aboutsummaryrefslogtreecommitdiffstats
path: root/doc-src/tutorials/30second.html
blob: fe9581c57c478d8423a5bd449b44f163f3c372b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
My local cafe is serviced by a rickety and unreliable wireless network,
generously sponsored with ratepayers' money by our city council. After
connecting, you  are redirected to an SSL-protected page that prompts you for a
username and password. Once you've entered your details, you are free to enjoy
the intermittent dropouts, treacle-like speeds and incorrectly configured
transparent proxy. 

I tend to automate this kind of thing at the first opportunity, on the theory
that time spent now will be more than made up in the long run. In this case, I
might use [Firebug](http://getfirebug.com/) to ferret out the form post
parameters and target URL, then fire up an editor to write a little script
using Python's [urllib](http://docs.python.org/library/urllib.html) to simulate
a submission. That's a lot of futzing about. With mitmproxy we can do the job
in literally 30 seconds, without having to worry about any of the details.
Here's how.

## 1. Run mitmdump to record our HTTP conversation to a file.

<pre class="terminal">
> mitmdump -w wireless-login
</pre>

## 2. Point your browser at the mitmdump instance. 

I use a tiny Firefox addon called [Toggle
Proxy](https://addons.mozilla.org/en-us/firefox/addon/toggle-proxy-51740/) to
switch quickly to and from mitmproxy. I'm assuming you've already [configured
your browser with mitmproxy's SSL certificate
authority](http://mitmproxy.org/doc/ssl.html).

## 3. Log in as usual. 


And that's it! You now have a serialized version of the login process in the
file wireless-login, and you can replay it at any time like this:

<pre class="terminal">
> mitmdump -c wireless-login
</pre>

## Embellishments

We're really done at this point, but there are a couple of embellishments we
could make if we wanted. I use [wicd](http://wicd.sourceforge.net/) to
automatically join wireless networks I frequent, and it lets me specify a
command to run after connecting. I used the client replay command above and
voila! - totally hands-free wireless network startup.

We might also want to prune requests that download CSS, JS, images and so
forth. These add only a few moments to the time it takes to replay, but they're
not really needed and I somehow feel compelled to trim them anyway. So, we fire up
the mitmproxy console tool on our serialized conversation, like so:

<pre class="terminal">
> mitmproxy -r wireless-login
</pre>

We can now go through and manually delete (using the __d__ keyboard shortcut)
everything we want to trim. When we're done, we use __w__ to save the
conversation back to the file.
d='n340' href='#n340'>340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2018  Miodrag Milanovic <miodrag@symbioticeda.com>
 *  Copyright (C) 2018  Serge Bazanski <q3k@symbioticeda.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#ifndef TREEMODEL_H
#define TREEMODEL_H

#include <QAbstractItemModel>
#include <boost/optional.hpp>

#include "nextpnr.h"

NEXTPNR_NAMESPACE_BEGIN

enum class ElementType
{
    NONE,
    BEL,
    WIRE,
    PIP,
    NET,
    CELL,
    GROUP
};

namespace TreeModel {

// Item is a leaf or non-leaf item in the TreeModel hierarchy. It does not
// manage any memory.
// It has a list of children, and when created it registers itself as a child
// of its parent.
// It has some PNR-specific members, like type (if any), idstring (if ay).
// They should be overwritten by deriving classes to make them relate to an
// object somewhere in the arch universe.
// It also has provisions for lazy loading of data, via the canFetchMore and
// fetchMore methods.
class Item
{
  protected:
    // Human-friendly name of this item.
    QString name_;
    // Parent or nullptr if root.
    Item *parent_;
    // Children that are loaded into memory.
    QList<Item *> children_;

    void addChild(Item *child) { children_.append(child); }

    void deleteChild(Item *child) { children_.removeAll(child); }

  public:
    Item(QString name, Item *parent) : name_(name), parent_(parent)
    {
        // Register in parent if exists.
        if (parent_ != nullptr) {
            parent_->addChild(this);
        }
    };

    // Number of children.
    int count() const { return children_.count(); }

    // Name getter.
    QString name() const { return name_; }

    // Child getter.
    Item *child(int index) { return children_.at(index); }

    // Parent getter.
    const Item *parent() const { return parent_; }
    Item *parent() { return parent_; }

    // indexOf gets index of child in children array.
    int indexOf(const Item *child) const
    {
        // Dropping the const for indexOf to work.
        return children_.indexOf((Item *)child, 0);
    }
    int indexOf(Item *child) { return children_.indexOf(child, 0); }

    // Arch id and type that correspond to this element.
    virtual IdStringList id() const { return IdStringList(); }
    virtual ElementType type() const { return ElementType::NONE; }

    // Lazy loading methods.
    virtual bool canFetchMore() const { return false; }
    virtual void fetchMore() {}

    virtual boost::optional<Item *> getById(IdStringList id) { return boost::none; }
    virtual void search(QList<Item *> &results, QString text, int limit) {}
    virtual void updateElements(Context *ctx, std::vector<IdStringList> elements) {}

    virtual ~Item()
    {
        if (parent_ != nullptr) {
            parent_->deleteChild(this);
        }
    }
};

