diff options
Diffstat (limited to 'app/src/main/java/com/jcraft/jzlib/Deflate.java')
| -rw-r--r-- | app/src/main/java/com/jcraft/jzlib/Deflate.java | 1623 | 
1 files changed, 0 insertions, 1623 deletions
| diff --git a/app/src/main/java/com/jcraft/jzlib/Deflate.java b/app/src/main/java/com/jcraft/jzlib/Deflate.java deleted file mode 100644 index 9978802..0000000 --- a/app/src/main/java/com/jcraft/jzlib/Deflate.java +++ /dev/null @@ -1,1623 +0,0 @@ -/* -*-mode:java; c-basic-offset:2; -*- */ -/* -Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - -  1. Redistributions of source code must retain the above copyright notice, -     this list of conditions and the following disclaimer. - -  2. Redistributions in binary form must reproduce the above copyright  -     notice, this list of conditions and the following disclaimer in  -     the documentation and/or other materials provided with the distribution. - -  3. The names of the authors may not be used to endorse or promote products -     derived from this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, -INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND -FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, -INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, -INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, -OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING -NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, -EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ -/* - * This program is based on zlib-1.1.3, so all credit should go authors - * Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu) - * and contributors of zlib. - */ - -package com.jcraft.jzlib; - -public  -final class Deflate{ - -  static final private int MAX_MEM_LEVEL=9; - -  static final private int Z_DEFAULT_COMPRESSION=-1; - -  static final private int MAX_WBITS=15;            // 32K LZ77 window -  static final private int DEF_MEM_LEVEL=8; - -  static class Config{ -    int good_length; // reduce lazy search above this match length -    int max_lazy;    // do not perform lazy search above this match length -    int nice_length; // quit search above this match length -    int max_chain; -    int func; -    Config(int good_length, int max_lazy,  -	   int nice_length, int max_chain, int func){ -      this.good_length=good_length; -      this.max_lazy=max_lazy; -      this.nice_length=nice_length; -      this.max_chain=max_chain; -      this.func=func; -    } -  } -   -  static final private int STORED=0; -  static final private int FAST=1; -  static final private int SLOW=2; -  static final private Config[] config_table;     -  static{ -    config_table=new Config[10]; -    //                         good  lazy  nice  chain -    config_table[0]=new Config(0,    0,    0,    0, STORED); -    config_table[1]=new Config(4,    4,    8,    4, FAST); -    config_table[2]=new Config(4,    5,   16,    8, FAST); -    config_table[3]=new Config(4,    6,   32,   32, FAST); - -    config_table[4]=new Config(4,    4,   16,   16, SLOW); -    config_table[5]=new Config(8,   16,   32,   32, SLOW); -    config_table[6]=new Config(8,   16,  128,  128, SLOW); -    config_table[7]=new Config(8,   32,  128,  256, SLOW); -    config_table[8]=new Config(32, 128,  258, 1024, SLOW); -    config_table[9]=new Config(32, 258,  258, 4096, SLOW); -  } - -  static final private String[] z_errmsg = { -    "need dictionary",     // Z_NEED_DICT       2 -    "stream end",          // Z_STREAM_END      1 -    "",                    // Z_OK              0 -    "file error",          // Z_ERRNO         (-1) -    "stream error",        // Z_STREAM_ERROR  (-2) -    "data error",          // Z_DATA_ERROR    (-3) -    "insufficient memory", // Z_MEM_ERROR     (-4) -    "buffer error",        // Z_BUF_ERROR     (-5) -    "incompatible version",// Z_VERSION_ERROR (-6) -    "" -  }; - -  // block not completed, need more input or more output -  static final private int NeedMore=0;  - -  // block flush performed -  static final private int BlockDone=1;  - -  // finish started, need only more output at next deflate -  static final private int FinishStarted=2; - -  // finish done, accept no more input or output -  static final private int FinishDone=3; - -  // preset dictionary flag in zlib header -  static final private int PRESET_DICT=0x20; - -  static final private int Z_FILTERED=1; -  static final private int Z_HUFFMAN_ONLY=2; -  static final private int Z_DEFAULT_STRATEGY=0; - -  static final private int Z_NO_FLUSH=0; -  static final private int Z_PARTIAL_FLUSH=1; -  static final private int Z_SYNC_FLUSH=2; -  static final private int Z_FULL_FLUSH=3; -  static final private int Z_FINISH=4; - -  static final private int Z_OK=0; -  static final private int Z_STREAM_END=1; -  static final private int Z_NEED_DICT=2; -  static final private int Z_ERRNO=-1; -  static final private int Z_STREAM_ERROR=-2; -  static final private int Z_DATA_ERROR=-3; -  static final private int Z_MEM_ERROR=-4; -  static final private int Z_BUF_ERROR=-5; -  static final private int Z_VERSION_ERROR=-6; - -  static final private int INIT_STATE=42; -  static final private int BUSY_STATE=113; -  static final private int FINISH_STATE=666; - -  // The deflate compression method -  static final private int Z_DEFLATED=8; - -  static final private int STORED_BLOCK=0; -  static final private int STATIC_TREES=1; -  static final private int DYN_TREES=2; - -  // The three kinds of block type -  static final private int Z_BINARY=0; -  static final private int Z_ASCII=1; -  static final private int Z_UNKNOWN=2; - -  static final private int Buf_size=8*2; - -  // repeat previous bit length 3-6 times (2 bits of repeat count) -  static final private int REP_3_6=16;  - -  // repeat a zero length 3-10 times  (3 bits of repeat count) -  static final private int REPZ_3_10=17;  - -  // repeat a zero length 11-138 times  (7 bits of repeat count) -  static final private int REPZ_11_138=18;  - -  static final private int MIN_MATCH=3; -  static final private int MAX_MATCH=258; -  static final private int MIN_LOOKAHEAD=(MAX_MATCH+MIN_MATCH+1); - -  static final private int MAX_BITS=15; -  static final private int D_CODES=30; -  static final private int BL_CODES=19; -  static final private int LENGTH_CODES=29; -  static final private int LITERALS=256; -  static final private int L_CODES=(LITERALS+1+LENGTH_CODES); -  static final private int HEAP_SIZE=(2*L_CODES+1); - -  static final private int END_BLOCK=256; - -  ZStream strm;         // pointer back to this zlib stream -  int status;           // as the name implies -  byte[] pending_buf;   // output still pending -  int pending_buf_size; // size of pending_buf -  int pending_out;      // next pending byte to output to the stream -  int pending;          // nb of bytes in the pending buffer -  int noheader;         // suppress zlib header and adler32 -  byte data_type;       // UNKNOWN, BINARY or ASCII -  