aboutsummaryrefslogtreecommitdiffstats
path: root/src/gevent/gevent.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/gevent/gevent.c')
0 files changed, 0 insertions, 0 deletions
a id='n57' href='#n57'>57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
--  PSL - NFA builder.
--  Copyright (C) 2002-2016 Tristan Gingold
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

with Tables;
with Ada.Text_IO; use Ada.Text_IO;
with Types; use Types;
with PSL.Types; use PSL.Types;
with PSL.Errors; use PSL.Errors;
with PSL.CSE; use PSL.CSE;
with PSL.QM;
with PSL.Disp_NFAs; use PSL.Disp_NFAs;
with PSL.Optimize; use PSL.Optimize;
with PSL.NFAs.Utils;
with PSL.Prints;
with PSL.NFAs; use PSL.NFAs;

package body PSL.Build is
   package Intersection is
      function Build_Inter (L, R : NFA; Match_Len : Boolean) return NFA;
   end Intersection;

   package body Intersection is

      type Stack_Entry_Id is new Natural;
      No_Stack_Entry : constant Stack_Entry_Id := 0;
      type Stack_Entry is record
         L, R : NFA_State;
         Res : NFA_State;
         Next_Unhandled : Stack_Entry_Id;
      end record;

      package Stackt is new Tables
        (Table_Component_Type => Stack_Entry,
         Table_Index_Type => Stack_Entry_Id,
         Table_Low_Bound => 1,
         Table_Initial => 128);

      First_Unhandled : Stack_Entry_Id;

      procedure Init_Stack is
      begin
         Stackt.Init;
         First_Unhandled := No_Stack_Entry;
      end Init_Stack;

      function Not_Empty return Boolean is
      begin
         return First_Unhandled /= No_Stack_Entry;
      end Not_Empty;

      procedure Pop_State (L, R : out NFA_State) is
      begin
         L := Stackt.Table (First_Unhandled).L;
         R := Stackt.Table (First_Unhandled).R;
         First_Unhandled := Stackt.Table (First_Unhandled).Next_Unhandled;
      end Pop_State;

      function Get_State (N : NFA; L, R : NFA_State) return NFA_State
      is
         Res : NFA_State;
      begin
         for I in Stackt.First .. Stackt.Last loop
            if Stackt.Table (I).L = L
              and then Stackt.Table (I).R = R
            then
               return Stackt.Table (I).Res;
            end if;
         end loop;
         Res := Add_State (N);
         Stackt.Append ((L => L, R => R, Res => Res,
                         Next_Unhandled => First_Unhandled));
         First_Unhandled := Stackt.Last;
         return Res;
      end Get_State;

      function Build_Inter (L, R : NFA; Match_Len : Boolean) return NFA
      is
         Start_L, Start_R : NFA_State;
         Final_L, Final_R : NFA_State;
         S_L, S_R : NFA_State;
         E_L, E_R : NFA_Edge;
         Res : NFA;
         Start : NFA_State;
         Extra_L, Extra_R : NFA_Edge;
         T : Node;
      begin
         Start_L := Get_Start_State (L);
         Start_R := Get_Start_State (R);
         Final_R := Get_Final_State (R);
         Final_L := Get_Final_State (L);

         if False then
            Disp_Body (L);
            Disp_Body (R);
            Put ("//start state: ");
            Disp_State (Start_L);
            Put (",");
            Disp_State (Start_R);
            New_Line;
         end if;

         if Match_Len then
            Extra_L := No_Edge;
            Extra_R := No_Edge;
         else
            Extra_L := Add_Edge (Final_L, Final_L, True_Node);
            Extra_R := Add_Edge (Final_R, Final_R, True_Node);
         end if;

         Res := Create_NFA;
         Init_Stack;
         Start := Get_State (Res, Start_L, Start_R);
         Set_Start_State (Res, Start);

         while Not_Empty loop
            Pop_State (S_L, S_R);

            if False then
               Put ("//poped state: ");
               Disp_State (S_L);
               Put (",");
               Disp_State (S_R);
               New_Line;
            end if;

