aboutsummaryrefslogtreecommitdiffstats
path: root/quantum/quantum.c
blob: 23263b7007d7f4c4d3f38c3b62a16f98b8061220 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
/* Copyright 2016-2017 Jack Humbert
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "quantum.h"

#if !defined(RGBLIGHT_ENABLE) && !defined(RGB_MATRIX_ENABLE)
	#include "rgb.h"
#endif

#ifdef PROTOCOL_LUFA
#include "outputselect.h"
#endif

#ifndef BREATHING_PERIOD
#define BREATHING_PERIOD 6
#endif

#include "backlight.h"
extern backlight_config_t backlight_config;

#ifdef FAUXCLICKY_ENABLE
#include "fauxclicky.h"
#endif

#ifdef API_ENABLE
#include "api.h"
#endif

#ifdef MIDI_ENABLE
#include "process_midi.h"
#endif

#ifdef VELOCIKEY_ENABLE
#include "velocikey.h"
#endif

#ifdef HAPTIC_ENABLE
    #include "haptic.h"
#endif

#ifdef ENCODER_ENABLE
#include "encoder.h"
#endif

#ifdef AUDIO_ENABLE
  #ifndef GOODBYE_SONG
    #define GOODBYE_SONG SONG(GOODBYE_SOUND)
  #endif
  #ifndef AG_NORM_SONG
    #define AG_NORM_SONG SONG(AG_NORM_SOUND)
  #endif
  #ifndef AG_SWAP_SONG
    #define AG_SWAP_SONG SONG(AG_SWAP_SOUND)
  #endif
  float goodbye_song[][2] = GOODBYE_SONG;
  float ag_norm_song[][2] = AG_NORM_SONG;
  float ag_swap_song[][2] = AG_SWAP_SONG;
  #ifdef DEFAULT_LAYER_SONGS
    float default_layer_songs[][16][2] = DEFAULT_LAYER_SONGS;
  #endif
#endif

static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
  switch (code) {
  case QK_MODS ... QK_MODS_MAX:
    break;
  default:
    return;
  }

  if (code & QK_LCTL)
    f(KC_LCTL);
  if (code & QK_LSFT)
    f(KC_LSFT);
  if (code & QK_LALT)
    f(KC_LALT);
  if (code & QK_LGUI)
    f(KC_LGUI);

  if (code < QK_RMODS_MIN) return;

  if (code & QK_RCTL)
    f(KC_RCTL);
  if (code & QK_RSFT)
    f(KC_RSFT);
  if (code & QK_RALT)
    f(KC_RALT);
  if (code & QK_RGUI)
    f(KC_RGUI);
}

static inline void qk_register_weak_mods(uint8_t kc) {
    add_weak_mods(MOD_BIT(kc));
    send_keyboard_report();
}

static inline void qk_unregister_weak_mods(uint8_t kc) {
    del_weak_mods(MOD_BIT(kc));
    send_keyboard_report();
}

static inline void qk_register_mods(uint8_t kc) {
    add_weak_mods(MOD_BIT(kc));
    send_keyboard_report();
}

static inline void qk_unregister_mods(uint8_t kc) {
    del_weak_mods(MOD_BIT(kc));
    send_keyboard_report();
}

void register_code16 (uint16_t code) {
  if (IS_MOD(code) || code == KC_NO) {
      do_code16 (code, qk_register_mods);
  } else {
      do_code16 (code, qk_register_weak_mods);
  }
  register_code (code);
}

void unregister_code16 (uint16_t code) {
  unregister_code (code);
  if (IS_MOD(code) || code == KC_NO) {
      do_code16 (code, qk_unregister_mods);
  } else {
      do_code16 (code, qk_unregister_weak_mods);
  }
}

void tap_code16(uint16_t code) {
  register_code16(code);
  #if TAP_CODE_DELAY > 0
    wait_ms(TAP_CODE_DELAY);
  #endif
  unregister_code16(code);
}

__attribute__ ((weak))
bool process_action_kb(keyrecord_t *record) {
  return true;
}

__attribute__ ((weak))
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
  return process_record_user(keycode, record);
}