// IdString is an Item that corresponds to a real element in Arch.
class IdStringItem : public Item
{
  private:
    IdStringList id_;
    ElementType type_;

  public:
    IdStringItem(Context *ctx, IdStringList str, Item *parent, ElementType type)
            : Item(QString(str.str(ctx).c_str()), parent), id_(str), type_(type)
    {
    }

    virtual IdStringList id() const override { return id_; }

    virtual ElementType type() const override { return type_; }
};

// IdList is a static list of IdStringLists which can be set/updates from
// a vector of IdStrings. It will render each IdStrings as a child, with the
// list sorted in a smart way.
class IdList : public Item
{
  private:
    // Children that we manage the memory for, stored for quick lookup from
    // IdString to child.
    std::unordered_map<IdStringList, std::unique_ptr<IdStringItem>> managed_;
    // Type of children that the list creates.
    ElementType child_type_;

  public:
    // Create an IdList at given parent that will contain elements of
    // the given type.
    IdList(ElementType type) : Item("root", nullptr), child_type_(type) {}

    // Split a name into alpha/non-alpha parts, which is then used for sorting
    // of children.
    static std::vector<QString> alphaNumSplit(const QString &str);

    // getById finds a child for the given IdString.
    virtual boost::optional<Item *> getById(IdStringList id) override { return managed_.at(id).get(); }

    // (Re-)create children from a list of IdStrings.
    virtual void updateElements(Context *ctx, std::vector<IdStringList> elements) override;

    // Find children that contain the given text.
    virtual void search(QList<Item *> &results, QString text, int limit) override;
};

// ElementList is a dynamic list of ElementT (BelId,WireId,...) that are
// automatically generated based on an overall map of elements.
// ElementList is emitted from ElementXYRoot, and contains the actual
// Bels/Wires/Pips underneath it.
template <typename ElementT> class ElementList : public Item
{
  public:
    // A map from tile (X,Y) to list of ElementTs in that tile.
    using ElementMap = std::map<std::pair<int, int>, std::vector<ElementT>>;
    // A method that converts an ElementT to an IdString.
    using ElementGetter = std::function<IdStringList(Context *, ElementT)>;

  private:
    Context *ctx_;
    // ElementMap given to use by our constructor.
    const ElementMap *map_;
    // The X, Y that this list handles.
    int x_, y_;
    ElementGetter getter_;
    // Children that we manage the memory for, stored for quick lookup from
    // IdString to child.
    std::unordered_map<IdStringList, std::unique_ptr<Item>> managed_;
    // Type of children that he list creates.
    ElementType child_type_;

    // Gets elements that this list should create from the map. This pointer is
    // short-lived (as it will change when the map mutates.
    const std::vector<ElementT> *elements() const { return &map_->at(std::make_pair(x_, y_)); }

  public:
    ElementList(Context *ctx, QString name, Item *parent, ElementMap *map, int x, int y, ElementGetter getter,
                ElementType type)
            : Item(name, parent), ctx_(ctx), map_(map), x_(x), y_(y), getter_(getter), child_type_(type)
    {
    }

    // Lazy loading of elements.

    virtual bool canFetchMore() const override { return (size_t)children_.size() < elements()->size(); }

    void fetchMore(int count)
    {
        size_t start = children_.size();
        size_t end = std::min(start + count, elements()->size());
        for (size_t i = start; i < end; i++) {
            auto idstring = getter_(ctx_, elements()->at(i));
            std::string name_str = idstring.str(ctx_);
            QString name(name_str.c_str());

            // Remove X.../Y.../ prefix - TODO: find a way to use IdStringList splitting here
            QString prefix = QString("X%1/Y%2/").arg(x_).arg(y_);
            if (name.startsWith(prefix))
                name.remove(0, prefix.size());

            auto item = new IdStringItem(ctx_, idstring, this, child_type_);
            managed_[idstring] = std::unique_ptr<Item>(item);
        }
    }

    virtual void fetchMore() override { fetchMore(100); }

    // getById finds a child for the given IdString.
    virtual boost::optional<Item *> getById(IdStringList id) override
    {
        // Search requires us to load all our elements...
        while (canFetchMore())
            fetchMore();

        auto res = managed_.find(id);
        if (res != managed_.end()) {
            return res->second.get();
        }
        return boost::none;
    }

    // Find children that contain the given text.
    virtual void search(QList<Item *> &results, QString text, int limit) override
    {
        // Last chance to bail out from loading entire tree into memory.
        if (limit != -1 && results.size() > limit)
            return;

        // Search requires us to load all our elements...
        while (canFetchMore())
            fetchMore();

        for (const auto &child : children_) {
            if (limit != -1 && results.size() > limit)
                return;
            if (child->name().contains(text))
                results.push_back(child);
        }
    }
};