            E_L := Get_First_Src_Edge (S_L);
            while E_L /= No_Edge loop
               E_R := Get_First_Src_Edge (S_R);
               while E_R /= No_Edge loop
                  if not (E_L = Extra_L and E_R = Extra_R) then
                     T := Build_Bool_And (Get_Edge_Expr (E_L),
                                          Get_Edge_Expr (E_R));
                     Add_Edge (Get_State (Res, S_L, S_R),
                               Get_State (Res,
                                          Get_Edge_Dest (E_L),
                                          Get_Edge_Dest (E_R)),
                               T);
                  end if;
                  E_R := Get_Next_Src_Edge (E_R);
               end loop;
               E_L := Get_Next_Src_Edge (E_L);
            end loop;
         end loop;
         Set_Final_State (Res, Get_State (Res, Final_L, Final_R));
         Remove_Unreachable_States (Res);

         if not Match_Len then
            Remove_Edge (Extra_L);
            Remove_Edge (Extra_R);
         end if;

         --  FIXME: free L and R.
         return Res;
      end Build_Inter;
   end Intersection;

   --  All edges from A are duplicated using B as a source.
   --  Handle epsilon-edges.
   procedure Duplicate_Src_Edges (N : NFA; A, B : NFA_State)
   is
      pragma Unreferenced (N);
      E : NFA_Edge;
      Expr : Node;
      Dest : NFA_State;
   begin
      pragma Assert (A /= B);
      E := Get_First_Src_Edge (A);
      while E /= No_Edge loop
         Expr := Get_Edge_Expr (E);
         Dest := Get_Edge_Dest (E);
         if Expr /= Null_Node then
            Add_Edge (B, Dest, Expr);
         end if;
         E := Get_Next_Src_Edge (E);
      end loop;
   end Duplicate_Src_Edges;

   --  All edges to A are duplicated using B as a destination.
   --  Handle epsilon-edges.
   procedure Duplicate_Dest_Edges (N : NFA; A, B : NFA_State)
   is
      pragma Unreferenced (N);
      E : NFA_Edge;
      Expr : Node;
      Src : NFA_State;
   begin
      pragma Assert (A /= B);
      E := Get_First_Dest_Edge (A);
      while E /= No_Edge loop
         Expr := Get_Edge_Expr (E);
         Src := Get_Edge_Src (E);
         if Expr /= Null_Node then
            Add_Edge (Src, B, Expr);
         end if;
         E := Get_Next_Dest_Edge (E);
      end loop;
   end Duplicate_Dest_Edges;

   procedure Remove_Epsilon_Edge (N : NFA; S, D : NFA_State) is
   begin
      if Get_First_Src_Edge (S) = No_Edge then
         --  No edge from S.
         --  Move edges to S to D.
         Redest_Edges (S, D);
         Remove_Unconnected_State (N, S);
         if Get_Start_State (N) = S then
            Set_Start_State (N, D);
         end if;
      elsif Get_First_Dest_Edge (D) = No_Edge then
         --  No edge to D.
         --  Move edges from D to S.
         Resource_Edges (D, S);
         Remove_Unconnected_State (N, D);
         if Get_Final_State (N) = D then
            Set_Final_State (N, S);
         end if;
      else
         Duplicate_Dest_Edges (N, S, D);
         Duplicate_Src_Edges (N, D, S);
         Remove_Identical_Src_Edges (S);
      end if;
   end Remove_Epsilon_Edge;

   procedure Remove_Epsilon (N : NFA;
                             E : NFA_Edge) is
      S : constant NFA_State := Get_Edge_Src (E);
      D : constant NFA_State := Get_Edge_Dest (E);
   begin
      Remove_Edge (E);

      Remove_Epsilon_Edge (N, S, D);
   end Remove_Epsilon;

   function Build_Concat (L, R : NFA) return NFA
   is
      Start_L, Start_R : NFA_State;
      Final_L, Final_R : NFA_State;
      Eps_L, Eps_R : Boolean;
      E_L, E_R : NFA_Edge;
   begin
      Start_L := Get_Start_State (L);
      Start_R := Get_Start_State (R);
      Final_R := Get_Final_State (R);
      Final_L := Get_Final_State (L);
      Eps_L := Get_Epsilon_NFA (L);
      Eps_R := Get_Epsilon_NFA (R);

