diff options
Diffstat (limited to 'app/src/main/java/com/jcraft/jzlib/Deflate.java')
-rw-r--r-- | app/src/main/java/com/jcraft/jzlib/Deflate.java | 1623 |
1 files changed, 0 insertions, 1623 deletions
diff --git a/app/src/main/java/com/jcraft/jzlib/Deflate.java b/app/src/main/java/com/jcraft/jzlib/Deflate.java deleted file mode 100644 index 9978802..0000000 --- a/app/src/main/java/com/jcraft/jzlib/Deflate.java +++ /dev/null @@ -1,1623 +0,0 @@ -/* -*-mode:java; c-basic-offset:2; -*- */ -/* -Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in - the documentation and/or other materials provided with the distribution. - - 3. The names of the authors may not be used to endorse or promote products - derived from this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, -INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND -FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, -INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, -INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, -OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING -NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, -EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ -/* - * This program is based on zlib-1.1.3, so all credit should go authors - * Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu) - * and contributors of zlib. - */ - -package com.jcraft.jzlib; - -public -final class Deflate{ - - static final private int MAX_MEM_LEVEL=9; - - static final private int Z_DEFAULT_COMPRESSION=-1; - - static final private int MAX_WBITS=15; // 32K LZ77 window - static final private int DEF_MEM_LEVEL=8; - - static class Config{ - int good_length; // reduce lazy search above this match length - int max_lazy; // do not perform lazy search above this match length - int nice_length; // quit search above this match length - int max_chain; - int func; - Config(int good_length, int max_lazy, - int nice_length, int max_chain, int func){ - this.good_length=good_length; - this.max_lazy=max_lazy; - this.nice_length=nice_length; - this.max_chain=max_chain; - this.func=func; - } - } - - static final private int STORED=0; - static final private int FAST=1; - static final private int SLOW=2; - static final private Config[] config_table; - static{ - config_table=new Config[10]; - // good lazy nice chain - config_table[0]=new Config(0, 0, 0, 0, STORED); - config_table[1]=new Config(4, 4, 8, 4, FAST); - config_table[2]=new Config(4, 5, 16, 8, FAST); - config_table[3]=new Config(4, 6, 32, 32, FAST); - - config_table[4]=new Config(4, 4, 16, 16, SLOW); - config_table[5]=new Config(8, 16, 32, 32, SLOW); - config_table[6]=new Config(8, 16, 128, 128, SLOW); - config_table[7]=new Config(8, 32, 128, 256, SLOW); - config_table[8]=new Config(32, 128, 258, 1024, SLOW); - config_table[9]=new Config(32, 258, 258, 4096, SLOW); - } - - static final private String[] z_errmsg = { - "need dictionary", // Z_NEED_DICT 2 - "stream end", // Z_STREAM_END 1 - "", // Z_OK 0 - "file error", // Z_ERRNO (-1) - "stream error", // Z_STREAM_ERROR (-2) - "data error", // Z_DATA_ERROR (-3) - "insufficient memory", // Z_MEM_ERROR (-4) - "buffer error", // Z_BUF_ERROR (-5) - "incompatible version",// Z_VERSION_ERROR (-6) - "" - }; - - // block not completed, need more input or more output - static final private int NeedMore=0; - - // block flush performed - static final private int BlockDone=1; - - // finish started, need only more output at next deflate - static final private int FinishStarted=2; - - // finish done, accept no more input or output - static final private int FinishDone=3; - - // preset dictionary flag in zlib header - static final private int PRESET_DICT=0x20; - - static final private int Z_FILTERED=1; - static final private int Z_HUFFMAN_ONLY=2; - static final private int Z_DEFAULT_STRATEGY=0; - - static final private int Z_NO_FLUSH=0; - static final private int Z_PARTIAL_FLUSH=1; - static final private int Z_SYNC_FLUSH=2; - static final private int Z_FULL_FLUSH=3; - static final private int Z_FINISH=4; - - static final private int Z_OK=0; - static final private int Z_STREAM_END=1; - static final private int Z_NEED_DICT=2; - static final private int Z_ERRNO=-1; - static final private int Z_STREAM_ERROR=-2; - static final private int Z_DATA_ERROR=-3; - static final private int Z_MEM_ERROR=-4; - static final private int Z_BUF_ERROR=-5; - static final private int Z_VERSION_ERROR=-6; - - static final private int INIT_STATE=42; - static final private int BUSY_STATE=113; - static final private int FINISH_STATE=666; - - // The deflate compression method - static final private int Z_DEFLATED=8; - - static final private int STORED_BLOCK=0; - static final private int STATIC_TREES=1; - static final private int DYN_TREES=2; - - // The three kinds of block type - static final private int Z_BINARY=0; - static final private int Z_ASCII=1; - static final private int Z_UNKNOWN=2; - - static final private int Buf_size=8*2; - - // repeat previous bit length 3-6 times (2 bits of repeat count) - static final private int REP_3_6=16; - - // repeat a zero length 3-10 times (3 bits of repeat count) - static final private int REPZ_3_10=17; - - // repeat a zero length 11-138 times (7 bits of repeat count) - static final private int REPZ_11_138=18; - - static final private int MIN_MATCH=3; - static final private int MAX_MATCH=258; - static final private int MIN_LOOKAHEAD=(MAX_MATCH+MIN_MATCH+1); - - static final private int MAX_BITS=15; - static final private int D_CODES=30; - static final private int BL_CODES=19; - static final private int LENGTH_CODES=29; - static final private int LITERALS=256; - static final private int L_CODES=(LITERALS+1+LENGTH_CODES); - static final private int HEAP_SIZE=(2*L_CODES+1); - - static final private int END_BLOCK=256; - - ZStream strm; // pointer back to this zlib stream - int status; // as the name implies - byte[] pending_buf; // output still pending - int pending_buf_size; // size of pending_buf - int pending_out; // next pending byte to output to the stream - int pending; // nb of bytes in the pending buffer - int noheader; // suppress zlib header and adler32 - byte data_type; // UNKNOWN, BINARY or ASCII - byte method; // STORED (for zip only) or DEFLATED - int last_flush; // value of flush param for previous deflate call - - int w_size; // LZ77 window size (32K by