
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
	return 0;
}

int spi_write_enable(struct flashctx *flash)
{
	static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
	int result;

	/* Send WREN (Write Enable) */
	result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);

	if (result)
		msg_cerr("%s failed\n", __func__);

	return result;
}

int spi_write_disable(struct flashctx *flash)
{
	static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };

	/* Send WRDI (Write Disable) */
	return spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
}

static int probe_spi_rdid_generic(struct flashctx *flash, int bytes)
{
	const struct flashchip *chip = flash->chip;
	unsigned char readarr[4];
	uint32_t id1;
	uint32_t id2;

	if (spi_rdid(flash, readarr, bytes)) {
		return 0;
	}

	if (!oddparity(readarr[0]))
		msg_cdbg("RDID byte 0 parity violation. ");

	/* Check if this is a continuation vendor ID.
	 * FIXME: Handle continuation device IDs.
	 */
	if (readarr[0] == 0x7f) {
		if (!oddparity(readarr[1]))
			msg_cdbg("RDID byte 1 parity violation. ");
		id1 = (readarr[0] << 8) | readarr[1];
		id2 = readarr[2];
		if (bytes > 3) {
			id2 <<= 8;
			id2 |= readarr[3];
		}
	} else {
		id1 = readarr[0];
		id2 = (readarr[1] << 8) | readarr[2];
	}

	msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);

	if (id1 == chip->manufacture_id && id2 == chip->model_id)
		return 1;

	/* Test if this is a pure vendor match. */
	if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
		return 1;

	/* Test if there is any vendor ID. */
	if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff && id1 != 0x00)
		return 1;

	return 0;
}

int probe_spi_rdid(struct flashctx *flash)
{
	return probe_spi_rdid_generic(flash, 3);
}

int probe_spi_rdid4(struct flashctx *flash)
{
	/* Some SPI controllers do not support commands with writecnt=1 and
	 * readcnt=4.
	 */
	switch (flash->mst->spi.type) {
#if CONFIG_INTERNAL == 1
#if defined(__i386__) || defined(__x86_64__)
	case SPI_CONTROLLER_IT87XX:
	case SPI_CONTROLLER_WBSIO:
		msg_cinfo("4 byte RDID not supported on this SPI controller\n");
		return 0;
		break;
#endif
#endif
	default:
		return probe_spi_rdid_generic(flash, 4);
	}

	return 0;
}

int probe_spi_rems(struct flashctx *flash)
{
	const struct flashchip *chip = flash->chip;
	unsigned char readarr[JEDEC_REMS_INSIZE];
	uint32_t id1, id2;

	if (spi_rems(flash, readarr)) {
		return 0;
	}

	id1 = readarr[0];
	id2 = readarr[1];

	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);

	if (id1 == chip->manufacture_id && id2 == chip->model_id)
		return 1;

	/* Test if this is a pure vendor match. */
	if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
		return 1;

	/* Test if there is any vendor ID. */
	if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff && id1 != 0x00)
		return 1;

	return 0;
}

int probe_spi_res1(struct flashctx *flash)
{
	static const unsigned char allff[] = {0xff, 0xff, 0xff};
	static const unsigned char all00[] = {0x00, 0x00, 0x00};
	unsigned char readarr[3];
	uint32_t id2;

	/* We only want one-byte RES if RDID and REMS are unusable. */

	/* Check if RDID is usable and does not return 0xff 0xff 0xff or
	 * 0x00 0x00 0x00. In that case, RES is pointless.
	 */
	if (!spi_rdid(flash, readarr, 3) && memcmp(readarr, allff, 3) &&
	    memcmp(readarr, all00, 3)) {
		msg_cdbg("Ignoring RES in favour of RDID.\n");
		return 0;
	}
	/* Check if REMS is usable and does not return 0xff 0xff or
	 * 0x00 0x00. In that case, RES is pointless.
	 */
	if (!spi_rems(flash, readarr) &&
	    memcmp(readarr, allff, JEDEC_REMS_INSIZE) &&
	    memcmp(readarr, all00, JEDEC_REMS_INSIZE)) {
		msg_cdbg("Ignoring RES in favour of REMS.\n");
		return 0;
	}

	if (spi_res(flash, readarr, 1)) {
		return 0;
	}

	id2 = readarr[0];

	msg_cdbg("%s: id 0x%x\n", __func__, id2);

	if (id2 != flash->chip->model_id)
		return 0;

	return 1;
}

int probe_spi_res2(struct flashctx *flash)
{
	unsigned char readarr[2];
	uint32_t id1, id2;

	if (spi_res(flash, readarr, 2)) {
		return 0;
	}

	id1 = readarr[0];
	id2 = readarr[1];