// ElementXYRoot is the root of an ElementT multi-level lazy loading list.
// It can take any of {BelId,WireId,PipId} and create a tree that
// hierarchizes them by X and Y tile positions, when given a map from X,Y to
// list of ElementTs in that tile.
template <typename ElementT> class ElementXYRoot : public Item
{
  public:
    // A map from tile (X,Y) to list of ElementTs in that tile.
    using ElementMap = std::map<std::pair<int, int>, std::vector<ElementT>>;
    // A method that converts an ElementT to an IdString.
    using ElementGetter = std::function<IdStringList(Context *, ElementT)>;

  private:
    Context *ctx_;
    // X-index children that we manage the memory for.
    std::vector<std::unique_ptr<Item>> managed_labels_;
    // Y-index children (ElementLists) that we manage the memory for.
    std::vector<std::unique_ptr<ElementList<ElementT>>> managed_lists_;
    // Source of truth for elements to display.
    ElementMap map_;
    ElementGetter getter_;
    // Type of children that he list creates in X->Y->...
    ElementType child_type_;

  public:
    ElementXYRoot(Context *ctx, ElementMap map, ElementGetter getter, ElementType type)
            : Item("root", nullptr), ctx_(ctx), map_(map), getter_(getter), child_type_(type)
    {
        // Create all X and Y label Items/ElementLists.

        // Y coordinates at which an element exists for a given X - taken out
        // of loop to limit heap allocation/deallocation.
        std::vector<int> y_present;

        for (int i = 0; i < ctx->getGridDimX(); i++) {
            y_present.clear();
            // First find all the elements in all Y coordinates in this X.
            for (int j = 0; j < ctx->getGridDimY(); j++) {
                if (map_.count(std::make_pair(i, j)) == 0)
                    continue;
                y_present.push_back(j);
            }
            // No elements in any X coordinate? Do not add X tree item.
            if (y_present.size() == 0)
                continue;

            // Create X list Item.
            auto item = new Item(QString("X%1").arg(i), this);
            managed_labels_.push_back(std::unique_ptr<Item>(item));

            for (auto j : y_present) {
                // Create Y list ElementList.
                auto item2 =
                        new ElementList<ElementT>(ctx_, QString("Y%1").arg(j), item, &map_, i, j, getter_, child_type_);
                // Pre-populate list with one element, other Qt will never ask for more.
                item2->fetchMore(1);
                managed_lists_.push_back(std::unique_ptr<ElementList<ElementT>>(item2));
            }
        }
    }

    // getById finds a child for the given IdString.
    virtual boost::optional<Item *> getById(IdStringList id) override
    {
        // For now, scan linearly all ElementLists.
        // TODO(q3k) fix this once we have tree API from arch
        for (auto &l : managed_lists_) {
            auto res = l->getById(id);
            if (res) {
                return res;
            }
        }
        return boost::none;
    }

    // Find children that contain the given text.
    virtual void search(QList<Item *> &results, QString text, int limit) override
    {
        for (auto &l : managed_lists_) {
            if (limit != -1 && results.size() > limit)
                return;
            l->search(results, text, limit);
        }
    }
};

class Model : public QAbstractItemModel
{
  private:
    Context *ctx_ = nullptr;

  public:
    Model(QObject *parent = nullptr);
    ~Model();

    void loadData(Context *ctx, std::unique_ptr<Item> data);
    void updateElements(std::vector<IdStringList> elements);
    Item *nodeFromIndex(const QModelIndex &idx) const;
    QModelIndex indexFromNode(Item *node)
    {
        const Item *parent = node->parent();
        if (parent == nullptr)
            return QModelIndex();

        return createIndex(parent->indexOf(node), 0, node);
    }

    QList<QModelIndex> search(QString text);

    boost::optional<Item *> nodeForId(IdStringList id) const { return root_->getById(id); }

    // Override QAbstractItemModel methods
    int rowCount(const QModelIndex &parent = QModelIndex()) const Q_DECL_OVERRIDE;
    int columnCount(const QModelIndex &parent = QModelIndex()) const Q_DECL_OVERRIDE;
    QModelIndex index(int row, int column, const QModelIndex &parent = QModelIndex()) const Q_DECL_OVERRIDE;
    QModelIndex parent(const QModelIndex &child) const Q_DECL_OVERRIDE;
    QVariant data(const QModelIndex &index, int role = Qt::DisplayRole) const Q_DECL_OVERRIDE;
    QVariant headerData(int section, Qt::Orientation orientation, int role) const Q_DECL_OVERRIDE;
    Qt::ItemFlags flags(const QModelIndex &index) const Q_DECL_OVERRIDE;
    void fetchMore(const QModelIndex &parent) Q_DECL_OVERRIDE;
    bool canFetchMore(const QModelIndex &parent) const Q_DECL_OVERRIDE;

  private:
    // Tree elements that we manage the memory for.
    std::unique_ptr<Item> root_;
};

}; // namespace TreeModel

NEXTPNR_NAMESPACE_END

#endif // TREEMODEL_H