byte method;          // STORED (for zip only) or DEFLATED -  int last_flush;       // value of flush param for previous deflate call - -  int w_size;           // LZ77 window size (32K by default) -  int w_bits;           // log2(w_size)  (8..16) -  int w_mask;           // w_size - 1 - -  byte[] window; -  // Sliding window. Input bytes are read into the second half of the window, -  // and move to the first half later to keep a dictionary of at least wSize -  // bytes. With this organization, matches are limited to a distance of -  // wSize-MAX_MATCH bytes, but this ensures that IO is always -  // performed with a length multiple of the block size. Also, it limits -  // the window size to 64K, which is quite useful on MSDOS. -  // To do: use the user input buffer as sliding window. - -  int window_size; -  // Actual size of window: 2*wSize, except when the user input buffer -  // is directly used as sliding window. - -  short[] prev; -  // Link to older string with same hash index. To limit the size of this -  // array to 64K, this link is maintained only for the last 32K strings. -  // An index in this array is thus a window index modulo 32K. - -  short[] head; // Heads of the hash chains or NIL. - -  int ins_h;          // hash index of string to be inserted -  int hash_size;      // number of elements in hash table -  int hash_bits;      // log2(hash_size) -  int hash_mask;      // hash_size-1 - -  // Number of bits by which ins_h must be shifted at each input -  // step. It must be such that after MIN_MATCH steps, the oldest -  // byte no longer takes part in the hash key, that is: -  // hash_shift * MIN_MATCH >= hash_bits -  int hash_shift; - -  // Window position at the beginning of the current output block. Gets -  // negative when the window is moved backwards. - -  int block_start; - -  int match_length;           // length of best match -  int prev_match;             // previous match -  int match_available;        // set if previous match exists -  int strstart;               // start of string to insert -  int match_start;            // start of matching string -  int lookahead;              // number of valid bytes ahead in window - -  // Length of the best match at previous step. Matches not greater than this -  // are discarded. This is used in the lazy match evaluation. -  int prev_length; - -  // To speed up deflation, hash chains are never searched beyond this -  // length.  A higher limit improves compression ratio but degrades the speed. -  int max_chain_length; - -  // Attempt to find a better match only when the current match is strictly -  // smaller than this value. This mechanism is used only for compression -  // levels >= 4. -  int max_lazy_match; - -  // Insert new strings in the hash table only if the match length is not -  // greater than this length. This saves time but degrades compression. -  // max_insert_length is used only for compression levels <= 3. - -  int level;    // compression level (1..9) -  int strategy; // favor or force Huffman coding - -  // Use a faster search when the previous match is longer than this -  int good_match; - -  // Stop searching when current match exceeds this -  int nice_match; - -  short[] dyn_ltree;       // literal and length tree -  short[] dyn_dtree;       // distance tree -  short[] bl_tree;         // Huffman tree for bit lengths - -  Tree l_desc=new Tree();  // desc for literal tree -  Tree d_desc=new Tree();  // desc for distance tree -  Tree bl_desc=new Tree(); // desc for bit length tree - -  // number of codes at each bit length for an optimal tree -  short[] bl_count=new short[MAX_BITS+1]; - -  // heap used to build the Huffman trees -  int[] heap=new int[2*L_CODES+1]; - -  int heap_len;               // number of elements in the heap -  int heap_max;               // element of largest frequency -  // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. -  // The same heap array is used to build all trees. - -  // Depth of each subtree used as tie breaker for trees of equal frequency -  byte[] depth=new byte[2*L_CODES+1]; - -  int l_buf;               // index for literals or lengths */ - -  // Size of match buffer for literals/lengths.  There are 4 reasons for -  // limiting lit_bufsize to 64K: -  //   - frequencies can be kept in 16 bit counters -  //   - if compression is not successful for the first block, all input -  //     data is still in the window so we can still emit a stored block even -  //     when input comes from standard input.  (This can also be done for -  //     all blocks if lit_bufsize is not greater than 32K.) -  //   - if compression is not successful for a file smaller than 64K, we can -  //     even emit a stored file instead of a stored block (saving 5 bytes). -  //     This is applicable only for zip (not gzip or zlib). -  //   - creating new Huffman trees less frequently may not provide fast -  //     adaptation to changes in the input data statistics. (Take for -  //     example a binary file with poorly compressible code followed by -  //     a highly compressible string table.) Smaller buffer sizes give -  //     fast adaptation but have of course the overhead of transmitting -  //     trees more frequently. -  //   - I can't count above 4 -  int lit_bufsize; - -  int last_lit;      // running index in l_buf - -  // Buffer for distances. To simplify the code, d_buf and l_buf have -  // the same number of elements. To use different lengths, an extra flag -  // array would be necessary. - -  int d_buf;         // index of pendig_buf - -  int opt_len;        // bit length of current block with optimal trees -  int static_len;     // bit length of current block with static trees -  int matches;        // number of string matches in current block -  int last_eob_len;   // bit length of EOB code for last block - -  // Output buffer. bits are inserted starting at the bottom (least -  // significant bits). -  short bi_buf; - -  // Number of valid bits in bi_buf.  