      Merge_NFA (L, R);

      Set_Start_State (L, Start_L);
      Set_Final_State (L, Final_R);
      Set_Epsilon_NFA (L, False);

      if Eps_L then
         E_L := Add_Edge (Start_L, Final_L, Null_Node);
      end if;

      if Eps_R then
         E_R := Add_Edge (Start_R, Final_R, Null_Node);
      end if;

      Remove_Epsilon_Edge (L, Final_L, Start_R);

      if Eps_L then
         Remove_Epsilon (L, E_L);
      end if;
      if Eps_R then
         Remove_Epsilon (L, E_R);
      end if;

      if (Start_L = Final_L or else Eps_L)
        and then (Start_R = Final_R or else Eps_R)
      then
         Set_Epsilon_NFA (L, True);
      end if;

      Remove_Identical_Src_Edges (Final_L);
      Remove_Identical_Dest_Edges (Start_R);

      return L;
   end Build_Concat;

   function Build_Or (L, R : NFA) return NFA
   is
      Start_L, Start_R : NFA_State;
      Final_L, Final_R : NFA_State;
      Eps : Boolean;
      Start, Final : NFA_State;
      E_S_L, E_S_R, E_L_F, E_R_F : NFA_Edge;
   begin
      Start_L := Get_Start_State (L);
      Start_R := Get_Start_State (R);
      Final_R := Get_Final_State (R);
      Final_L := Get_Final_State (L);
      Eps := Get_Epsilon_NFA (L) or Get_Epsilon_NFA (R);

      --  Optimize [*0] | R.
      if Start_L = Final_L
        and then Get_First_Src_Edge (Start_L) = No_Edge
      then
         if Start_R /= Final_R then
            Set_Epsilon_NFA (R, True);
         end if;
         --  FIXME
         --  delete_NFA (L);
         return R;
      end if;

      Merge_NFA (L, R);

      --  Use Thompson construction.
      Start := Add_State (L);
      Set_Start_State (L, Start);
      E_S_L := Add_Edge (Start, Start_L, Null_Node);
      E_S_R := Add_Edge (Start, Start_R, Null_Node);

      Final := Add_State (L);
      Set_Final_State (L, Final);
      E_L_F := Add_Edge (Final_L, Final, Null_Node);
      E_R_F := Add_Edge (Final_R, Final, Null_Node);

      Set_Epsilon_NFA (L, Eps);

      Remove_Epsilon (L, E_S_L);
      Remove_Epsilon (L, E_S_R);
      Remove_Epsilon (L, E_L_F);
      Remove_Epsilon (L, E_R_F);

      return L;
   end Build_Or;

   function Build_Fusion (L, R : NFA) return NFA
   is
      Start_R : NFA_State;
      Final_L, Final_R, S_L : NFA_State;
      E_L : NFA_Edge;
      E_R : NFA_Edge;
      N_L, Expr : Node;
   begin
      Start_R := Get_Start_State (R);
      Final_R := Get_Final_State (R);
      Final_L := Get_Final_State (L);

      Merge_NFA (L, R);

      E_L := Get_First_Dest_Edge (Final_L);
      while E_L /= No_Edge loop
         S_L := Get_Edge_Src (E_L);
         N_L := Get_Edge_Expr (E_L);

         E_R := Get_First_Src_Edge (Start_R);
         while E_R /= No_Edge loop
            Expr := Build_Bool_And (N_L, Get_Edge_Expr (E_R));
            Expr := PSL.QM.Reduce (Expr);
            if Expr /= False_Node then
               Add_Edge (S_L, Get_Edge_Dest (E_R), Expr);
            end if;
            E_R := Get_Next_Src_Edge (E_R);
         end loop;
         Remove_Identical_Src_Edges (S_L);
         E_L := Get_Next_Dest_Edge (E_L);
      end loop;

      Set_Final_State (L, Final_R);