default) - int w_bits; // log2(w_size) (8..16) - int w_mask; // w_size - 1 - - byte[] window; - // Sliding window. Input bytes are read into the second half of the window, - // and move to the first half later to keep a dictionary of at least wSize - // bytes. With this organization, matches are limited to a distance of - // wSize-MAX_MATCH bytes, but this ensures that IO is always - // performed with a length multiple of the block size. Also, it limits - // the window size to 64K, which is quite useful on MSDOS. - // To do: use the user input buffer as sliding window. - - int window_size; - // Actual size of window: 2*wSize, except when the user input buffer - // is directly used as sliding window. - - short[] prev; - // Link to older string with same hash index. To limit the size of this - // array to 64K, this link is maintained only for the last 32K strings. - // An index in this array is thus a window index modulo 32K. - - short[] head; // Heads of the hash chains or NIL. - - int ins_h; // hash index of string to be inserted - int hash_size; // number of elements in hash table - int hash_bits; // log2(hash_size) - int hash_mask; // hash_size-1 - - // Number of bits by which ins_h must be shifted at each input - // step. It must be such that after MIN_MATCH steps, the oldest - // byte no longer takes part in the hash key, that is: - // hash_shift * MIN_MATCH >= hash_bits - int hash_shift; - - // Window position at the beginning of the current output block. Gets - // negative when the window is moved backwards. - - int block_start; - - int match_length; // length of best match - int prev_match; // previous match - int match_available; // set if previous match exists - int strstart; // start of string to insert - int match_start; // start of matching string - int lookahead; // number of valid bytes ahead in window - - // Length of the best match at previous step. Matches not greater than this - // are discarded. This is used in the lazy match evaluation. - int prev_length; - - // To speed up deflation, hash chains are never searched beyond this - // length. A higher limit improves compression ratio but degrades the speed. - int max_chain_length; - - // Attempt to find a better match only when the current match is strictly - // smaller than this value. This mechanism is used only for compression - // levels >= 4. - int max_lazy_match; - - // Insert new strings in the hash table only if the match length is not - // greater than this length. This saves time but degrades compression. - // max_insert_length is used only for compression levels <= 3. - - int level; // compression level (1..9) - int strategy; // favor or force Huffman coding - - // Use a faster search when the previous match is longer than this - int good_match; - - // Stop searching when current match exceeds this - int nice_match; - - short[] dyn_ltree; // literal and length tree - short[] dyn_dtree; // distance tree - short[] bl_tree; // Huffman tree for bit lengths - - Tree l_desc=new Tree(); // desc for literal tree - Tree d_desc=new Tree(); // desc for distance tree - Tree bl_desc=new Tree(); // desc for bit length tree - - // number of codes at each bit length for an optimal tree - short[] bl_count=new short[MAX_BITS+1]; - - // heap used to build the Huffman trees - int[] heap=new int[2*L_CODES+1]; - - int heap_len; // number of elements in the heap - int heap_max; // element of largest frequency - // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. - // The same heap array is used to build all trees. - - // Depth of each subtree used as tie breaker for trees of equal frequency - byte[] depth=new byte[2*L_CODES+1]; - - int l_buf; // index for literals or lengths */ - - // Size of match buffer for literals/lengths. There are 4 reasons for - // limiting lit_bufsize to 64K: - // - frequencies can be kept in 16 bit counters - // - if compression is not successful for the first block, all input - // data is still in the window so we can still emit a stored block even - // when input comes from standard input. (This can also be done for - // all blocks if lit_bufsize is not greater than 32K.) - // - if compression is not successful for a file smaller than 64K, we can - // even emit a stored file instead of a stored block (saving 5 bytes). - // This is applicable only for zip (not gzip or zlib). - // - creating new Huffman trees less frequently may not provide fast - // adaptation to changes in the input data statistics. (Take for - // example a binary file with poorly compressible code followed by - // a highly compressible string table.) Smaller buffer sizes give - // fast adaptation but have of course the overhead of transmitting - // trees more frequently. - // - I can't count above 4 - int lit_bufsize; - - int last_lit; // running index in l_buf - - // Buffer for distances. To simplify the code, d_buf and l_buf have - // the same number of elements. To use different lengths, an extra flag - // array would be necessary. - - int d_buf; // index of pendig_buf - - int opt_len; // bit length of current block with optimal trees - int static_len; // bit length of current block with static trees - int matches; // number of string matches in current block - int last_eob_len; // bit length of EOB code for last block - - // Output buffer. bits are inserted starting at the bottom (least - // significant bits). - short bi_buf; - - // Number of valid bits in bi_buf. All bits above the last valid bit - // are always zero. - int bi_valid; - - Deflate(){ - dyn_ltree=new short[HEAP_SIZE*2]; - dyn_dtree=new short[(2*D_CODES+1)*2]; // distance tree - bl_tree=new short[(2*BL_CODES+1)*2]; // Huffman tree for bit lengths - } - - void lm_init() { - window_size=2*w_size; - - head[hash_size-1]=0; - for(int i=0; i<hash_size-1; i++){ - head[i]=0; - } - - // Set the default configuration parameters: - max_lazy_match = Deflate.config_table[level].max_lazy; - good_match = Deflate.config_table[level].good_length; - nice_match = Deflate.config_table[level].nice_length; - max_chain_length = Deflate.config_table[level].max_chain; - - strstart = 0; - block_start = 0; - lookahead = 0; - match_length = prev_length = MIN_MATCH-1; - match_available = 0; - ins_h = 0; - } - - // Initialize the tree data structures for a new zlib stream. - void tr_init(){ - - l_desc.dyn_tree = dyn_ltree; - l_desc.stat_desc = StaticTree.static_l_desc; - - d_desc.dyn_tree = dyn_dtree; - d_desc.stat_desc = StaticTree.static_d_desc; - - bl_desc.dyn_tree = bl_tree; - bl_desc.stat_desc = StaticTree.static_bl_desc; - - bi_buf = 0; - bi_valid = 0; - last_eob_len = 8; // enough lookahead for inflate - - // Initialize the first block of the first file: - init_block(); - } - - void init_block(){ - // Initialize the trees. - for(int i = 0; i < L_CODES; i++) dyn_ltree[i*2] = 0; - for(int i= 0; i < D_CODES; i++) dyn_dtree[i*2] = 0; - for(int i= 0; i < BL_CODES; i++) bl_tree[i*2] = 0; - - dyn_ltree[END_BLOCK*2] = 1; - opt_len = static_len = 0; - last_lit = matches = 0; - } - - // Restore the heap property by moving down the tree starting at node k, - // exchanging a node with the smallest of its two sons if necessary, stopping - // when the heap property is re-established (each father smaller than its - // two sons). - void pqdownheap(short[] tree, // the tree to restore - int k // node to move down - ){ - int v = heap[k]; - int j = k << 1; // left son of k - while (j <= heap_len) { - // Set j to the smallest of the two sons: - if (j < heap_len && - smaller(tree, heap[j+1], heap[j], depth)){ - j++; - } - // Exit if v is smaller than both sons - if(smaller(tree, v, heap[j], depth)) break; - - // Exchange v with the smallest son - heap[k]=heap[j]; k = j; - // And continue down the tree, setting j to the left son of k - j <<= 1; - } - heap[k] = v; - } - - static boolean smaller(short[] tree, int n, int m, byte[] depth){ - short tn2=tree[n*2]; - short tm2=tree[m*2]; - return (tn2<tm2 || - (tn2==tm2 && depth[n] <= depth[m])); - } - - // Scan a literal or distance tree to determine the frequencies of the codes - // in the bit length tree. - void scan_tree (short[] tree,// the tree to be scanned - int max_code // and its largest code of non zero frequency - ){ - int n; // iterates over all tree elements - int prevlen = -1; // last emitted length - int curlen; // length of current code - int nextlen = tree[0*2+1]; // length of next code - int count = 0; // repeat count of the current code - int max_count = 7; // max repeat count - int min_count = 4; // min repeat count - - if (nextlen == 0){ max_count = 138; min_count = 3; } - tree[(max_code+1)*2+1] = (short)0xffff; // guard - - for(n = 0; n <= max_code; n++) { - curlen = nextlen; nextlen = tree[(n+1)*2+1]; - if(++count < max_count && curlen == nextlen) { - continue; - } - else if(count < min_count) { - bl_tree[curlen*2] += count; - } - else if(curlen != 0) { - if(curlen != prevlen) bl_tree[curlen*2]++; - bl_tree[REP_3_6*2]++; - } - else if(count <= 10) { - bl_tree[REPZ_3_10*2]++; - } - else{ - bl_tree[REPZ_11_138*2]++; - } - count = 0; prevlen = curlen; - if(nextlen == 0) { - max_count = 138; min_count = 3; - } - else if(curlen == nextlen) { - max_count = 6; min_count = 3; - } - else{ - max_count = 7; min_count = 4; - } - } - } - - // Construct the Huffman tree for the bit lengths and return the index in - // bl_order of the last bit length code to send. - int build_bl_tree(){ - int max_blindex; // index of last bit length code of non zero freq - - // Determine the bit length frequencies for literal and distance trees - scan_tree(dyn_ltree, l_desc.max_code); - scan_tree(dyn_dtree, d_desc.max_code); - - // Build the bit length tree: - bl_desc.build_tree(this); - // opt_len now includes the length of the tree representations, except - // the lengths of the bit lengths codes and the 5+5+4 bits for the counts. - - // Determine the number of bit length codes to send. The pkzip format - // requires that at least 4 bit length codes be sent. (appnote.txt says - // 3 but the actual value used is 4.) - for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { - if (bl_tree[Tree.bl_order[max_blindex]*2+1] != 0) break; - } - // Update opt_len to include the bit length tree and counts - opt_len += 3*(max_blindex+1) + 5+5+4; - - return max_blindex; - } - - - // Send the header for a block using dynamic Huffman trees: the counts, the - // lengths of the bit length codes, the literal tree and the distance tree. - // IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. - void send_all_trees(int lcodes, int dcodes, int blcodes){ - int rank; // index in bl_order - - send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt - send_bits(dcodes-1, 5); - send_bits(blcodes-4, 4); // not -3 as stated in appnote.txt - for (rank = 0; rank < blcodes; rank++) { - send_bits(bl_tree[Tree.bl_order[rank]*2+1], 3); - } - send_tree(dyn_ltree, lcodes-1); // literal tree - send_tree(dyn_dtree, dcodes-1); // distance tree - } - - // Send a literal or distance tree in compressed form, using the codes in - // bl_tree. - void send_tree (short[] tree,// the tree to be sent - int max_code // and its largest code of non zero frequency - ){ - int n; // iterates over all tree elements - int prevlen = -1; // last emitted length - int curlen; // length of current code - int nextlen = tree[0*2+1]; // length of next code - int count = 0; // repeat count of the current code - int max_count = 7; // max repeat count - int min_count = 4; // min repeat count - - if (nextlen == 0){ max_count = 138; min_count = 3; } - - for (n = 0; n <= max_code; n++) { - curlen = nextlen; nextlen = tree[(n+1)*2+1]; - if(++count < max_count && curlen == nextlen) { - continue; - } - else if(count < min_count) { - do { send_code(curlen, bl_tree); } while (--count != 0); - } - else if(curlen != 0){ - if(curlen != prevlen){ - send_code(curlen, bl_tree); count--; - } - send_code(REP_3_6, bl_tree); - send_bits(count-3, 2); - } - else if(count <= 10){ - send_code(REPZ_3_10, bl_tree); - send_bits(count-3, 3); - } - else{ - send_code(REPZ_11_138, bl_tree); - send_bits(count-11, 7); - } - count = 0; prevlen = curlen; - if(nextlen == 0){ - max_count = 138; min_count = 3; - } - else if(curlen == nextlen){ - max_count = 6; min_count = 3; - } - else{ - max_count = 7; min_count = 4; - } - } - } - - // Output a byte on the stream. - // IN assertion: there is enough room in pending_buf. - final void put_byte(byte[] p, int start, int len){ - System.arraycopy(p, start, pending_buf, pending, len); - pending+=len; - } - - final void put_byte(byte c){ - pending_buf[pending++]=c; - } - final void put_short(int w) { - put_byte((byte)(w/*&0xff*/)); - put_byte((byte)(w>>>8)); - } - final void putShortMSB(int b){ - put_byte((byte)(b>>8)); - put_byte((byte)(b/*&0xff*/)); - } - - final void send_code(int c, short[] tree){ - int c2=c*2; - send_bits((tree[c2]&0xffff), (tree[c2+1]&0xffff)); - } - - void send_bits(int value, int length){ - int len = length; - if (bi_valid > (int)Buf_size - len) { - int val = value; -// bi_buf |= (val << bi_valid); - bi_buf |= ((val << bi_valid)&0xffff); - put_short(bi_buf); - bi_buf = (short)(val >>> (Buf_size - bi_valid)); - bi_valid += len - Buf_size; - } else { -// bi_buf |= (value) << bi_valid; - bi_buf |= (((value) << bi_valid)&0xffff); - bi_valid += len; - } - } - - // Send one empty static block to give enough lookahead for inflate. - // This takes 10 bits, of which 7 may remain in the bit buffer. - // The current inflate code requires 9 bits of lookahead. If the - // last two codes for the previous block (real code plus EOB) were coded - // on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode - // the last real code. In this case we send two empty static blocks instead - // of one. (There are no problems if the previous block is stored or fixed.) - // To simplify the code, we assume the worst case of last real code encoded - // on one bit only. - void _tr_align(){ - send_bits(STATIC_TREES<<1, 3); - send_code(END_BLOCK, StaticTree.static_ltree); - - bi_flush(); - - // Of the 10 bits for the empty block, we have already sent - // (10 - bi_valid) bits. The lookahead for the last real code (before - // the EOB of the previous block) was thus at least one plus the length - // of the EOB plus what we have just sent of the empty static block. - if (1 + last_eob_len + 10 - bi_valid < 9) { - send_bits(STATIC_TREES<<1, 3); - send_code(END_BLOCK, StaticTree.static_ltree); - bi_flush(); - } - last_eob_len = 7; - } - - - // Save the match info and tally the frequency counts. Return true if - // the current block must be flushed. - boolean _tr_tally (int dist, // distance of matched string - int lc // match length-MIN_MATCH or unmatched char (if dist==0) - ){ - - pending_buf[d_buf+last_lit*2] = (byte)(dist>>>8); - pending_buf[d_buf+last_lit*2+1] = (byte)dist; - - pending_buf[l_buf+last_lit] = (byte)lc; last_lit++; - - if (dist == 0) { - // lc is the unmatched char - dyn_ltree[lc*2]++; - } - else { - matches++; - // Here, lc is the match length - MIN_MATCH - dist--; // dist = match distance - 1 - dyn_ltree[(Tree._length_code[lc]+LITERALS+1)*2]++; - dyn_dtree[Tree.d_code(dist)*2]++; - } - - if ((last_lit & 0x1fff) == 0 && level > 2) { - // Compute an upper bound for the compressed length - int out_length = last_lit*8; - int in_length = strstart - block_start; - int dcode; - for (dcode = 0; dcode < D_CODES; dcode++) { - out_length += (int)dyn_dtree[dcode*2] * - (5L+Tree.extra_dbits[dcode]); - } - out_length >>>= 3; - if ((matches < (last_lit/2)) && out_length < in_length/2) return true; - } - - return (last_lit == lit_bufsize-1); - // We avoid equality with lit_bufsize because of wraparound at 64K - // on 16 bit machines and because stored blocks are restricted to - // 64K-1 bytes. - } - - // Send the block data compressed using the given Huffman trees - void compress_block(short[] ltree, short[] dtree){ - int dist; // distance of matched string - int lc; // match length or unmatched char (if dist == 0) - int lx = 0; // running index in l_buf - int code; // the code to send - int extra; // number of extra bits to send - - if (last_lit != 0){ - do{ - dist=((pending_buf[d_buf+lx*2]<<8)&0xff00)| - (pending_buf[d_buf+lx*2+1]&0xff); - lc=(pending_buf[l_buf+lx])&0xff; lx++; - - if(dist == 0){ - send_code(lc, ltree); // send a literal byte - } - else{ - // Here, lc is the match length - MIN_MATCH - code = Tree._length_code[lc]; - - send_code(code+LITERALS+1, ltree); // send the length code - extra = Tree.extra_lbits[code]; - if(extra != 0){ - lc -= Tree.base_length[code]; - send_bits(lc, extra); // send the extra length bits - } - dist--; // dist is now the match distance - 1 - code = Tree.d_code(dist); - - send_code(code, dtree); // send the distance code - extra = Tree.extra_dbits[code]; - if (extra != 0) { - dist -= Tree.base_dist[code]; - send_bits(dist, extra); // send the extra distance bits - } - } // literal or match pair ? - - // Check that the overlay between pending_buf and d_buf+l_buf is ok: - } - while (lx < last_lit); - } - - send_code(END_BLOCK, ltree); - last_eob_len = ltree[END_BLOCK*2+1]; - } - - // Set the data type to ASCII or BINARY, using a crude approximation: - // binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. - // IN assertion: the fields freq of dyn_ltree are set and the total of all - // frequencies does not exceed 64K (to fit in an int on 16 bit machines). - void set_data_type(){ - int n = 0; - int ascii_freq = 0; - int bin_freq = 0; - while(n<7){ bin_freq += dyn_ltree[n*2]; n++;} - while(n<128){ ascii_freq += dyn_ltree[n*2]; n++;} - while(n<LITERALS){ bin_freq += dyn_ltree[n*2]; n++;} - data_type=(byte)(bin_freq > (ascii_freq >>> 2) ? Z_BINARY : Z_ASCII); - } - - // Flush the bit buffer, keeping at most 7 bits in it. - void bi_flush(){ - if (bi_valid == 16) { - put_short(bi_buf); - bi_buf=0; - bi_valid=0; - } - else if (bi_valid >= 8) { - put_byte((byte)bi_buf); - bi_buf>>>=8; - bi_valid-=8; - } - } - - // Flush the bit buffer and align the output on a byte boundary - void bi_windup(){ - if (bi_valid > 8) { - put_short(bi_buf); - } else if (bi_valid > 0) { - put_byte((byte)bi_buf); - } - bi_buf = 0; - bi_valid = 0; - } - - // Copy a stored block, storing first the length and its - // one's complement if requested. - void copy_block(int buf, // the input data - int len, // its length - boolean header // true if block header must be written - ){ - int index=0; - bi_windup(); // align on byte boundary - last_eob_len = 8; // enough lookahead for inflate - - if (header) { - put_short((short)len); - put_short((short)~len); - } - - // while(len--!