All bits above the last valid bit -  // are always zero. -  int bi_valid; - -  Deflate(){ -    dyn_ltree=new short[HEAP_SIZE*2]; -    dyn_dtree=new short[(2*D_CODES+1)*2]; // distance tree -    bl_tree=new short[(2*BL_CODES+1)*2];  // Huffman tree for bit lengths -  } - -  void lm_init() { -    window_size=2*w_size; - -    head[hash_size-1]=0; -    for(int i=0; i<hash_size-1; i++){ -      head[i]=0; -    } - -    // Set the default configuration parameters: -    max_lazy_match   = Deflate.config_table[level].max_lazy; -    good_match       = Deflate.config_table[level].good_length; -    nice_match       = Deflate.config_table[level].nice_length; -    max_chain_length = Deflate.config_table[level].max_chain; - -    strstart = 0; -    block_start = 0; -    lookahead = 0; -    match_length = prev_length = MIN_MATCH-1; -    match_available = 0; -    ins_h = 0; -  } - -  // Initialize the tree data structures for a new zlib stream. -  void tr_init(){ - -    l_desc.dyn_tree = dyn_ltree; -    l_desc.stat_desc = StaticTree.static_l_desc; - -    d_desc.dyn_tree = dyn_dtree; -    d_desc.stat_desc = StaticTree.static_d_desc; - -    bl_desc.dyn_tree = bl_tree; -    bl_desc.stat_desc = StaticTree.static_bl_desc; - -    bi_buf = 0; -    bi_valid = 0; -    last_eob_len = 8; // enough lookahead for inflate - -    // Initialize the first block of the first file: -    init_block(); -  } - -  void init_block(){ -    // Initialize the trees. -    for(int i = 0; i < L_CODES; i++) dyn_ltree[i*2] = 0; -    for(int i= 0; i < D_CODES; i++) dyn_dtree[i*2] = 0; -    for(int i= 0; i < BL_CODES; i++) bl_tree[i*2] = 0; - -    dyn_ltree[END_BLOCK*2] = 1; -    opt_len = static_len = 0; -    last_lit = matches = 0; -  } - -  // Restore the heap property by moving down the tree starting at node k, -  // exchanging a node with the smallest of its two sons if necessary, stopping -  // when the heap property is re-established (each father smaller than its -  // two sons). -  void pqdownheap(short[] tree,  // the tree to restore -		  int k          // node to move down -		  ){ -    int v = heap[k]; -    int j = k << 1;  // left son of k -    while (j <= heap_len) { -      // Set j to the smallest of the two sons: -      if (j < heap_len && -	  smaller(tree, heap[j+1], heap[j], depth)){ -	j++; -      } -      // Exit if v is smaller than both sons -      if(smaller(tree, v, heap[j], depth)) break; - -      // Exchange v with the smallest son -      heap[k]=heap[j];  k = j; -      // And continue down the tree, setting j to the left son of k -      j <<= 1; -    } -    heap[k] = v; -  } - -  static boolean smaller(short[] tree, int n, int m, byte[] depth){ -    short tn2=tree[n*2]; -    short tm2=tree[m*2]; -    return (tn2<tm2 || -	    (tn2==tm2 && depth[n] <= depth[m])); -  } - -  // Scan a literal or distance tree to determine the frequencies of the codes -  // in the bit length tree. -  void scan_tree (short[] tree,// the tree to be scanned -		  int max_code // and its largest code of non zero frequency -		  ){ -    int n;                     // iterates over all tree elements -    int prevlen = -1;          // last emitted length -    int curlen;                // length of current code -    int nextlen = tree[0*2+1]; // length of next code -    int count = 0;             // repeat count of the current code -    int max_count = 7;         // max repeat count -    int min_count = 4;         // min repeat count - -    if (nextlen == 0){ max_count = 138; min_count = 3; } -    tree[(max_code+1)*2+1] = (short)0xffff; // guard - -    for(n = 0; n <= max_code; n++) { -      curlen = nextlen; nextlen = tree[(n+1)*2+1]; -      if(++count < max_count && curlen == nextlen) { -	continue; -      } -      else if(count < min_count) { -	bl_tree[curlen*2] += count; -      } -      else if(curlen != 0) { -	if(curlen != prevlen) bl_tree[curlen*2]++; -	bl_tree[REP_3_6*2]++; -      } -      else if(count <= 10) { -	bl_tree[REPZ_3_10*2]++; -      } -      else{ -	bl_tree[REPZ_11_138*2]++; -      } -      count = 0; prevlen = curlen; -      if(nextlen == 0) { -	max_count = 138; min_count = 3; -      } -      else if(curlen == nextlen) { -	max_count = 6; min_count = 3; -      } -      else{ -	max_count = 7; min_count = 4; -      } -    } -  } - -  // Construct the Huffman tree for the bit lengths and return the index in -  // bl_order of the last bit length code to send. -  int build_bl_tree(){ -    int max_blindex;  // index of last bit length code of non zero freq - -    // Determine the bit length frequencies for literal and distance trees -    scan_tree(dyn_ltree, l_desc.max_code); -    scan_tree(dyn_dtree, d_desc.max_code); - -    // Build the bit length tree: -    bl_desc.build_tree(this); -    // opt_len now includes the length of the tree representations, except -    // the lengths of the bit lengths codes and the 5+5+4 bits for the counts. - -    // Determine the number of bit length codes to send. The pkzip format -    // requires that at least 4 bit length codes be sent. (appnote.txt says -    // 3 but the actual value used is 4.) -    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { -      if (bl_tree[Tree.bl_order[max_blindex]*2+1] != 0) break; -    } -    // Update opt_len to include the bit length tree and counts -    opt_len += 3*(max_blindex+1) + 5+5+4; - -    return max_blindex; -  } - - -  // Send the header for a block using dynamic Huffman trees: the counts, the -  // lengths of the bit length codes, the literal tree and the distance tree. -  // IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. -  void send_all_trees(int lcodes, int dcodes, int blcodes){ -    int rank;                    // index in bl_order - -    send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt -    send_bits(dcodes-1,   5); -    send_bits(blcodes-4,  4); // not -3 as stated in appnote.txt -    for (rank = 0; rank < blcodes; rank++) { -      send_bits(bl_tree[Tree.bl_order[rank]*2+1], 3); -    } -    send_tree(dyn_ltree, lcodes-1); // literal tree -    send_tree(dyn_dtree, dcodes-1); // distance tree -  } - -  // Send a literal or distance tree in compressed form, using the codes in -  // bl_tree. -  void send_tree (short[] tree,// the tree to be sent -		  int max_code // and its largest code of non zero frequency -		  ){ -    int n;                     // iterates over all tree elements -    int prevlen = -1;          // last emitted length -    int curlen;                // length of current code -    int nextlen = tree[0*2+1]; // length of next code -    int count = 0;             // repeat count of the current code -    int max_count = 7;         // max repeat count -    int min_count = 4;         // min repeat count - -    if (nextlen == 0){ max_count = 138; min_count = 3; } - -    for (n = 0; n <= max_code; n++) { -      curlen = nextlen; nextlen = tree[(n+1)*2+1]; -      if(++count < max_count && curlen == nextlen) { -	continue; -      } -      else if(count < min_count) { -	do { send_code(curlen, bl_tree); } while (--count != 0); -      } -      else if(curlen != 0){ -	if(curlen != prevlen){ -	  send_code(curlen, bl_tree); count--; -	} -	send_code(REP_3_6, bl_tree);  -	send_bits(count-3, 2); -      } -      else if(count <= 10){ -	send_code(REPZ_3_10, bl_tree);  -	send_bits(count-3, 3); -      } -      else{ -	send_code(REPZ_11_138, bl_tree); -	send_bits(count-11, 7); -      } -      count = 0; prevlen = curlen; -      if(nextlen == 0){ -	max_count = 138; min_count = 3; -      } -      else if(curlen == nextlen){ -	max_count = 6; min_count = 3; -      } -      else{ -	max_count = 7; min_count = 4; -      } -    } -  } - -  // Output a byte on the stream. -  // IN assertion: there is enough room in pending_buf. -  final void put_byte(byte[] p, int start, int len){ -    System.arraycopy(p, start, pending_buf, pending, len); -    pending+=len; -  } - -  final void put_byte(byte c){ -    pending_buf[pending++]=c; -  } -  final void put_short(int w) { -    put_byte((byte)(w/*&0xff*/)); -    put_byte((byte)(w>>>8)); -  } -  final void putShortMSB(int b){ -    put_byte((byte)(b>>8)); -    put_byte((byte)(b/*&0xff*/)); -  }    - -  final void send_code(int c, short[] tree){ -    int c2=c*2; -    send_bits((tree[c2]&0xffff), (tree[c2+1]&0xffff)); -  } - -  void send_bits(int value, int length){ -    int len = length; -    if (bi_valid > (int)Buf_size - len) { -      int val = value; -//      bi_buf |= (val << bi_valid); -      bi_buf |= ((val << bi_valid)&0xffff); -      put_short(bi_buf); -      bi_buf = (short)(val >>> (Buf_size - bi_valid)); -      bi_valid += len - Buf_size; -    } else { -//      bi_buf |= (value) << bi_valid; -      bi_buf |= (((value) << bi_valid)&0xffff); -      bi_valid += len; -    } -  } - -  // Send one empty static block to give enough lookahead for inflate. -  // This takes 10 bits, of which 7 may remain in the bit buffer. -  // The current inflate code requires 9 bits of lookahead. If the -  // last two codes for the previous block (real code plus EOB) were coded -  // on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode -  // the last real code. In this case we send two empty static blocks instead -  // of one. (There are no problems if the previous block is stored or fixed.) -  // To simplify the code, we assume the worst case of last real code encoded -  // on one bit only. -  void _tr_align(){ -    send_bits(STATIC_TREES<<1, 3); -    send_code(END_BLOCK, StaticTree.static_ltree); - -    bi_flush(); - -    // Of the 10 bits for the empty block, we have already sent -    // (10 - bi_valid) bits. The lookahead for the last real code (before -    // the EOB of the previous block) was thus at least one plus the length -    // of the EOB plus what we have just sent of the empty static block. -    if (1 + last_eob_len + 10 - bi_valid < 9) { -      send_bits(STATIC_TREES<<1, 3); -      send_code(END_BLOCK, StaticTree.static_ltree); -      bi_flush(); -    } -    last_eob_len = 7; -  } - - -  // Save the match info and tally the frequency counts. Return true if -  // the current block must be flushed. -  boolean _tr_tally (int dist, // distance of matched string -		     int lc // match length-MIN_MATCH or unmatched char (if dist==0) -		     ){ - -    pending_buf[d_buf+last_lit*2] = (byte)(dist>>>8); -    pending_buf[d_buf+last_lit*2+1] = (byte)dist; - -    pending_buf[l_buf+last_lit] = (byte)lc; last_lit++; - -    if (dist == 0) { -      // lc is the unmatched char -      dyn_ltree[lc*2]++; -    }  -    else { -      matches++; -      // Here, lc is the match length - MIN_MATCH -      dist--;             // dist = match distance - 1 -      dyn_ltree[(Tree._length_code[lc]+LITERALS+1)*2]++; -      dyn_dtree[Tree.d_code(dist)*2]++; -    } - -    if ((last_lit & 0x1fff) == 0 && level > 2) { -      // Compute an upper bound for the compressed length -      int out_length = last_lit*8; -      int in_length = strstart - block_start; -      int dcode; -      for (dcode = 0; dcode < D_CODES; dcode++) { -	out_length += (int)dyn_dtree[dcode*2] * -	  (5L+Tree.extra_dbits[dcode]); -      } -      out_length >>>= 3; -      if ((matches < (last_lit/2)) && out_length < in_length/2) return true; -    } - -    return (last_lit == lit_bufsize-1); -    // We avoid equality with lit_bufsize because of wraparound at 64K -    // on 16 bit machines and because stored blocks are restricted to -    // 64K-1 bytes. -  } - -  // Send the block data compressed using the given Huffman trees -  void compress_block(short[] ltree, short[] dtree){ -    int  dist;      // distance of matched string -    int lc;         // match length or unmatched char (if dist == 0) -    int lx = 0;     // running index in l_buf -    int code;       // the code to send -    int extra;      // number of extra bits to send - -    if (last_lit != 0){ -      do{ -	dist=((pending_buf[d_buf+lx*2]<<8)&0xff00)| -	  (pending_buf[d_buf+lx*2+1]&0xff); -	lc=(pending_buf[l_buf+lx])&0xff; lx++; - -	if(dist == 0){ -	  send_code(lc, ltree); // send a literal byte -	}  -	else{ -	  // Here, lc is the match length - MIN_MATCH -	  code = Tree._length_code[lc]; - -	  send_code(code+LITERALS+1, ltree); // send the length code -	  extra = Tree.extra_lbits[code]; -	  if(extra != 0){ -	    lc -= Tree.base_length[code]; -	    send_bits(lc, extra);       // send the extra length bits -	  } -	  dist--; // dist is now the match distance - 1 -	  code = Tree.d_code(dist); - -	  send_code(code, dtree);       // send the distance code -	  extra = Tree.extra_dbits[code]; -	  if (extra != 0) { -	    dist -= Tree.base_dist[code]; -	    send_bits(dist, extra);   // send the extra distance bits -	  } -	} // literal or match pair ? - -	// Check that the overlay between pending_buf and d_buf+l_buf is ok: -      } -      while (lx < last_lit); -    } - -    send_code(END_BLOCK, ltree); -    last_eob_len = ltree[END_BLOCK*2+1]; -  } - -  // Set the data type to ASCII or BINARY, using a crude approximation: -  // binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. -  // IN assertion: the fields freq of dyn_ltree are set and the total of all -  // frequencies does not exceed 64K (to fit in an int on 16 bit machines). -  void set_data_type(){ -    int n = 0; -    int  ascii_freq = 0; -    int  bin_freq = 0; -    while(n<7){ bin_freq += dyn_ltree[n*2]; n++;} -    while(n<128){ ascii_freq += dyn_ltree[n*2]; n++;} -    while(n<LITERALS){ bin_freq += dyn_ltree[n*2]; n++;} -    data_type=(byte)(bin_freq > (ascii_freq >>> 2) ? Z_BINARY : Z_ASCII); -  } - -  // Flush the bit buffer, keeping at most 7 bits in it. -  void bi_flush(){ -    if (bi_valid == 16) { -      put_short(bi_buf); -      bi_buf=0; -      bi_valid=0; -    } -    else if (bi_valid >= 8) { -      put_byte((byte)bi_buf); -      bi_buf>>>=8; -      bi_valid-=8; -    } -  } - -  // Flush the bit buffer and align the output on a byte boundary -  void bi_windup(){ -    if (bi_valid > 8) { -      put_short(bi_buf); -    } else if (bi_valid > 0) { -      put_byte((byte)bi_buf); -    } -    bi_buf = 0; -    bi_valid = 0; -  } - -  // Copy a stored block, storing first the length and its -  // one's complement if requested. -  void copy_block(int buf,         // the input data -		  int len,         // its length -		  boolean header   // true if block header must be written -		  ){ -    int index=0; -    bi_windup();      // align on byte boundary -    last_eob_len = 8; // enough lookahead for inflate - -    if (header) { -      put_short((short)len);    -      put_short((short)~len); -    } - -    //  while(len--!