      Set_Epsilon_NFA (L, False);

      if Get_First_Src_Edge (Final_L) = No_Edge
        and then Final_L /= Get_Active_State (L)
      then
         Remove_State (L, Final_L);
      end if;
      if Get_First_Dest_Edge (Start_R) = No_Edge then
         Remove_State (L, Start_R);
      end if;

      return L;
   end Build_Fusion;

   function Build_Star_Repeat (N : Node) return NFA is
      Res : NFA;
      Start, Final, S : NFA_State;
      Seq : Node;
   begin
      Seq := Get_Sequence (N);
      if Seq = Null_Node then
         --  Epsilon.
         Res := Create_NFA;
         S := Add_State (Res);
         Set_Start_State (Res, S);
         Set_Final_State (Res, S);
         return Res;
      end if;
      Res := Build_SERE_FA (Seq);
      Start := Get_Start_State (Res);
      Final := Get_Final_State (Res);
      Redest_Edges (Final, Start);
      Set_Final_State (Res, Start);
      Remove_Unconnected_State (Res, Final);
      Set_Epsilon_NFA (Res, False);
      return Res;
   end Build_Star_Repeat;

   function Build_Plus_Repeat (N : Node) return NFA is
      Res : NFA;
      Start, Final : NFA_State;
      T : NFA_Edge;
   begin
      Res := Build_SERE_FA (Get_Sequence (N));
      Start := Get_Start_State (Res);
      Final := Get_Final_State (Res);
      T := Get_First_Dest_Edge (Final);
      while T /= No_Edge loop
         Add_Edge (Get_Edge_Src (T), Start, Get_Edge_Expr (T));
         T := Get_Next_Src_Edge (T);
      end loop;
      return Res;
   end Build_Plus_Repeat;

   --  Association actual to formals, so that when a formal is referenced, the
   --  actual can be used instead.
   procedure Assoc_Instance (Decl : Node; Instance : Node)
   is
      Formal : Node;
      Actual : Node;
   begin
      --  Temporary associates actuals to formals.
      Formal := Get_Parameter_List (Decl);
      Actual := Get_Association_Chain (Instance);
      while Formal /= Null_Node loop
         if Actual = Null_Node then
            --  Not enough actual.
            raise Internal_Error;
         end if;
         if Get_Actual (Formal) /= Null_Node then
            --  Recursion
            raise Internal_Error;
         end if;
         Set_Actual (Formal, Get_Actual (Actual));
         Formal := Get_Chain (Formal);
         Actual := Get_Chain (Actual);
      end loop;
      if Actual /= Null_Node then
         --  Too many actual.
         raise Internal_Error;
      end if;
   end Assoc_Instance;

   procedure Unassoc_Instance (Decl : Node)
   is
      Formal : Node;
   begin
      --  Remove temporary association.
      Formal := Get_Parameter_List (Decl);
      while Formal /= Null_Node loop
         Set_Actual (Formal, Null_Node);
         Formal := Get_Chain (Formal);
      end loop;
   end Unassoc_Instance;

   function Build_SERE_FA (N : Node) return NFA
   is
      Res : NFA;
      S1, S2 : NFA_State;
   begin
      case Get_Kind (N) is
         when N_Booleans =>
            Res := Create_NFA;
            S1 := Add_State (Res);
            S2 := Add_State (Res);
            Set_Start_State (Res, S1);
            Set_Final_State (Res, S2);
            if N /= False_Node then
               Add_Edge (S1, S2, N);
            end if;
            return Res;
         when N_Braced_SERE =>
            return Build_SERE_FA (Get_SERE (N));
         when N_Concat_SERE =>
            return Build_Concat (Build_SERE_FA (Get_Left (N)),
                                 Build_SERE_FA (Get_Right (N)));
         when N_Fusion_SERE =>
            return Build_Fusion (Build_SERE_FA (Get_Left (N)),
                                 Build_SERE_FA (Get_Right (N)));
         when N_Match_And_Seq =>
            return Intersection.Build_Inter (Build_SERE_FA (Get_Left (N)),
                                             Build_SERE_FA (Get_Right (N)),
                                             True);
         when N_And_Seq =>
            return Intersection.Build_Inter (Build_SERE_FA (Get_Left (N)),
                                             Build_SERE_FA (Get_Right (N)),
                                             False);
         when N_Or_Prop
           | N_Or_Seq =>
            return Build_Or (Build_SERE_FA (Get_Left (N)),
                             Build_SERE_FA (Get_Right (N)));
         when N_Star_Repeat_Seq =>
            return Build_Star_Repeat (N);
         when N_Plus_Repeat_Seq =>
            return Build_Plus_Repeat (N);
         when N_Sequence_Instance
           | N_Endpoint_Instance =>
            declare
               Decl : Node;
            begin
               Decl := Get_Declaration (N);
               Assoc_Instance (Decl, N);
               Res := Build_SERE_FA (Get_Sequence (Decl));
               Unassoc_Instance (Decl);
               return Res;
            end;
         when N_Boolean_Parameter
           | N_Sequence_Parameter =>
            declare
               Actual : constant Node := Get_Actual (N);
            begin
               if Actual = Null_Node then
                  raise Internal_Error;
               end if;
               return Build_SERE_FA (Actual);
            end;
         when others =>
            Error_Kind ("build_sere_fa", N);
      end case;
   end Build_SERE_FA;