	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);

	if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
		return 0;

	return 1;
}

int probe_spi_res3(struct flashctx *flash)
{
	unsigned char readarr[3];
	uint32_t id1, id2;

	if (spi_res(flash, readarr, 3)) {
		return 0;
	}

	id1 = (readarr[0] << 8) | readarr[1];
	id2 = readarr[2];

	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);

	if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
		return 0;

	return 1;
}

/* Only used for some Atmel chips. */
int probe_spi_at25f(struct flashctx *flash)
{
	static const unsigned char cmd[AT25F_RDID_OUTSIZE] = { AT25F_RDID };
	unsigned char readarr[AT25F_RDID_INSIZE];
	uint32_t id1;
	uint32_t id2;

	if (spi_send_command(flash, sizeof(cmd), sizeof(readarr), cmd, readarr))
		return 0;

	id1 = readarr[0];
	id2 = readarr[1];

	msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);

	if (id1 == flash->chip->manufacture_id && id2 == flash->chip->model_id)
		return 1;

	return 0;
}

int spi_chip_erase_60(struct flashctx *flash)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_60_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_60 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
	
	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution\n",
			__func__);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(1000 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

int spi_chip_erase_62(struct flashctx *flash)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_62_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_62 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
	
	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution\n",
			__func__);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 2-5 s, so wait in 100 ms steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(100 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

int spi_chip_erase_c7(struct flashctx *flash)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_C7_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_C7 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution\n", __func__);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(1000 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

int spi_block_erase_52(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_52_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_52,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n",
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(100 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

/* Block size is usually
 * 32M (one die) for Micron
 */
int spi_block_erase_c4(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_C4_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_C4,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 240-480 s, so wait in 500 ms steps.
	 */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(500 * 1000 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

/* Block size is usually
 * 64k for Macronix
 * 32k for SST
 * 4-32k non-uniform for EON
 */
int spi_block_erase_d8(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_D8_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_D8,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n",
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(100 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

/* Block size is usually
 * 4k for PMC
 */
int spi_block_erase_d7(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_D7_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_D7,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n",
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(100 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

/* Page erase (usually 256B blocks) */
int spi_block_erase_db(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_PE_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_PE,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	} };

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr);
		return result;
	}

	/* Wait until the Write-In-Progress bit is cleared.
	 * This takes up to 20 ms usually (on worn out devices up to the 0.5s range), so wait in 1 ms steps. */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(1 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

/* Sector size is usually 4k, though Macronix eliteflash has 64k */
int spi_block_erase_20(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_SE_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_SE,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n",
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 15-800 ms, so wait in 10 ms steps.
	 */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(10 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

int spi_block_erase_50(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
/*		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, { */
		.writecnt	= JEDEC_BE_50_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_50,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 10 ms, so wait in 1 ms steps.
	 */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(1 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

int spi_block_erase_81(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
/*		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, { */
		.writecnt	= JEDEC_BE_81_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_81,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 8 ms, so wait in 1 ms steps.
	 */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(1 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

int spi_block_erase_60(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
		msg_cerr("%s called with incorrect arguments\n",
			__func__);
		return -1;
	}
	return spi_chip_erase_60(flash);
}

int spi_block_erase_62(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
		msg_cerr("%s called with incorrect arguments\n",
			__func__);
		return -1;
	}
	return spi_chip_erase_62(flash);
}

int spi_block_erase_c7(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
		msg_cerr("%s called with incorrect arguments\n",
			__func__);
		return -1;
	}
	return spi_chip_erase_c7(flash);
}

erasefunc_t *spi_get_erasefn_from_opcode(uint8_t opcode)
{
	switch(opcode){
	case 0xff:
	case 0x00:
		/* Not specified, assuming "not supported". */
		return NULL;
	case 0x20:
		return &spi_block_erase_20;
	case 0x50:
		return &spi_block_erase_50;
	case 0x52:
		return &spi_block_erase_52;
	case 0x60:
		return &spi_block_erase_60;
	case 0x62:
		return &spi_block_erase_62;
	case 0x81:
		return &spi_block_erase_81;
	case 0xc4:
		return &spi_block_erase_c4;
	case 0xc7:
		return &spi_block_erase_c7;
	case 0xd7:
		return &spi_block_erase_d7;
	case 0xd8:
		return &spi_block_erase_d8;
	case 0xdb:
		return &spi_block_erase_db;
	default:
		msg_cinfo("%s: unknown erase opcode (0x%02x). Please report "
			  "this at flashrom@flashrom.org\n", __func__, opcode);
		return NULL;
	}
}