=0) { -    //    put_byte(window[buf+index]); -    //    index++; -    //  } -    put_byte(window, buf, len); -  } - -  void flush_block_only(boolean eof){ -    _tr_flush_block(block_start>=0 ? block_start : -1, -		    strstart-block_start, -		    eof); -    block_start=strstart; -    strm.flush_pending(); -  } - -  // Copy without compression as much as possible from the input stream, return -  // the current block state. -  // This function does not insert new strings in the dictionary since -  // uncompressible data is probably not useful. This function is used -  // only for the level=0 compression option. -  // NOTE: this function should be optimized to avoid extra copying from -  // window to pending_buf. -  int deflate_stored(int flush){ -    // Stored blocks are limited to 0xffff bytes, pending_buf is limited -    // to pending_buf_size, and each stored block has a 5 byte header: - -    int max_block_size = 0xffff; -    int max_start; - -    if(max_block_size > pending_buf_size - 5) { -      max_block_size = pending_buf_size - 5; -    } - -    // Copy as much as possible from input to output: -    while(true){ -      // Fill the window as much as possible: -      if(lookahead<=1){ -	fill_window(); -	if(lookahead==0 && flush==Z_NO_FLUSH) return NeedMore; -	if(lookahead==0) break; // flush the current block -      } - -      strstart+=lookahead; -      lookahead=0; - -      // Emit a stored block if pending_buf will be full: -      max_start=block_start+max_block_size; -      if(strstart==0|| strstart>=max_start) { -	// strstart == 0 is possible when wraparound on 16-bit machine -	lookahead = (int)(strstart-max_start); -	strstart = (int)max_start; -       -	flush_block_only(false); -	if(strm.avail_out==0) return NeedMore; - -      } - -      // Flush if we may have to slide, otherwise block_start may become -      // negative and the data will be gone: -      if(strstart-block_start >= w_size-MIN_LOOKAHEAD) { -	flush_block_only(false); -	if(strm.avail_out==0) return NeedMore; -      } -    } - -    flush_block_only(flush == Z_FINISH); -    if(strm.avail_out==0) -      return (flush == Z_FINISH) ? FinishStarted : NeedMore; - -    return flush == Z_FINISH ? FinishDone : BlockDone; -  } - -  // Send a stored block -  void _tr_stored_block(int buf,        // input block -			int stored_len, // length of input block -			boolean eof     // true if this is the last block for a file -			){ -    send_bits((STORED_BLOCK<<1)+(eof?1:0), 3);  // send block type -    copy_block(buf, stored_len, true);          // with header -  } - -  // Determine the best encoding for the current block: dynamic trees, static -  // trees or store, and output the encoded block to the zip file. -  void _tr_flush_block(int buf,        // input block, or NULL if too old -		       int stored_len, // length of input block -		       boolean eof     // true if this is the last block for a file -		       ) { -    int opt_lenb, static_lenb;// opt_len and static_len in bytes -    int max_blindex = 0;      // index of last bit length code of non zero freq - -    // Build the Huffman trees unless a stored block is forced -    if(level > 0) { -      // Check if the file is ascii or binary -      if(data_type == Z_UNKNOWN) set_data_type(); - -      // Construct the literal and distance trees -      l_desc.build_tree(this); - -      d_desc.build_tree(this); - -      // At this point, opt_len and static_len are the total bit lengths of -      // the compressed block data, excluding the tree representations. - -      // Build the bit length tree for the above two trees, and get the index -      // in bl_order of the last bit length code to send. -      max_blindex=build_bl_tree(); - -      // Determine the best encoding. Compute first the block length in bytes -      opt_lenb=(opt_len+3+7)>>>3; -      static_lenb=(static_len+3+7)>>>3; - -      if(static_lenb<=opt_lenb) opt_lenb=static_lenb; -    } -    else { -      opt_lenb=static_lenb=stored_len+5; // force a stored block -    } - -    if(stored_len+4<=opt_lenb && buf != -1){ -      // 4: two words for the lengths -      // The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. -      // Otherwise we can't have processed more than WSIZE input bytes since -      // the last block flush, because compression would have been -      // successful. If LIT_BUFSIZE <= WSIZE, it is never too late to -      // transform a block into a stored block. -      _tr_stored_block(buf, stored_len, eof); -    } -    else if(static_lenb == opt_lenb){ -      send_bits((STATIC_TREES<<1)+(eof?1:0), 3); -      compress_block(StaticTree.static_ltree, StaticTree.static_dtree); -    } -    else{ -      send_bits((DYN_TREES<<1)+(eof?1:0), 3); -      send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1); -      compress_block(dyn_ltree, dyn_dtree); -    } - -    // The above check is made mod 2^32, for files larger than 512 MB -    // and uLong implemented on 32 bits. - -    init_block(); - -    if(eof){ -      bi_windup(); -    } -  } - -  // Fill the window when the lookahead becomes insufficient. -  // Updates strstart and lookahead. -  // -  // IN assertion: lookahead < MIN_LOOKAHEAD -  // OUT assertions: strstart <= window_size-MIN_LOOKAHEAD -  //    At least one byte has been read, or avail_in == 0; reads are -  //    performed for at least two bytes (required for the zip translate_eol -  //    option -- not supported here). -  void fill_window(){ -    int n, m; -    int p; -    int more;    // Amount of free space at the end of the window. - -    do{ -      more = (window_size-lookahead-strstart); - -      // Deal with !@#$% 64K limit: -      if(more==0 && strstart==0 && lookahead==0){ -	more = w_size; -      }  -      else if(more==-1) { -	// Very unlikely, but possible on 16 bit machine if strstart == 0 -	// and lookahead == 1 (input done one byte at time) -	more--; - -	// If the window is almost full and there is insufficient lookahead, -	// move the upper half to the lower one to make room in the upper half. -      } -      else if(strstart >= w_size+ w_size-MIN_LOOKAHEAD) { -	System.arraycopy(window, w_size, window, 0, w_size); -	match_start-=w_size; -	strstart-=w_size; // we now have strstart >= MAX_DIST -	block_start-=w_size; - -	// Slide the hash table (could be avoided with 32 bit values -	// at the expense of memory usage). We slide even when level == 0 -	// to keep the hash table consistent if we switch back to level > 0 -	// later. (Using level 0 permanently is not an optimal usage of -	// zlib, so we don't care about this pathological case.) - -	n = hash_size; -	p=n; -	do { -	  m = (head[--p]&0xffff); -	  head[p]=(m>=w_size ? (short)(m-w_size) : 0); -	} -	while (--n != 0); - -	n = w_size; -	p = n; -	do { -	  m = (prev[--p]&0xffff); -	  prev[p] = (m >= w_size ? (short)(m-w_size) : 0); -	  // If n is not on any hash chain, prev[n] is garbage but -	  // its value will never be used. -	} -	while (--n!