__attribute__ ((weak))
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  return true;
}

void reset_keyboard(void) {
  clear_keyboard();
#if defined(MIDI_ENABLE) && defined(MIDI_BASIC)
  process_midi_all_notes_off();
#endif
#ifdef AUDIO_ENABLE
  #ifndef NO_MUSIC_MODE
    music_all_notes_off();
  #endif
  uint16_t timer_start = timer_read();
  PLAY_SONG(goodbye_song);
  shutdown_user();
  while(timer_elapsed(timer_start) < 250)
    wait_ms(1);
  stop_all_notes();
#else
  shutdown_user();
  wait_ms(250);
#endif
#ifdef HAPTIC_ENABLE
  haptic_shutdown();
#endif
// this is also done later in bootloader.c - not sure if it's neccesary here
#ifdef BOOTLOADER_CATERINA
  *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
#endif
  bootloader_jump();
}

/* true if the last press of GRAVE_ESC was shifted (i.e. GUI or SHIFT were pressed), false otherwise.
 * Used to ensure that the correct keycode is released if the key is released.
 */
static bool grave_esc_was_shifted = false;

/* Convert record into usable keycode via the contained event. */
uint16_t get_record_keycode(keyrecord_t *record) {
  return get_event_keycode(record->event);
}


/* Convert event into usable keycode. Checks the layer cache to ensure that it
 * retains the correct keycode after a layer change, if the key is still pressed.
 */
uint16_t get_event_keycode(keyevent_t event) {

  #if !defined(NO_ACTION_LAYER) && !defined(STRICT_LAYER_RELEASE)
    /* TODO: Use store_or_get_action() or a similar function. */
    if (!disable_action_cache) {
      uint8_t layer;

      if (event.pressed) {
        layer = layer_switch_get_layer(event.key);
        update_source_layers_cache(event.key, layer);
      } else {
        layer = read_source_layers_cache(event.key);
      }
      return keymap_key_to_keycode(layer, event.key);
    } else
  #endif
    return keymap_key_to_keycode(layer_switch_get_layer(event.key), event.key);
}

/* Main keycode processing function. Hands off handling to other functions,
 * then processes internal Quantum keycodes, then processes ACTIONs.
 */
bool process_record_quantum(keyrecord_t *record) {
    uint16_t keycode = get_record_keycode(record);

    // This is how you use actions here
    // if (keycode == KC_LEAD) {
    //   action_t action;
    //   action.code = ACTION_DEFAULT_LAYER_SET(0);
    //   process_action(record, action);
    //   return false;
    // }

  #ifdef VELOCIKEY_ENABLE
    if (velocikey_enabled() && record->event.pressed) { velocikey_accelerate(); }
  #endif

  #ifdef TAP_DANCE_ENABLE
    preprocess_tap_dance(keycode, record);
  #endif

  if (!(
  #if defined(KEY_LOCK_ENABLE)
    // Must run first to be able to mask key_up events.
    process_key_lock(&keycode, record) &&
  #endif
  #if defined(AUDIO_ENABLE) && defined(AUDIO_CLICKY)
    process_clicky(keycode, record) &&
  #endif //AUDIO_CLICKY
  #ifdef HAPTIC_ENABLE
    process_haptic(keycode, record) &&
  #endif //HAPTIC_ENABLE
  #if defined(RGB_MATRIX_ENABLE)
    process_rgb_matrix(keycode, record) &&
  #endif
    process_record_kb(keycode, record) &&
  #if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
    process_midi(keycode, record) &&
  #endif
  #ifdef AUDIO_ENABLE
    process_audio(keycode, record) &&
  #endif
  #ifdef STENO_ENABLE
    process_steno(keycode, record) &&
  #endif
  #if (defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))) && !defined(NO_MUSIC_MODE)
    process_music(keycode, record) &&
  #endif
  #ifdef TAP_DANCE_ENABLE
    process_tap_dance(keycode, record) &&
  #endif
  #if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE)
    process_unicode_common(keycode, record) &&
  #endif
  #ifdef LEADER_ENABLE
    process_leader(keycode, record) &&
  #endif
  #ifdef COMBO_ENABLE
    process_combo(keycode, record) &&
  #endif
  #ifdef PRINTING_ENABLE
    process_printer(keycode, record) &&
  #endif
  #ifdef AUTO_SHIFT_ENABLE
    process_auto_shift(keycode, record) &&
  #endif
  #ifdef TERMINAL_ENABLE
    process_terminal(keycode, record) &&
  #endif
  #ifdef SPACE_CADET_ENABLE
    process_space_cadet(keycode, record) &&
  #endif
      true)) {
    return false;
  }