   function Count_Edges (S : NFA_State) return Natural
   is
      Res : Natural;
      E : NFA_Edge;
   begin
      Res := 0;
      E := Get_First_Src_Edge (S);
      while E /= No_Edge loop
         Res := Res + 1;
         E := Get_Next_Src_Edge (E);
      end loop;
      return Res;
   end Count_Edges;

   type Count_Vector is array (Natural range <>) of Natural;

   procedure Count_All_Edges (N : NFA; Res : out Count_Vector)
   is
      S : NFA_State;
   begin
      S := Get_First_State (N);
      while S /= No_State loop
         Res (Natural (Get_State_Label (S))) := Count_Edges (S);
         S := Get_Next_State (S);
      end loop;
   end Count_All_Edges;

   pragma Unreferenced (Count_All_Edges);

   package Determinize is
      --  Create a new NFA that reaches its final state only when N fails
      --  (ie when the final state is not reached).
      function Determinize (N : NFA) return NFA;
   end Determinize;

   package body Determinize is
      --  In all the comments N stands for the initial NFA (ie the NFA to
      --  determinize).

      use Prints;

      Flag_Trace : constant Boolean := False;
      Last_Label : Int32 := 0;

      --  The tree associates a set of states in N to *an* uniq set in the
      --  result NFA.
      --
      --  As the NFA is labelized, each node represent a state in N, and has
      --  two branches: one for state is present and one for state is absent.
      --
      --  The leaves contain the state in the result NFA.
      --
      --  The leaves are chained to create a stack of state to handle.
      --
      --  The root of the tree is node Start_Tree_Id and represent the start
      --  state of N.
      type Deter_Tree_Id is new Natural;
      No_Tree_Id : constant Deter_Tree_Id := 0;
      Start_Tree_Id : constant Deter_Tree_Id := 1;

      --  List of unhanded leaves.
      Deter_Head : Deter_Tree_Id;

      type Deter_Tree_Id_Bool_Array is array (Boolean) of Deter_Tree_Id;

      --  Node in the tree.
      type Deter_Tree_Entry is record
         Parent : Deter_Tree_Id;

         --  For non-leaf:
         Child : Deter_Tree_Id_Bool_Array;

         --  For leaf:
         Link : Deter_Tree_Id;
         State : NFA_State;
         --  + value ?
      end record;

      package Detert is new Tables
        (Table_Component_Type => Deter_Tree_Entry,
         Table_Index_Type => Deter_Tree_Id,
         Table_Low_Bound => 1,
         Table_Initial => 128);

      type Bool_Vector is array (Natural range <>) of Boolean;
      pragma Pack (Bool_Vector);