=0); -	more += w_size; -      } - -      if (strm.avail_in == 0) return; - -      // If there was no sliding: -      //    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && -      //    more == window_size - lookahead - strstart -      // => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) -      // => more >= window_size - 2*WSIZE + 2 -      // In the BIG_MEM or MMAP case (not yet supported), -      //   window_size == input_size + MIN_LOOKAHEAD  && -      //   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. -      // Otherwise, window_size == 2*WSIZE so more >= 2. -      // If there was sliding, more >= WSIZE. So in all cases, more >= 2. - -      n = strm.read_buf(window, strstart + lookahead, more); -      lookahead += n; - -      // Initialize the hash value now that we have some input: -      if(lookahead >= MIN_MATCH) { -	ins_h = window[strstart]&0xff; -	ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask; -      } -      // If the whole input has less than MIN_MATCH bytes, ins_h is garbage, -      // but this is not important since only literal bytes will be emitted. -    } -    while (lookahead < MIN_LOOKAHEAD && strm.avail_in != 0); -  } - -  // Compress as much as possible from the input stream, return the current -  // block state. -  // This function does not perform lazy evaluation of matches and inserts -  // new strings in the dictionary only for unmatched strings or for short -  // matches. It is used only for the fast compression options. -  int deflate_fast(int flush){ -//    short hash_head = 0; // head of the hash chain -    int hash_head = 0; // head of the hash chain -    boolean bflush;      // set if current block must be flushed - -    while(true){ -      // Make sure that we always have enough lookahead, except -      // at the end of the input file. We need MAX_MATCH bytes -      // for the next match, plus MIN_MATCH bytes to insert the -      // string following the next match. -      if(lookahead < MIN_LOOKAHEAD){ -	fill_window(); -	if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH){ -	  return NeedMore; -	} -	if(lookahead == 0) break; // flush the current block -      } - -      // Insert the string window[strstart .. strstart+2] in the -      // dictionary, and set hash_head to the head of the hash chain: -      if(lookahead >= MIN_MATCH){ -	ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; - -//	prev[strstart&w_mask]=hash_head=head[ins_h]; -        hash_head=(head[ins_h]&0xffff); -	prev[strstart&w_mask]=head[ins_h]; -	head[ins_h]=(short)strstart; -      } - -      // Find the longest match, discarding those <= prev_length. -      // At this point we have always match_length < MIN_MATCH - -      if(hash_head!=0L &&  -	 ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD -	 ){ -	// To simplify the code, we prevent matches with the string -	// of window index 0 (in particular we have to avoid a match -	// of the string with itself at the start of the input file). -	if(strategy != Z_HUFFMAN_ONLY){ -	  match_length=longest_match (hash_head); -	} -	// longest_match() sets match_start -      } -      if(match_length>=MIN_MATCH){ -	//        check_match(strstart, match_start, match_length); - -	bflush=_tr_tally(strstart-match_start, match_length-MIN_MATCH); - -	lookahead -= match_length; - -	// Insert new strings in the hash table only if the match length -	// is not too large. This saves time but degrades compression. -	if(match_length <= max_lazy_match && -	   lookahead >= MIN_MATCH) { -	  match_length--; // string at strstart already in hash table -	  do{ -	    strstart++; - -	    ins_h=((ins_h<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; -//	    prev[strstart&w_mask]=hash_head=head[ins_h]; -	    hash_head=(head[ins_h]&0xffff); -	    prev[strstart&w_mask]=head[ins_h]; -	    head[ins_h]=(short)strstart; - -	    // strstart never exceeds WSIZE-MAX_MATCH, so there are -	    // always MIN_MATCH bytes ahead. -	  } -	  while (--match_length != 0); -	  strstart++;  -	} -	else{ -	  strstart += match_length; -	  match_length = 0; -	  ins_h = window[strstart]&0xff; - -	  ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask; -	  // If lookahead < MIN_MATCH, ins_h is garbage, but it does not -	  // matter since it will be recomputed at next deflate call. -	} -      } -      else { -	// No match, output a literal byte - -	bflush=_tr_tally(0, window[strstart]&0xff); -	lookahead--; -	strstart++;  -      } -      if (bflush){ - -	flush_block_only(false); -	if(strm.avail_out==0) return NeedMore; -      } -    } - -    flush_block_only(flush == Z_FINISH); -    if(strm.avail_out==0){ -      if(flush == Z_FINISH) return FinishStarted; -      else return NeedMore; -    } -    return flush==Z_FINISH ? FinishDone : BlockDone; -  } - -  // Same as above, but achieves better compression. We use a lazy -  // evaluation for matches: a match is finally adopted only if there is -  // no better match at the next window position. -  int deflate_slow(int flush){ -//    short hash_head = 0;    // head of hash chain -    int hash_head = 0;    // head of hash chain -    boolean bflush;         // set if current block must be flushed - -    // Process the input block. -    while(true){ -      // Make sure that we always have enough lookahead, except -      // at the end of the input file. We need MAX_MATCH bytes -      // for the next match, plus MIN_MATCH bytes to insert the -      // string following the next match. - -      if (lookahead < MIN_LOOKAHEAD) { -	fill_window(); -	if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { -	  return NeedMore; -	} -	if(lookahead == 0) break; // flush the current block -      } - -      // Insert the string window[strstart .. strstart+2] in the -      // dictionary, and set hash_head to the head of the hash chain: - -      if(lookahead >= MIN_MATCH) { -	ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff)) & hash_mask; -//	prev[strstart&w_mask]=hash_head=head[ins_h]; -	hash_head=(head[ins_h]&0xffff); -	prev[strstart&w_mask]=head[ins_h]; -	head[ins_h]=(short)strstart; -      } - -      // Find the longest match, discarding those <= prev_length. -      prev_length = match_length; prev_match = match_start; -      match_length = MIN_MATCH-1; - -      if (hash_head != 0 && prev_length < max_lazy_match && -	  ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD -	  ){ -	// To simplify the code, we prevent matches with the string -	// of window index 0 (in particular we have to avoid a match -	// of the string with itself at the start of the input file). - -	if(strategy != Z_HUFFMAN_ONLY) { -	  match_length = longest_match(hash_head); -	} -	// longest_match() sets match_start - -	if (match_length <= 5 && (strategy == Z_FILTERED || -				  (match_length == MIN_MATCH && -				   strstart - match_start > 4096))) { - -	  // If prev_match is also MIN_MATCH, match_start is garbage -	  // but we will ignore the current match anyway. -	  match_length = MIN_MATCH-1; -	} -      } - -      // If there was a match at the previous step and the current -      // match is not better, output the previous match: -      if(prev_length >= MIN_MATCH && match_length <= prev_length) { -	int max_insert = strstart + lookahead - MIN_MATCH; -	// Do not insert strings in hash table beyond this. - -	//          check_match(strstart-1, prev_match, prev_length); - -	bflush=_tr_tally(strstart-1-prev_match, prev_length - MIN_MATCH); - -	// Insert in hash table all strings up to the end of the match. -	// strstart-1 and strstart are already inserted. If there is not -	// enough lookahead, the last two strings are not inserted in -	// the hash table. -	lookahead -= prev_length-1; -	prev_length -= 2; -	do{ -	  if(++strstart <= max_insert) { -	    ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; -	    //prev[strstart&w_mask]=hash_head=head[ins_h]; -	    hash_head=(head[ins_h]&0xffff); -	    prev[strstart&w_mask]=head[ins_h]; -	    head[ins_h]=(short)strstart; -	  } -	} -	while(--prev_length != 0); -	match_available = 0; -	match_length = MIN_MATCH-1; -	strstart++; - -	if (bflush){ -	  flush_block_only(false); -	  if(strm.avail_out==0) return NeedMore; -	} -      } else if (match_available!