=0) { - // put_byte(window[buf+index]); - // index++; - // } - put_byte(window, buf, len); - } - - void flush_block_only(boolean eof){ - _tr_flush_block(block_start>=0 ? block_start : -1, - strstart-block_start, - eof); - block_start=strstart; - strm.flush_pending(); - } - - // Copy without compression as much as possible from the input stream, return - // the current block state. - // This function does not insert new strings in the dictionary since - // uncompressible data is probably not useful. This function is used - // only for the level=0 compression option. - // NOTE: this function should be optimized to avoid extra copying from - // window to pending_buf. - int deflate_stored(int flush){ - // Stored blocks are limited to 0xffff bytes, pending_buf is limited - // to pending_buf_size, and each stored block has a 5 byte header: - - int max_block_size = 0xffff; - int max_start; - - if(max_block_size > pending_buf_size - 5) { - max_block_size = pending_buf_size - 5; - } - - // Copy as much as possible from input to output: - while(true){ - // Fill the window as much as possible: - if(lookahead<=1){ - fill_window(); - if(lookahead==0 && flush==Z_NO_FLUSH) return NeedMore; - if(lookahead==0) break; // flush the current block - } - - strstart+=lookahead; - lookahead=0; - - // Emit a stored block if pending_buf will be full: - max_start=block_start+max_block_size; - if(strstart==0|| strstart>=max_start) { - // strstart == 0 is possible when wraparound on 16-bit machine - lookahead = (int)(strstart-max_start); - strstart = (int)max_start; - - flush_block_only(false); - if(strm.avail_out==0) return NeedMore; - - } - - // Flush if we may have to slide, otherwise block_start may become - // negative and the data will be gone: - if(strstart-block_start >= w_size-MIN_LOOKAHEAD) { - flush_block_only(false); - if(strm.avail_out==0) return NeedMore; - } - } - - flush_block_only(flush == Z_FINISH); - if(strm.avail_out==0) - return (flush == Z_FINISH) ? FinishStarted : NeedMore; - - return flush == Z_FINISH ? FinishDone : BlockDone; - } - - // Send a stored block - void _tr_stored_block(int buf, // input block - int stored_len, // length of input block - boolean eof // true if this is the last block for a file - ){ - send_bits((STORED_BLOCK<<1)+(eof?1:0), 3); // send block type - copy_block(buf, stored_len, true); // with header - } - - // Determine the best encoding for the current block: dynamic trees, static - // trees or store, and output the encoded block to the zip file. - void _tr_flush_block(int buf, // input block, or NULL if too old - int stored_len, // length of input block - boolean eof // true if this is the last block for a file - ) { - int opt_lenb, static_lenb;// opt_len and static_len in bytes - int max_blindex = 0; // index of last bit length code of non zero freq - - // Build the Huffman trees unless a stored block is forced - if(level > 0) { - // Check if the file is ascii or binary - if(data_type == Z_UNKNOWN) set_data_type(); - - // Construct the literal and distance trees - l_desc.build_tree(this); - - d_desc.build_tree(this); - - // At this point, opt_len and static_len are the total bit lengths of - // the compressed block data, excluding the tree representations. - - // Build the bit length tree for the above two trees, and get the index - // in bl_order of the last bit length code to send. - max_blindex=build_bl_tree(); - - // Determine the best encoding. Compute first the block length in bytes - opt_lenb=(opt_len+3+7)>>>3; - static_lenb=(static_len+3+7)>>>3; - - if(static_lenb<=opt_lenb) opt_lenb=static_lenb; - } - else { - opt_lenb=static_lenb=stored_len+5; // force a stored block - } - - if(stored_len+4<=opt_lenb && buf != -1){ - // 4: two words for the lengths - // The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. - // Otherwise we can't have processed more than WSIZE input bytes since - // the last block flush, because compression would have been - // successful. If LIT_BUFSIZE <= WSIZE, it is never too late to - // transform a block into a stored block. - _tr_stored_block(buf, stored_len, eof); - } - else if(static_lenb == opt_lenb){ - send_bits((STATIC_TREES<<1)+(eof?1:0), 3); - compress_block(StaticTree.static_ltree, StaticTree.static_dtree); - } - else{ - send_bits((DYN_TREES<<1)+(eof?1:0), 3); - send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1); - compress_block(dyn_ltree, dyn_dtree); - } - - // The above check is made mod 2^32, for files larger than 512 MB - // and uLong implemented on 32 bits. - - init_block(); - - if(eof){ - bi_windup(); - } - } - - // Fill the window when the lookahead becomes insufficient. - // Updates strstart and lookahead. - // - // IN assertion: lookahead < MIN_LOOKAHEAD - // OUT assertions: strstart <= window_size-MIN_LOOKAHEAD - // At least one byte has been read, or avail_in == 0; reads are - // performed for at least two bytes (required for the zip translate_eol - // option -- not supported here). - void fill_window(){ - int n, m; - int p; - int more; // Amount of free space at the end of the window. - - do{ - more = (window_size-lookahead-strstart); - - // Deal with !@#$% 64K limit: - if(more==0 && strstart==0 && lookahead==0){ - more = w_size; - } - else if(more==-1) { - // Very unlikely, but possible on 16 bit machine if strstart == 0 - // and lookahead == 1 (input done one byte at time) - more--; - - // If the window is almost full and there is insufficient lookahead, - // move the upper half to the lower one to make room in the upper half. - } - else if(strstart >= w_size+ w_size-MIN_LOOKAHEAD) { - System.arraycopy(window, w_size, window, 0, w_size); - match_start-=w_size; - strstart-=w_size; // we now have strstart >= MAX_DIST - block_start-=w_size; - - // Slide the hash table (could be avoided with 32 bit values - // at the expense of memory usage). We slide even when level == 0 - // to keep the hash table consistent if we switch back to level > 0 - // later. (Using level 0 permanently is not an optimal usage of - // zlib, so we don't care about this pathological case.) - - n = hash_size; - p=n; - do { - m = (head[--p]&0xffff); - head[p]=(m>=w_size ? (short)(m-w_size) : 0); - } - while (--n != 0); - - n = w_size; - p = n; - do { - m = (prev[--p]&0xffff); - prev[p] = (m >= w_size ? (short)(m-w_size) : 0); - // If n is not on any hash chain, prev[n] is garbage but - // its value will never be used. - } - while (--n!