      --  Convert a set of states in N to a state in the result NFA.
      --  The set is represented by a vector of boolean.  An element of the
      --  vector is true iff the corresponding state is present.
      function Add_Vector (V : Bool_Vector; N : NFA) return NFA_State
      is
         E : Deter_Tree_Id;
         Added : Boolean;
         Res : NFA_State;
      begin
         E := Start_Tree_Id;
         Added := False;
         for I in V'Range loop
            if Detert.Table (E).Child (V (I)) = No_Tree_Id then
               Detert.Append ((Child => (No_Tree_Id, No_Tree_Id),
                               Parent => E,
                               Link => No_Tree_Id,
                               State => No_State));
               Detert.Table (E).Child (V (I)) := Detert.Last;
               E := Detert.Last;
               Added := True;
            else
               E := Detert.Table (E).Child (V (I));
               Added := False;
            end if;
         end loop;
         if Added then
            --  Create the new state.
            Res := Add_State (N);
            Detert.Table (E).State := Res;

            if Flag_Trace then
               Set_State_Label (Res, Last_Label);
               Put ("Result state" & Int32'Image (Last_Label) & " for");
               for I in V'Range loop
                  if V (I) then
                     Put (Natural'Image (I));
                  end if;
               end loop;
               New_Line;
               Last_Label := Last_Label + 1;
            end if;

            --  Put it to the list of states to be handled.
            Detert.Table (E).Link := Deter_Head;
            Deter_Head := E;

            return Res;
         else
            return Detert.Table (E).State;
         end if;
      end Add_Vector;

      --  Return true iff the stack is empty (ie all the states have been
      --  handled).
      function Stack_Empty return Boolean is
      begin
         return Deter_Head = No_Tree_Id;
      end Stack_Empty;

      --  Get an element from the stack.
      --  Extract the state in the result NFA.
      --  Rebuild the set of states in N (ie rebuild the vector of states).
      procedure Stack_Pop (V : out Bool_Vector; S : out NFA_State)
      is
         L, P : Deter_Tree_Id;
      begin
         L := Deter_Head;
         pragma Assert (L /= No_Tree_Id);
         S := Detert.Table (L).State;
         Deter_Head := Detert.Table (L).Link;

         for I in reverse V'Range loop
            pragma Assert (L /= Start_Tree_Id);
            P := Detert.Table (L).Parent;
            if L = Detert.Table (P).Child (True) then
               V (I) := True;
            elsif L = Detert.Table (P).Child (False) then
               V (I) := False;
            else
               raise Program_Error;
            end if;
            L := P;
         end loop;
         pragma Assert (L = Start_Tree_Id);
      end Stack_Pop;

      type State_Vector is array (Natural range <>) of Natural;
      type Expr_Vector is array (Natural range <>) of Node;

      procedure Build_Arcs (N : NFA;
                            State : NFA_State;
                            States : State_Vector;
                            Exprs : Expr_Vector;
                            Expr : Node;
                            V : Bool_Vector)
      is
         T : Node;
      begin
         if Expr = False_Node then
            return;
         end if;

         if States'Length = 0 then
            declare
               Reduced_Expr : constant Node := PSL.QM.Reduce (Expr);
               --Reduced_Expr : constant Node := Expr;
               S : NFA_State;
            begin
               if Reduced_Expr = False_Node then
                  return;
               end if;
               S := Add_Vector (V, N);
               Add_Edge (State, S, Reduced_Expr);
               if Flag_Trace then
                  Put (" Add edge");
                  Put (Int32'Image (Get_State_Label (State)));
                  Put (" to");
                  Put (Int32'Image (Get_State_Label (S)));
                  Put (", expr=");
                  Dump_Expr (Expr);
                  Put (", reduced=");
                  Dump_Expr (Reduced_Expr);
                  New_Line;
               end if;
            end;
         else
            declare
               N_States : State_Vector renames
                 States (States'First + 1 .. States'Last);
               N_V : Bool_Vector (V'Range) := V;
               S : constant Natural := States (States'First);
               E : constant Node := Exprs (S);
            begin
               N_V (S) := True;
               if Expr = Null_Node then
                  Build_Arcs (N, State, N_States, Exprs, E, N_V);
                  T := Build_Bool_Not (E);
                  Build_Arcs (N, State, N_States, Exprs, T, V);
               else
                  T := Build_Bool_And (E, Expr);