=0) { - -	// If there was no match at the previous position, output a -	// single literal. If there was a match but the current match -	// is longer, truncate the previous match to a single literal. - -	bflush=_tr_tally(0, window[strstart-1]&0xff); - -	if (bflush) { -	  flush_block_only(false); -	} -	strstart++; -	lookahead--; -	if(strm.avail_out == 0) return NeedMore; -      } else { -	// There is no previous match to compare with, wait for -	// the next step to decide. - -	match_available = 1; -	strstart++; -	lookahead--; -      } -    } - -    if(match_available!=0) { -      bflush=_tr_tally(0, window[strstart-1]&0xff); -      match_available = 0; -    } -    flush_block_only(flush == Z_FINISH); - -    if(strm.avail_out==0){ -      if(flush == Z_FINISH) return FinishStarted; -      else return NeedMore; -    } - -    return flush == Z_FINISH ? FinishDone : BlockDone; -  } - -  int longest_match(int cur_match){ -    int chain_length = max_chain_length; // max hash chain length -    int scan = strstart;                 // current string -    int match;                           // matched string -    int len;                             // length of current match -    int best_len = prev_length;          // best match length so far -    int limit = strstart>(w_size-MIN_LOOKAHEAD) ? -      strstart-(w_size-MIN_LOOKAHEAD) : 0; -    int nice_match=this.nice_match; - -    // Stop when cur_match becomes <= limit. To simplify the code, -    // we prevent matches with the string of window index 0. - -    int wmask = w_mask; - -    int strend = strstart + MAX_MATCH; -    byte scan_end1 = window[scan+best_len-1]; -    byte scan_end = window[scan+best_len]; - -    // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. -    // It is easy to get rid of this optimization if necessary. - -    // Do not waste too much time if we already have a good match: -    if (prev_length >= good_match) { -      chain_length >>= 2; -    } - -    // Do not look for matches beyond the end of the input. This is necessary -    // to make deflate deterministic. -    if (nice_match > lookahead) nice_match = lookahead; - -    do { -      match = cur_match; - -      // Skip to next match if the match length cannot increase -      // or if the match length is less than 2: -      if (window[match+best_len]   != scan_end  || -	  window[match+best_len-1] != scan_end1 || -	  window[match]       != window[scan]     || -	  window[++match]     != window[scan+1])      continue; - -      // The check at best_len-1 can be removed because it will be made -      // again later. (This heuristic is not always a win.) -      // It is not necessary to compare scan[2] and match[2] since they -      // are always equal when the other bytes match, given that -      // the hash keys are equal and that HASH_BITS >= 8. -      scan += 2; match++; - -      // We check for insufficient lookahead only every 8th comparison; -      // the 256th check will be made at strstart+258. -      do { -      } while (window[++scan] == window[++match] && -	       window[++scan] == window[++match] && -	       window[++scan] == window[++match] && -	       window[++scan] == window[++match] && -	       window[++scan] == window[++match] && -	       window[++scan] == window[++match] && -	       window[++scan] == window[++match] && -	       window[++scan] == window[++match] && -	       scan < strend); - -      len = MAX_MATCH - (int)(strend - scan); -      scan = strend - MAX_MATCH; - -      if(len>best_len) { -	match_start = cur_match; -	best_len = len; -	if (len >= nice_match) break; -	scan_end1  = window[scan+best_len-1]; -	scan_end   = window[scan+best_len]; -      } - -    } while ((cur_match = (prev[cur_match & wmask]&0xffff)) > limit -	     && --chain_length != 0); - -    if (best_len <= lookahead) return best_len; -    return lookahead; -  } -     -  int deflateInit(ZStream strm, int level, int bits){ -    return deflateInit2(strm, level, Z_DEFLATED, bits, DEF_MEM_LEVEL, -			Z_DEFAULT_STRATEGY); -  } -  int deflateInit(ZStream strm, int level){ -    return deflateInit(strm, level, MAX_WBITS); -  } -  int deflateInit2(ZStream strm, int level, int method,  int windowBits, -		   int memLevel, int strategy){ -    int noheader = 0; -    //    byte[] my_version=ZLIB_VERSION; - -    // -    //  if (version == null || version[0] != my_version[0] -    //  || stream_size != sizeof(z_stream)) { -    //  return Z_VERSION_ERROR; -    //  } - -    strm.msg = null; - -    if (level == Z_DEFAULT_COMPRESSION) level = 6; - -    if (windowBits < 0) { // undocumented feature: suppress zlib header -      noheader = 1; -      windowBits = -windowBits; -    } - -    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL ||  -	method != Z_DEFLATED || -	windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || -        strategy < 0 || strategy > Z_HUFFMAN_ONLY) { -      return Z_STREAM_ERROR; -    } - -    strm.dstate = (Deflate)this; - -    this.noheader = noheader; -    w_bits = windowBits; -    w_size = 1 << w_bits; -    w_mask = w_size - 1; - -    hash_bits = memLevel + 7; -    hash_size = 1 << hash_bits; -    hash_mask = hash_size - 1; -    hash_shift = ((hash_bits+MIN_MATCH-1)/MIN_MATCH); - -    window = new byte[w_size*2]; -    prev = new short[w_size]; -    head = new short[hash_size]; - -    lit_bufsize = 1 << (memLevel + 6); // 16K elements by default - -    // We overlay pending_buf and d_buf+l_buf. This works since the average -    // output size for (length,distance) codes is <= 24 bits. -    pending_buf = new byte[lit_bufsize*4]; -    pending_buf_size = lit_bufsize*4; - -    d_buf = lit_bufsize/2; -    l_buf = (1+2)*lit_bufsize; - -    this.level = level; - -//System.out.println("level="+level); - -    this.strategy = strategy; -    this.method = (byte)method; - -    return deflateReset(strm); -  } - -  int deflateReset(ZStream strm){ -    strm.total_in = strm.total_out = 0; -    strm.msg = null; // -    strm.data_type = Z_UNKNOWN; - -    pending = 0; -    pending_out = 0; - -    if(noheader < 0) { -      noheader = 0; // was set to -1 by deflate(..., Z_FINISH); -    } -    status = (noheader!