=0); - more += w_size; - } - - if (strm.avail_in == 0) return; - - // If there was no sliding: - // strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && - // more == window_size - lookahead - strstart - // => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) - // => more >= window_size - 2*WSIZE + 2 - // In the BIG_MEM or MMAP case (not yet supported), - // window_size == input_size + MIN_LOOKAHEAD && - // strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. - // Otherwise, window_size == 2*WSIZE so more >= 2. - // If there was sliding, more >= WSIZE. So in all cases, more >= 2. - - n = strm.read_buf(window, strstart + lookahead, more); - lookahead += n; - - // Initialize the hash value now that we have some input: - if(lookahead >= MIN_MATCH) { - ins_h = window[strstart]&0xff; - ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask; - } - // If the whole input has less than MIN_MATCH bytes, ins_h is garbage, - // but this is not important since only literal bytes will be emitted. - } - while (lookahead < MIN_LOOKAHEAD && strm.avail_in != 0); - } - - // Compress as much as possible from the input stream, return the current - // block state. - // This function does not perform lazy evaluation of matches and inserts - // new strings in the dictionary only for unmatched strings or for short - // matches. It is used only for the fast compression options. - int deflate_fast(int flush){ -// short hash_head = 0; // head of the hash chain - int hash_head = 0; // head of the hash chain - boolean bflush; // set if current block must be flushed - - while(true){ - // Make sure that we always have enough lookahead, except - // at the end of the input file. We need MAX_MATCH bytes - // for the next match, plus MIN_MATCH bytes to insert the - // string following the next match. - if(lookahead < MIN_LOOKAHEAD){ - fill_window(); - if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH){ - return NeedMore; - } - if(lookahead == 0) break; // flush the current block - } - - // Insert the string window[strstart .. strstart+2] in the - // dictionary, and set hash_head to the head of the hash chain: - if(lookahead >= MIN_MATCH){ - ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; - -// prev[strstart&w_mask]=hash_head=head[ins_h]; - hash_head=(head[ins_h]&0xffff); - prev[strstart&w_mask]=head[ins_h]; - head[ins_h]=(short)strstart; - } - - // Find the longest match, discarding those <= prev_length. - // At this point we have always match_length < MIN_MATCH - - if(hash_head!=0L && - ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD - ){ - // To simplify the code, we prevent matches with the string - // of window index 0 (in particular we have to avoid a match - // of the string with itself at the start of the input file). - if(strategy != Z_HUFFMAN_ONLY){ - match_length=longest_match (hash_head); - } - // longest_match() sets match_start - } - if(match_length>=MIN_MATCH){ - // check_match(strstart, match_start, match_length); - - bflush=_tr_tally(strstart-match_start, match_length-MIN_MATCH); - - lookahead -= match_length; - - // Insert new strings in the hash table only if the match length - // is not too large. This saves time but degrades compression. - if(match_length <= max_lazy_match && - lookahead >= MIN_MATCH) { - match_length--; // string at strstart already in hash table - do{ - strstart++; - - ins_h=((ins_h<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; -// prev[strstart&w_mask]=hash_head=head[ins_h]; - hash_head=(head[ins_h]&0xffff); - prev[strstart&w_mask]=head[ins_h]; - head[ins_h]=(short)strstart; - - // strstart never exceeds WSIZE-MAX_MATCH, so there are - // always MIN_MATCH bytes ahead. - } - while (--match_length != 0); - strstart++; - } - else{ - strstart += match_length; - match_length = 0; - ins_h = window[strstart]&0xff; - - ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask; - // If lookahead < MIN_MATCH, ins_h is garbage, but it does not - // matter since it will be recomputed at next deflate call. - } - } - else { - // No match, output a literal byte - - bflush=_tr_tally(0, window[strstart]&0xff); - lookahead--; - strstart++; - } - if (bflush){ - - flush_block_only(false); - if(strm.avail_out==0) return NeedMore; - } - } - - flush_block_only(flush == Z_FINISH); - if(strm.avail_out==0){ - if(flush == Z_FINISH) return FinishStarted; - else return NeedMore; - } - return flush==Z_FINISH ? FinishDone : BlockDone; - } - - // Same as above, but achieves better compression. We use a lazy - // evaluation for matches: a match is finally adopted only if there is - // no better match at the next window position. - int deflate_slow(int flush){ -// short hash_head = 0; // head of hash chain - int hash_head = 0; // head of hash chain - boolean bflush; // set if current block must be flushed - - // Process the input block. - while(true){ - // Make sure that we always have enough lookahead, except - // at the end of the input file. We need MAX_MATCH bytes - // for the next match, plus MIN_MATCH bytes to insert the - // string following the next match. - - if (lookahead < MIN_LOOKAHEAD) { - fill_window(); - if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { - return NeedMore; - } - if(lookahead == 0) break; // flush the current block - } - - // Insert the string window[strstart .. strstart+2] in the - // dictionary, and set hash_head to the head of the hash chain: - - if(lookahead >= MIN_MATCH) { - ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff)) & hash_mask; -// prev[strstart&w_mask]=hash_head=head[ins_h]; - hash_head=(head[ins_h]&0xffff); - prev[strstart&w_mask]=head[ins_h]; - head[ins_h]=(short)strstart; - } - - // Find the longest match, discarding those <= prev_length. - prev_length = match_length; prev_match = match_start; - match_length = MIN_MATCH-1; - - if (hash_head != 0 && prev_length < max_lazy_match && - ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD - ){ - // To simplify the code, we prevent matches with the string - // of window index 0 (in particular we have to avoid a match - // of the string with itself at the start of the input file). - - if(strategy != Z_HUFFMAN_ONLY) { - match_length = longest_match(hash_head); - } - // longest_match() sets match_start - - if (match_length <= 5 && (strategy == Z_FILTERED || - (match_length == MIN_MATCH && - strstart - match_start > 4096))) { - - // If prev_match is also MIN_MATCH, match_start is garbage - // but we will ignore the current match anyway. - match_length = MIN_MATCH-1; - } - } - - // If there was a match at the previous step and the current - // match is not better, output the previous match: - if(prev_length >= MIN_MATCH && match_length <= prev_length) { - int max_insert = strstart + lookahead - MIN_MATCH; - // Do not insert strings in hash table beyond this. - - // check_match(strstart-1, prev_match, prev_length); - - bflush=_tr_tally(strstart-1-prev_match, prev_length - MIN_MATCH); - - // Insert in hash table all strings up to the end of the match. - // strstart-1 and strstart are already inserted. If there is not - // enough lookahead, the last two strings are not inserted in - // the hash table. - lookahead -= prev_length-1; - prev_length -= 2; - do{ - if(++strstart <= max_insert) { - ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; - //prev[strstart&w_mask]=hash_head=head[ins_h]; - hash_head=(head[ins_h]&0xffff); - prev[strstart&w_mask]=head[ins_h]; - head[ins_h]=(short)strstart; - } - } - while(--prev_length != 0); - match_available = 0; - match_length = MIN_MATCH-1; - strstart++; - - if (bflush){ - flush_block_only(false); - if(strm.avail_out==0) return NeedMore; - } - } else if (match_available!