int spi_byte_program(struct flashctx *flash, unsigned int addr,
		     uint8_t databyte)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BYTE_PROGRAM,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff),
					databyte
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n",
			__func__, addr);
	}
	return result;
}

int spi_nbyte_program(struct flashctx *flash, unsigned int addr, const uint8_t *bytes, unsigned int len)
{
	int result;
	/* FIXME: Switch to malloc based on len unless that kills speed. */
	unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = {
		JEDEC_BYTE_PROGRAM,
		(addr >> 16) & 0xff,
		(addr >> 8) & 0xff,
		(addr >> 0) & 0xff,
	};
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + len,
		.writearr	= cmd,
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	if (!len) {
		msg_cerr("%s called for zero-length write\n", __func__);
		return 1;
	}
	if (len > 256) {
		msg_cerr("%s called for too long a write\n", __func__);
		return 1;
	}

	memcpy(&cmd[4], bytes, len);

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n",
			__func__, addr);
	}
	return result;
}

int spi_nbyte_read(struct flashctx *flash, unsigned int address, uint8_t *bytes,
		   unsigned int len)
{
	const unsigned char cmd[JEDEC_READ_OUTSIZE] = {
		JEDEC_READ,
		(address >> 16) & 0xff,
		(address >> 8) & 0xff,
		(address >> 0) & 0xff,
	};

	/* Send Read */
	return spi_send_command(flash, sizeof(cmd), len, cmd, bytes);
}

/*
 * Read a part of the flash chip.
 * FIXME: Use the chunk code from Michael Karcher instead.
 * Each naturally aligned area is read separately in chunks with a maximum size of chunksize.
 */
int spi_read_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start,
		     unsigned int len, unsigned int chunksize)
{
	int rc = 0;
	unsigned int i, j, starthere, lenhere, toread;
	/* Limit for multi-die 4-byte-addressing chips. */
	unsigned int area_size = min(flash->chip->total_size * 1024, 16 * 1024 * 1024);

	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each area with at least one affected
	 * byte. The lowest area number is (start / area_size) since that
	 * division rounds down. The highest area number we want is the area
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest area number is
	 * (start + len - 1) / area_size. Since we want to include that last
	 * area as well, the loop condition uses <=.
	 */
	for (i = start / area_size; i <= (start + len - 1) / area_size; i++) {
		/* Byte position of the first byte in the range in this area. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * area_size);
		/* Length of bytes in the range in this area. */
		lenhere = min(start + len, (i + 1) * area_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			toread = min(chunksize, lenhere - j);
			rc = (flash->chip->feature_bits & FEATURE_4BA_SUPPORT) == 0
				? spi_nbyte_read(flash, starthere + j, buf + starthere - start + j, toread)
				: flash->chip->four_bytes_addr_funcs.read_nbyte(flash, starthere + j,
					buf + starthere - start + j, toread);
			if (rc)
				break;
		}
		if (rc)
			break;
	}

	return rc;
}

/*
 * Write a part of the flash chip.
 * FIXME: Use the chunk code from Michael Karcher instead.
 * Each page is written separately in chunks with a maximum size of chunksize.
 */
int spi_write_chunked(struct flashctx *flash, const uint8_t *buf, unsigned int start,
		      unsigned int len, unsigned int chunksize)
{
	int rc = 0;
	unsigned int i, j, starthere, lenhere, towrite;
	/* FIXME: page_size is the wrong variable. We need max_writechunk_size
	 * in struct flashctx to do this properly. All chips using
	 * spi_chip_write_256 have page_size set to max_writechunk_size, so
	 * we're OK for now.
	 */
	unsigned int page_size = flash->chip->page_size;

	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each page with at least one affected
	 * byte. The lowest page number is (start / page_size) since that
	 * division rounds down. The highest page number we want is the page
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest page number is
	 * (start + len - 1) / page_size. Since we want to include that last
	 * page as well, the loop condition uses <=.
	 */
	for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
		/* Byte position of the first byte in the range in this page. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * page_size);
		/* Length of bytes in the range in this page. */
		lenhere = min(start + len, (i + 1) * page_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			towrite = min(chunksize, lenhere - j);
			rc = (flash->chip->feature_bits & FEATURE_4BA_SUPPORT) == 0
				? spi_nbyte_program(flash, starthere + j, buf + starthere - start + j, towrite)
				: flash->chip->four_bytes_addr_funcs.program_nbyte(flash, starthere + j,
					buf + starthere - start + j, towrite);
			if (rc)
				break;
			while (spi_read_status_register(flash) & SPI_SR_WIP)
				programmer_delay(10);
		}
		if (rc)
			break;
	}