=0) ? BUSY_STATE : INIT_STATE; -    strm.adler=strm._adler.adler32(0, null, 0, 0); - -    last_flush = Z_NO_FLUSH; - -    tr_init(); -    lm_init(); -    return Z_OK; -  } - -  int deflateEnd(){ -    if(status!=INIT_STATE && status!=BUSY_STATE && status!=FINISH_STATE){ -      return Z_STREAM_ERROR; -    } -    // Deallocate in reverse order of allocations: -    pending_buf=null; -    head=null; -    prev=null; -    window=null; -    // free -    // dstate=null; -    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; -  } - -  int deflateParams(ZStream strm, int _level, int _strategy){ -    int err=Z_OK; - -    if(_level == Z_DEFAULT_COMPRESSION){ -      _level = 6; -    } -    if(_level < 0 || _level > 9 ||  -       _strategy < 0 || _strategy > Z_HUFFMAN_ONLY) { -      return Z_STREAM_ERROR; -    } - -    if(config_table[level].func!=config_table[_level].func && -       strm.total_in != 0) { -      // Flush the last buffer: -      err = strm.deflate(Z_PARTIAL_FLUSH); -    } - -    if(level != _level) { -      level = _level; -      max_lazy_match   = config_table[level].max_lazy; -      good_match       = config_table[level].good_length; -      nice_match       = config_table[level].nice_length; -      max_chain_length = config_table[level].max_chain; -    } -    strategy = _strategy; -    return err; -  } - -  int deflateSetDictionary (ZStream strm, byte[] dictionary, int dictLength){ -    int length = dictLength; -    int index=0; - -    if(dictionary == null || status != INIT_STATE) -      return Z_STREAM_ERROR; - -    strm.adler=strm._adler.adler32(strm.adler, dictionary, 0, dictLength); - -    if(length < MIN_MATCH) return Z_OK; -    if(length > w_size-MIN_LOOKAHEAD){ -      length = w_size-MIN_LOOKAHEAD; -      index=dictLength-length; // use the tail of the dictionary -    } -    System.arraycopy(dictionary, index, window, 0, length); -    strstart = length; -    block_start = length; - -    // Insert all strings in the hash table (except for the last two bytes). -    // s->lookahead stays null, so s->ins_h will be recomputed at the next -    // call of fill_window. - -    ins_h = window[0]&0xff; -    ins_h=(((ins_h)<<hash_shift)^(window[1]&0xff))&hash_mask; - -    for(int n=0; n<=length-MIN_MATCH; n++){ -      ins_h=(((ins_h)<<hash_shift)^(window[(n)+(MIN_MATCH-1)]&0xff))&hash_mask; -      prev[n&w_mask]=head[ins_h]; -      head[ins_h]=(short)n; -    } -    return Z_OK; -  } - -  int deflate(ZStream strm, int flush){ -    int old_flush; - -    if(flush>Z_FINISH || flush<0){ -      return Z_STREAM_ERROR; -    } - -    if(strm.next_out == null || -       (strm.next_in == null && strm.avail_in != 0) || -       (status == FINISH_STATE && flush != Z_FINISH)) { -      strm.msg=z_errmsg[Z_NEED_DICT-(Z_STREAM_ERROR)]; -      return Z_STREAM_ERROR; -    } -    if(strm.avail_out == 0){ -      strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; -      return Z_BUF_ERROR; -    } - -    this.strm = strm; // just in case -    old_flush = last_flush; -    last_flush = flush; - -    // Write the zlib header -    if(status == INIT_STATE) { -      int header = (Z_DEFLATED+((w_bits-8)<<4))<<8; -      int level_flags=((level-1)&0xff)>>1; - -      if(level_flags>3) level_flags=3; -      header |= (level_flags<<6); -      if(strstart!=0) header |= PRESET_DICT; -      header+=31-(header % 31); - -      status=BUSY_STATE; -      putShortMSB(header); - - -      // Save the adler32 of the preset dictionary: -      if(strstart!=0){ -        putShortMSB((int)(strm.adler>>>16)); -        putShortMSB((int)(strm.adler&0xffff)); -      } -      strm.adler=strm._adler.adler32(0, null, 0, 0); -    } - -    // Flush as much pending output as possible -    if(pending != 0) { -      strm.flush_pending(); -      if(strm.avail_out == 0) { -	//System.out.println("  avail_out==0"); -	// Since avail_out is 0, deflate will be called again with -	// more output space, but possibly with both pending and -	// avail_in equal to zero. There won't be anything to do, -	// but this is not an error situation so make sure we -	// return OK instead of BUF_ERROR at next call of deflate: -	last_flush = -1; -	return Z_OK; -      } - -      // Make sure there is something to do and avoid duplicate consecutive -      // flushes. For repeated and useless calls with Z_FINISH, we keep -      // returning Z_STREAM_END instead of Z_BUFF_ERROR. -    } -    else if(strm.avail_in==0 && flush <= old_flush && -	    flush != Z_FINISH) { -      strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; -      return Z_BUF_ERROR; -    } - -    // User must not provide more input after the first FINISH: -    if(status == FINISH_STATE && strm.avail_in != 0) { -      strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; -      return Z_BUF_ERROR; -    } - -    // Start a new block or continue the current one. -    if(strm.avail_in!=0 || lookahead!=0 || -       (flush != Z_NO_FLUSH && status != FINISH_STATE)) { -      int bstate=-1; -      switch(config_table[level].func){ -      case STORED:  -	bstate = deflate_stored(flush); -	break; -      case FAST:  -	bstate = deflate_fast(flush); -	break; -      case SLOW:  -	bstate = deflate_slow(flush); -	break; -      default: -      } - -      if (bstate==FinishStarted || bstate==FinishDone) { -	status = FINISH_STATE; -      } -      if (bstate==NeedMore || bstate==FinishStarted) { -	if(strm.avail_out == 0) { -	  last_flush = -1; // avoid BUF_ERROR next call, see above -	} -	return Z_OK; -	// If flush != Z_NO_FLUSH && avail_out == 0, the next call -	// of deflate should use the same flush parameter to make sure -	// that the flush is complete. So we don't have to output an -	// empty block here, this will be done at next call. This also -	// ensures that for a very small output buffer, we emit at most -	// one empty block. -      } - -      if (bstate==BlockDone) { -	if(flush == Z_PARTIAL_FLUSH) { -	  _tr_align(); -	}  -	else { // FULL_FLUSH or SYNC_FLUSH -	  _tr_stored_block(0, 0, false); -	  // For a full flush, this empty block will be recognized -	  // as a special marker by inflate_sync(). -	  if(flush == Z_FULL_FLUSH) { -	    //state.head[s.hash_size-1]=0; -	    for(int i=0; i<hash_size/*-1*/; i++)  // forget history -	      head[i]=0; -	  } -	} -	strm.flush_pending(); -	if(strm.avail_out == 0) { -	  last_flush = -1; // avoid BUF_ERROR at next call, see above -	  return Z_OK; -	} -      } -    } - -    if(flush!=Z_FINISH) return Z_OK; -    if(noheader!=0) return Z_STREAM_END; - -    // Write the zlib trailer (adler32) -    putShortMSB((int)(strm.adler>>>16)); -    putShortMSB((int)(strm.adler&0xffff)); -    strm.flush_pending(); - -    // If avail_out is zero, the application will call deflate again -    // to flush the rest. -    noheader = -1; // write the trailer only once! -    return pending != 0 ? Z_OK : Z_STREAM_END; -  } -} | 