=0) { - - // If there was no match at the previous position, output a - // single literal. If there was a match but the current match - // is longer, truncate the previous match to a single literal. - - bflush=_tr_tally(0, window[strstart-1]&0xff); - - if (bflush) { - flush_block_only(false); - } - strstart++; - lookahead--; - if(strm.avail_out == 0) return NeedMore; - } else { - // There is no previous match to compare with, wait for - // the next step to decide. - - match_available = 1; - strstart++; - lookahead--; - } - } - - if(match_available!=0) { - bflush=_tr_tally(0, window[strstart-1]&0xff); - match_available = 0; - } - flush_block_only(flush == Z_FINISH); - - if(strm.avail_out==0){ - if(flush == Z_FINISH) return FinishStarted; - else return NeedMore; - } - - return flush == Z_FINISH ? FinishDone : BlockDone; - } - - int longest_match(int cur_match){ - int chain_length = max_chain_length; // max hash chain length - int scan = strstart; // current string - int match; // matched string - int len; // length of current match - int best_len = prev_length; // best match length so far - int limit = strstart>(w_size-MIN_LOOKAHEAD) ? - strstart-(w_size-MIN_LOOKAHEAD) : 0; - int nice_match=this.nice_match; - - // Stop when cur_match becomes <= limit. To simplify the code, - // we prevent matches with the string of window index 0. - - int wmask = w_mask; - - int strend = strstart + MAX_MATCH; - byte scan_end1 = window[scan+best_len-1]; - byte scan_end = window[scan+best_len]; - - // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. - // It is easy to get rid of this optimization if necessary. - - // Do not waste too much time if we already have a good match: - if (prev_length >= good_match) { - chain_length >>= 2; - } - - // Do not look for matches beyond the end of the input. This is necessary - // to make deflate deterministic. - if (nice_match > lookahead) nice_match = lookahead; - - do { - match = cur_match; - - // Skip to next match if the match length cannot increase - // or if the match length is less than 2: - if (window[match+best_len] != scan_end || - window[match+best_len-1] != scan_end1 || - window[match] != window[scan] || - window[++match] != window[scan+1]) continue; - - // The check at best_len-1 can be removed because it will be made - // again later. (This heuristic is not always a win.) - // It is not necessary to compare scan[2] and match[2] since they - // are always equal when the other bytes match, given that - // the hash keys are equal and that HASH_BITS >= 8. - scan += 2; match++; - - // We check for insufficient lookahead only every 8th comparison; - // the 256th check will be made at strstart+258. - do { - } while (window[++scan] == window[++match] && - window[++scan] == window[++match] && - window[++scan] == window[++match] && - window[++scan] == window[++match] && - window[++scan] == window[++match] && - window[++scan] == window[++match] && - window[++scan] == window[++match] && - window[++scan] == window[++match] && - scan < strend); - - len = MAX_MATCH - (int)(strend - scan); - scan = strend - MAX_MATCH; - - if(len>best_len) { - match_start = cur_match; - best_len = len; - if (len >= nice_match) break; - scan_end1 = window[scan+best_len-1]; - scan_end = window[scan+best_len]; - } - - } while ((cur_match = (prev[cur_match & wmask]&0xffff)) > limit - && --chain_length != 0); - - if (best_len <= lookahead) return best_len; - return lookahead; - } - - int deflateInit(ZStream strm, int level, int bits){ - return deflateInit2(strm, level, Z_DEFLATED, bits, DEF_MEM_LEVEL, - Z_DEFAULT_STRATEGY); - } - int deflateInit(ZStream strm, int level){ - return deflateInit(strm, level, MAX_WBITS); - } - int deflateInit2(ZStream strm, int level, int method, int windowBits, - int memLevel, int strategy){ - int noheader = 0; - // byte[] my_version=ZLIB_VERSION; - - // - // if (version == null || version[0] != my_version[0] - // || stream_size != sizeof(z_stream)) { - // return Z_VERSION_ERROR; - // } - - strm.msg = null; - - if (level == Z_DEFAULT_COMPRESSION) level = 6; - - if (windowBits < 0) { // undocumented feature: suppress zlib header - noheader = 1; - windowBits = -windowBits; - } - - if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || - method != Z_DEFLATED || - windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || - strategy < 0 || strategy > Z_HUFFMAN_ONLY) { - return Z_STREAM_ERROR; - } - - strm.dstate = (Deflate)this; - - this.noheader = noheader; - w_bits = windowBits; - w_size = 1 << w_bits; - w_mask = w_size - 1; - - hash_bits = memLevel + 7; - hash_size = 1 << hash_bits; - hash_mask = hash_size - 1; - hash_shift = ((hash_bits+MIN_MATCH-1)/MIN_MATCH); - - window = new byte[w_size*2]; - prev = new short[w_size]; - head = new short[hash_size]; - - lit_bufsize = 1 << (memLevel + 6); // 16K elements by default - - // We overlay pending_buf and d_buf+l_buf. This works since the average - // output size for (length,distance) codes is <= 24 bits. - pending_buf = new byte[lit_bufsize*4]; - pending_buf_size = lit_bufsize*4; - - d_buf = lit_bufsize/2; - l_buf = (1+2)*lit_bufsize; - - this.level = level; - -//System.out.println("level="+level); - - this.strategy = strategy; - this.method = (byte)method; - - return deflateReset(strm); - } - - int deflateReset(ZStream strm){ - strm.total_in = strm.total_out = 0; - strm.msg = null; // - strm.data_type = Z_UNKNOWN; - - pending = 0; - pending_out = 0; - - if(noheader < 0) { - noheader = 0; // was set to -1 by deflate(..., Z_FINISH); - } - status = (noheader!