  // Shift / paren setup

  switch(keycode) {
    case RESET:
      if (record->event.pressed) {
        reset_keyboard();
      }
    return false;
    case DEBUG:
      if (record->event.pressed) {
        debug_enable ^= 1;
        if (debug_enable) {
          print("DEBUG: enabled.\n");
        } else {
          print("DEBUG: disabled.\n");
        }
      }
    return false;
    case EEPROM_RESET:
      if (record->event.pressed) {
          eeconfig_init();
      }
    return false;
  #ifdef FAUXCLICKY_ENABLE
  case FC_TOG:
    if (record->event.pressed) {
      FAUXCLICKY_TOGGLE;
    }
    return false;
  case FC_ON:
    if (record->event.pressed) {
      FAUXCLICKY_ON;
    }
    return false;
  case FC_OFF:
    if (record->event.pressed) {
      FAUXCLICKY_OFF;
    }
    return false;
  #endif
  #if defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
  case RGB_TOG:
    // Split keyboards need to trigger on key-up for edge-case issue
    #ifndef SPLIT_KEYBOARD
    if (record->event.pressed) {
    #else
    if (!record->event.pressed) {
    #endif
      rgblight_toggle();
    }
    return false;
  case RGB_MODE_FORWARD:
    if (record->event.pressed) {
      uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
      if(shifted) {
        rgblight_step_reverse();
      }
      else {
        rgblight_step();
      }
    }
    return false;
  case RGB_MODE_REVERSE:
    if (record->event.pressed) {
      uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
      if(shifted) {
        rgblight_step();
      }
      else {
        rgblight_step_reverse();
      }
    }
    return false;
  case RGB_HUI:
    // Split keyboards need to trigger on key-up for edge-case issue
    #ifndef SPLIT_KEYBOARD
    if (record->event.pressed) {
    #else
    if (!record->event.pressed) {
    #endif
      rgblight_increase_hue();
    }
    return false;
  case RGB_HUD:
    // Split keyboards need to trigger on key-up for edge-case issue
    #ifndef SPLIT_KEYBOARD
    if (record->event.pressed) {
    #else
    if (!record->event.pressed) {
    #endif
      rgblight_decrease_hue();
    }
    return false;
  case RGB_SAI:
    // Split keyboards need to trigger on key-up for edge-case issue
    #ifndef SPLIT_KEYBOARD
    if (record->event.pressed) {
    #else
    if (!record->event.pressed) {
    #endif
      rgblight_increase_sat();
    }
    return false;
  case RGB_SAD:
    // Split keyboards need to trigger on key-up for edge-case issue
    #ifndef SPLIT_KEYBOARD
    if (record->event.pressed) {
    #else
    if (!record->event.pressed) {
    #endif
      rgblight_decrease_sat();
    }
    return false;
  case RGB_VAI:
    // Split keyboards need to trigger on key-up for edge-case issue
    #ifndef SPLIT_KEYBOARD
    if (record->event.pressed) {
    #else
    if (!record->event.pressed) {
    #endif
      rgblight_increase_val();
    }
    return false;
  case RGB_VAD:
    // Split keyboards need to trigger on key-up for edge-case issue
    #ifndef SPLIT_KEYBOARD
    if (record->event.pressed) {
    #else
    if (!record->event.pressed) {
    #endif
      rgblight_decrease_val();
    }
    return false;
  case RGB_SPI:
    if (record->event.pressed) {
      rgblight_increase_speed();
    }
    return false;
  case RGB_SPD:
    if (record->event.pressed) {
      rgblight_decrease_speed();
    }
    return false;
  case RGB_MODE_PLAIN:
    if (record->event.pressed) {
      rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT);
    }
    return false;
  case RGB_MODE_BREATHE:
  #ifdef RGBLIGHT_EFFECT_BREATHING
    if (record->event.pressed) {