	return rc;
}

/*
 * Program chip using byte programming. (SLOW!)
 * This is for chips which can only handle one byte writes
 * and for chips where memory mapped programming is impossible
 * (e.g. due to size constraints in IT87* for over 512 kB)
 */
/* real chunksize is 1, logical chunksize is 1 */
int spi_chip_write_1(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
{
	unsigned int i;
	int result = 0;

	for (i = start; i < start + len; i++) {
		result = (flash->chip->feature_bits & FEATURE_4BA_SUPPORT) == 0
			? spi_byte_program(flash, i, buf[i - start])
			: flash->chip->four_bytes_addr_funcs.program_byte(flash, i, buf[i - start]);
		if (result)
			return 1;
		while (spi_read_status_register(flash) & SPI_SR_WIP)
			programmer_delay(10);
	}

	return 0;
}

int default_spi_write_aai(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
{
	uint32_t pos = start;
	int result;
	unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = {
		JEDEC_AAI_WORD_PROGRAM,
	};
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_AAI_WORD_PROGRAM_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_AAI_WORD_PROGRAM,
					(start >> 16) & 0xff,
					(start >> 8) & 0xff,
					(start & 0xff),
					buf[0],
					buf[1]
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	switch (flash->mst->spi.type) {
#if CONFIG_INTERNAL == 1
#if defined(__i386__) || defined(__x86_64__)
	case SPI_CONTROLLER_IT87XX:
	case SPI_CONTROLLER_WBSIO:
		msg_perr("%s: impossible with this SPI controller,"
				" degrading to byte program\n", __func__);
		return spi_chip_write_1(flash, buf, start, len);
#endif
#endif
	default:
		break;
	}

	/* The even start address and even length requirements can be either
	 * honored outside this function, or we can call spi_byte_program
	 * for the first and/or last byte and use AAI for the rest.
	 * FIXME: Move this to generic code.
	 */
	/* The data sheet requires a start address with the low bit cleared. */
	if (start % 2) {
		msg_cerr("%s: start address not even! Please report a bug at "
			 "flashrom@flashrom.org\n", __func__);
		if (spi_chip_write_1(flash, buf, start, start % 2))
			return SPI_GENERIC_ERROR;
		pos += start % 2;
		cmds[1].writearr = (const unsigned char[]){
					JEDEC_AAI_WORD_PROGRAM,
					(pos >> 16) & 0xff,
					(pos >> 8) & 0xff,
					(pos & 0xff),
					buf[pos - start],
					buf[pos - start + 1]
				};
		/* Do not return an error for now. */
		//return SPI_GENERIC_ERROR;
	}
	/* The data sheet requires total AAI write length to be even. */
	if (len % 2) {
		msg_cerr("%s: total write length not even! Please report a "
			 "bug at flashrom@flashrom.org\n", __func__);
		/* Do not return an error for now. */
		//return SPI_GENERIC_ERROR;
	}


	result = spi_send_multicommand(flash, cmds);
	if (result != 0) {
		msg_cerr("%s failed during start command execution: %d\n", __func__, result);
		goto bailout;
	}
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(10);

	/* We already wrote 2 bytes in the multicommand step. */
	pos += 2;

	/* Are there at least two more bytes to write? */
	while (pos < start + len - 1) {
		cmd[1] = buf[pos++ - start];
		cmd[2] = buf[pos++ - start];
		result = spi_send_command(flash, JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0, cmd, NULL);
		if (result != 0) {
			msg_cerr("%s failed during followup AAI command execution: %d\n", __func__, result);
			goto bailout;
		}
		while (spi_read_status_register(flash) & SPI_SR_WIP)
			programmer_delay(10);
	}

	/* Use WRDI to exit AAI mode. This needs to be done before issuing any other non-AAI command. */
	result = spi_write_disable(flash);
	if (result != 0) {
		msg_cerr("%s failed to disable AAI mode.\n", __func__);
		return SPI_GENERIC_ERROR;
	}

	/* Write remaining byte (if any). */
	if (pos < start + len) {
		if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2))
			return SPI_GENERIC_ERROR;
		pos += pos % 2;
	}

	return 0;

bailout:
	result = spi_write_disable(flash);
	if (result != 0)
		msg_cerr("%s failed to disable AAI mode.\n", __func__);
	return SPI_GENERIC_ERROR;
}