=0) ? BUSY_STATE : INIT_STATE; - strm.adler=strm._adler.adler32(0, null, 0, 0); - - last_flush = Z_NO_FLUSH; - - tr_init(); - lm_init(); - return Z_OK; - } - - int deflateEnd(){ - if(status!=INIT_STATE && status!=BUSY_STATE && status!=FINISH_STATE){ - return Z_STREAM_ERROR; - } - // Deallocate in reverse order of allocations: - pending_buf=null; - head=null; - prev=null; - window=null; - // free - // dstate=null; - return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; - } - - int deflateParams(ZStream strm, int _level, int _strategy){ - int err=Z_OK; - - if(_level == Z_DEFAULT_COMPRESSION){ - _level = 6; - } - if(_level < 0 || _level > 9 || - _strategy < 0 || _strategy > Z_HUFFMAN_ONLY) { - return Z_STREAM_ERROR; - } - - if(config_table[level].func!=config_table[_level].func && - strm.total_in != 0) { - // Flush the last buffer: - err = strm.deflate(Z_PARTIAL_FLUSH); - } - - if(level != _level) { - level = _level; - max_lazy_match = config_table[level].max_lazy; - good_match = config_table[level].good_length; - nice_match = config_table[level].nice_length; - max_chain_length = config_table[level].max_chain; - } - strategy = _strategy; - return err; - } - - int deflateSetDictionary (ZStream strm, byte[] dictionary, int dictLength){ - int length = dictLength; - int index=0; - - if(dictionary == null || status != INIT_STATE) - return Z_STREAM_ERROR; - - strm.adler=strm._adler.adler32(strm.adler, dictionary, 0, dictLength); - - if(length < MIN_MATCH) return Z_OK; - if(length > w_size-MIN_LOOKAHEAD){ - length = w_size-MIN_LOOKAHEAD; - index=dictLength-length; // use the tail of the dictionary - } - System.arraycopy(dictionary, index, window, 0, length); - strstart = length; - block_start = length; - - // Insert all strings in the hash table (except for the last two bytes). - // s->lookahead stays null, so s->ins_h will be recomputed at the next - // call of fill_window. - - ins_h = window[0]&0xff; - ins_h=(((ins_h)<<hash_shift)^(window[1]&0xff))&hash_mask; - - for(int n=0; n<=length-MIN_MATCH; n++){ - ins_h=(((ins_h)<<hash_shift)^(window[(n)+(MIN_MATCH-1)]&0xff))&hash_mask; - prev[n&w_mask]=head[ins_h]; - head[ins_h]=(short)n; - } - return Z_OK; - } - - int deflate(ZStream strm, int flush){ - int old_flush; - - if(flush>Z_FINISH || flush<0){ - return Z_STREAM_ERROR; - } - - if(strm.next_out == null || - (strm.next_in == null && strm.avail_in != 0) || - (status == FINISH_STATE && flush != Z_FINISH)) { - strm.msg=z_errmsg[Z_NEED_DICT-(Z_STREAM_ERROR)]; - return Z_STREAM_ERROR; - } - if(strm.avail_out == 0){ - strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; - return Z_BUF_ERROR; - } - - this.strm = strm; // just in case - old_flush = last_flush; - last_flush = flush; - - // Write the zlib header - if(status == INIT_STATE) { - int header = (Z_DEFLATED+((w_bits-8)<<4))<<8; - int level_flags=((level-1)&0xff)>>1; - - if(level_flags>3) level_flags=3; - header |= (level_flags<<6); - if(strstart!=0) header |= PRESET_DICT; - header+=31-(header % 31); - - status=BUSY_STATE; - putShortMSB(header); - - - // Save the adler32 of the preset dictionary: - if(strstart!=0){ - putShortMSB((int)(strm.adler>>>16)); - putShortMSB((int)(strm.adler&0xffff)); - } - strm.adler=strm._adler.adler32(0, null, 0, 0); - } - - // Flush as much pending output as possible - if(pending != 0) { - strm.flush_pending(); - if(strm.avail_out == 0) { - //System.out.println(" avail_out==0"); - // Since avail_out is 0, deflate will be called again with - // more output space, but possibly with both pending and - // avail_in equal to zero. There won't be anything to do, - // but this is not an error situation so make sure we - // return OK instead of BUF_ERROR at next call of deflate: - last_flush = -1; - return Z_OK; - } - - // Make sure there is something to do and avoid duplicate consecutive - // flushes. For repeated and useless calls with Z_FINISH, we keep - // returning Z_STREAM_END instead of Z_BUFF_ERROR. - } - else if(strm.avail_in==0 && flush <= old_flush && - flush != Z_FINISH) { - strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; - return Z_BUF_ERROR; - } - - // User must not provide more input after the first FINISH: - if(status == FINISH_STATE && strm.avail_in != 0) { - strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; - return Z_BUF_ERROR; - } - - // Start a new block or continue the current one. - if(strm.avail_in!=0 || lookahead!=0 || - (flush != Z_NO_FLUSH && status != FINISH_STATE)) { - int bstate=-1; - switch(config_table[level].func){ - case STORED: - bstate = deflate_stored(flush); - break; - case FAST: - bstate = deflate_fast(flush); - break; - case SLOW: - bstate = deflate_slow(flush); - break; - default: - } - - if (bstate==FinishStarted || bstate==FinishDone) { - status = FINISH_STATE; - } - if (bstate==NeedMore || bstate==FinishStarted) { - if(strm.avail_out == 0) { - last_flush = -1; // avoid BUF_ERROR next call, see above - } - return Z_OK; - // If flush != Z_NO_FLUSH && avail_out == 0, the next call - // of deflate should use the same flush parameter to make sure - // that the flush is complete. So we don't have to output an - // empty block here, this will be done at next call. This also - // ensures that for a very small output buffer, we emit at most - // one empty block. - } - - if (bstate==BlockDone) { - if(flush == Z_PARTIAL_FLUSH) { - _tr_align(); - } - else { // FULL_FLUSH or SYNC_FLUSH - _tr_stored_block(0, 0, false); - // For a full flush, this empty block will be recognized - // as a special marker by inflate_sync(). - if(flush == Z_FULL_FLUSH) { - //state.head[s.hash_size-1]=0; - for(int i=0; i<hash_size/*-1*/; i++) // forget history - head[i]=0; - } - } - strm.flush_pending(); - if(strm.avail_out == 0) { - last_flush = -1; // avoid BUF_ERROR at next call, see above - return Z_OK; - } - } - } - - if(flush!=Z_FINISH) return Z_OK; - if(noheader!=0) return Z_STREAM_END; - - // Write the zlib trailer (adler32) - putShortMSB((int)(strm.adler>>>16)); - putShortMSB((int)(strm.adler&0xffff)); - strm.flush_pending(); - - // If avail_out is zero, the application will call deflate again - // to flush the rest. - noheader = -1; // write the trailer only once! - return pending != 0 ? Z_OK : Z_STREAM_END; - } -} |