      if ((RGBLIGHT_MODE_BREATHING <= rgblight_get_mode()) &&
          (rgblight_get_mode() < RGBLIGHT_MODE_BREATHING_end)) {
        rgblight_step();
      } else {
        rgblight_mode(RGBLIGHT_MODE_BREATHING);
      }
    }
  #endif
    return false;
  case RGB_MODE_RAINBOW:
  #ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
    if (record->event.pressed) {
      if ((RGBLIGHT_MODE_RAINBOW_MOOD <= rgblight_get_mode()) &&
          (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_MOOD_end)) {
        rgblight_step();
      } else {
        rgblight_mode(RGBLIGHT_MODE_RAINBOW_MOOD);
      }
    }
  #endif
    return false;
  case RGB_MODE_SWIRL:
  #ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
    if (record->event.pressed) {
      if ((RGBLIGHT_MODE_RAINBOW_SWIRL <= rgblight_get_mode()) &&
          (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_SWIRL_end)) {
        rgblight_step();
      } else {
        rgblight_mode(RGBLIGHT_MODE_RAINBOW_SWIRL);
      }
    }
  #endif
    return false;
  case RGB_MODE_SNAKE:
  #ifdef RGBLIGHT_EFFECT_SNAKE
    if (record->event.pressed) {
      if ((RGBLIGHT_MODE_SNAKE <= rgblight_get_mode()) &&
          (rgblight_get_mode() < RGBLIGHT_MODE_SNAKE_end)) {
        rgblight_step();
      } else {
        rgblight_mode(RGBLIGHT_MODE_SNAKE);
      }
    }
  #endif
    return false;
  case RGB_MODE_KNIGHT:
  #ifdef RGBLIGHT_EFFECT_KNIGHT
    if (record->event.pressed) {
      if ((RGBLIGHT_MODE_KNIGHT <= rgblight_get_mode()) &&
          (rgblight_get_mode() < RGBLIGHT_MODE_KNIGHT_end)) {
        rgblight_step();
      } else {
        rgblight_mode(RGBLIGHT_MODE_KNIGHT);
      }
    }
  #endif
    return false;
  case RGB_MODE_XMAS:
  #ifdef RGBLIGHT_EFFECT_CHRISTMAS
    if (record->event.pressed) {
      rgblight_mode(RGBLIGHT_MODE_CHRISTMAS);
    }
  #endif
    return false;
  case RGB_MODE_GRADIENT:
  #ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT
    if (record->event.pressed) {
      if ((RGBLIGHT_MODE_STATIC_GRADIENT <= rgblight_get_mode()) &&
          (rgblight_get_mode() < RGBLIGHT_MODE_STATIC_GRADIENT_end)) {
        rgblight_step();
      } else {
        rgblight_mode(RGBLIGHT_MODE_STATIC_GRADIENT);
      }
    }
  #endif
    return false;
  case RGB_MODE_RGBTEST:
  #ifdef RGBLIGHT_EFFECT_RGB_TEST
    if (record->event.pressed) {
      rgblight_mode(RGBLIGHT_MODE_RGB_TEST);
    }
  #endif
    return false;
  #endif // defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
  #ifdef VELOCIKEY_ENABLE
    case VLK_TOG:
      if (record->event.pressed) {
        velocikey_toggle();
      }
      return false;
  #endif
  #ifdef PROTOCOL_LUFA
    case OUT_AUTO:
      if (record->event.pressed) {
        set_output(OUTPUT_AUTO);
      }
      return false;
    case OUT_USB:
      if (record->event.pressed) {
        set_output(OUTPUT_USB);
      }
      return false;
    #ifdef BLUETOOTH_ENABLE
    case OUT_BT:
      if (record->event.pressed) {
        set_output(OUTPUT_BLUETOOTH);
      }
      return false;
    #endif
    #endif
    case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
      if (record->event.pressed) {
        // MAGIC actions (BOOTMAGIC without the boot)
        if (!eeconfig_is_enabled()) {
            eeconfig_init();
        }
        /* keymap config */
        keymap_config.raw = eeconfig_read_keymap();
        switch (keycode)
        {
          case MAGIC_SWAP_CONTROL_CAPSLOCK:
            keymap_config.swap_control_capslock = true;
            break;
          case MAGIC_CAPSLOCK_TO_CONTROL:
            keymap_config.capslock_to_control = true;