                  Build_Arcs (N, State, N_States, Exprs, T, N_V);
                  T := Build_Bool_Not (E);
                  T := Build_Bool_And (T, Expr);
                  Build_Arcs (N, State, N_States, Exprs, T, V);
               end if;
            end;
         end if;
      end Build_Arcs;

      function Determinize_1 (N : NFA; Nbr_States : Natural) return NFA
      is
         Final : Natural;
         V : Bool_Vector (0 .. Nbr_States - 1);
         Exprs : Expr_Vector (0 .. Nbr_States - 1);
         S : NFA_State;
         E : NFA_Edge;
         D : Natural;
         Edge_Expr : Node;
         Expr : Node;
         Nbr_Dest : Natural;
         States : State_Vector (0 .. Nbr_States - 1);
         Res : NFA;
         State : NFA_State;
         R : Node;
      begin
         Final := Natural (Get_State_Label (Get_Final_State (N)));

         -- FIXME: handle epsilon or final = start -> create an empty NFA.

         --  Initialize the tree.
         Res := Create_NFA;
         Detert.Init;
         Detert.Append ((Child => (No_Tree_Id, No_Tree_Id),
                         Parent => No_Tree_Id,
                         Link => No_Tree_Id,
                         State => No_State));
         pragma Assert (Detert.Last = Start_Tree_Id);
         Deter_Head := No_Tree_Id;

         --  Put the initial state in the tree and in the stack.
         --  FIXME: ok, we know that its label is 0.
         V := (0 => True, others => False);
         State := Add_Vector (V, Res);
         Set_Start_State (Res, State);

         --  The failure state.  As there is nothing to do with this
         --  state, remove it from the stack.
         V := (others => False);
         State := Add_Vector (V, Res);
         Set_Final_State (Res, State);
         Stack_Pop (V, State);

         --  Iterate on states in the result NFA that haven't yet been handled.
         while not Stack_Empty loop
            Stack_Pop (V, State);

            if Flag_Trace then
               Put_Line ("Handle result state"
                           & Int32'Image (Get_State_Label (State)));
            end if;

            --  Build edges vector.
            Exprs := (others => Null_Node);
            Expr := Null_Node;

            S := Get_First_State (N);
            Nbr_Dest := 0;
            while S /= No_State loop
               if V (Natural (Get_State_Label (S))) then
                  E := Get_First_Src_Edge (S);
                  while E /= No_Edge loop
                     D := Natural (Get_State_Label (Get_Edge_Dest (E)));
                     Edge_Expr := Get_Edge_Expr (E);

                     if False and Flag_Trace then
                        Put_Line ("  edge" & Int32'Image (Get_State_Label (S))
                                    & " to" & Natural'Image (D));
                     end if;

                     if D = Final then
                        R := Build_Bool_Not (Edge_Expr);
                        if Expr = Null_Node then
                           Expr := R;
                        else
                           Expr := Build_Bool_And (Expr, R);
                        end if;
                     else
                        if Exprs (D) = Null_Node then
                           Exprs (D) := Edge_Expr;
                           States (Nbr_Dest) := D;
                           Nbr_Dest := Nbr_Dest + 1;
                        else
                           Exprs (D) := Build_Bool_Or (Exprs (D), Edge_Expr);
                        end if;
                     end if;
                     E := Get_Next_Src_Edge (E);
                  end loop;
               end if;
               S := Get_Next_State (S);
            end loop;

            if Flag_Trace then
               Put (" Final: expr=");
               Print_Expr (Expr);
               New_Line;
               for I in 0 .. Nbr_Dest - 1 loop
                  Put ("   Dest");
                  Put (Natural'Image (States (I)));
                  Put (" expr=");
                  Print_Expr (Exprs (States (I)));
                  New_Line;
               end loop;
            end if;

            --  Build arcs.
            if not (Nbr_Dest = 0 and Expr = Null_Node) then
               Build_Arcs (Res, State,
                           States (0 .. Nbr_Dest - 1), Exprs, Expr,
                           Bool_Vector'(0 .. Nbr_States - 1 => False));
            end if;
         end loop;

         --Remove_Unreachable_States (Res);
         return Res;
      end Determinize_1;

      function Determinize (N : NFA) return NFA
      is
         Nbr_States : Natural;