            break;
          case MAGIC_SWAP_LALT_LGUI:
            keymap_config.swap_lalt_lgui = true;
            break;
          case MAGIC_SWAP_RALT_RGUI:
            keymap_config.swap_ralt_rgui = true;
            break;
          case MAGIC_NO_GUI:
            keymap_config.no_gui = true;
            break;
          case MAGIC_SWAP_GRAVE_ESC:
            keymap_config.swap_grave_esc = true;
            break;
          case MAGIC_SWAP_BACKSLASH_BACKSPACE:
            keymap_config.swap_backslash_backspace = true;
            break;
          case MAGIC_HOST_NKRO:
            keymap_config.nkro = true;
            break;
          case MAGIC_SWAP_ALT_GUI:
            keymap_config.swap_lalt_lgui = true;
            keymap_config.swap_ralt_rgui = true;
            #ifdef AUDIO_ENABLE
              PLAY_SONG(ag_swap_song);
            #endif
            break;
          case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
            keymap_config.swap_control_capslock = false;
            break;
          case MAGIC_UNCAPSLOCK_TO_CONTROL:
            keymap_config.capslock_to_control = false;
            break;
          case MAGIC_UNSWAP_LALT_LGUI:
            keymap_config.swap_lalt_lgui = false;
            break;
          case MAGIC_UNSWAP_RALT_RGUI:
            keymap_config.swap_ralt_rgui = false;
            break;
          case MAGIC_UNNO_GUI:
            keymap_config.no_gui = false;
            break;
          case MAGIC_UNSWAP_GRAVE_ESC:
            keymap_config.swap_grave_esc = false;
            break;
          case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
            keymap_config.swap_backslash_backspace = false;
            break;
          case MAGIC_UNHOST_NKRO:
            keymap_config.nkro = false;
            break;
          case MAGIC_UNSWAP_ALT_GUI:
            keymap_config.swap_lalt_lgui = false;
            keymap_config.swap_ralt_rgui = false;
            #ifdef AUDIO_ENABLE
              PLAY_SONG(ag_norm_song);
            #endif
            break;
          case MAGIC_TOGGLE_ALT_GUI:
            keymap_config.swap_lalt_lgui = !keymap_config.swap_lalt_lgui;
            keymap_config.swap_ralt_rgui = !keymap_config.swap_ralt_rgui;
            #ifdef AUDIO_ENABLE
              if (keymap_config.swap_ralt_rgui) {
                PLAY_SONG(ag_swap_song);
              } else {
                PLAY_SONG(ag_norm_song);
              }
            #endif
            break;
          case MAGIC_TOGGLE_NKRO:
            keymap_config.nkro = !keymap_config.nkro;
            break;
          default:
            break;
        }
        eeconfig_update_keymap(keymap_config.raw);
        clear_keyboard(); // clear to prevent stuck keys

        return false;
      }
      break;

    case GRAVE_ESC: {
      uint8_t shifted = get_mods() & ((MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT)
                                      |MOD_BIT(KC_LGUI)|MOD_BIT(KC_RGUI)));

#ifdef GRAVE_ESC_ALT_OVERRIDE
      // if ALT is pressed, ESC is always sent
      // this is handy for the cmd+opt+esc shortcut on macOS, among other things.
      if (get_mods() & (MOD_BIT(KC_LALT) | MOD_BIT(KC_RALT))) {
        shifted = 0;
      }
#endif

#ifdef GRAVE_ESC_CTRL_OVERRIDE
      // if CTRL is pressed, ESC is always sent
      // this is handy for the ctrl+shift+esc shortcut on windows, among other things.
      if (get_mods() & (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL))) {
        shifted = 0;
      }
#endif

#ifdef GRAVE_ESC_GUI_OVERRIDE
      // if GUI is pressed, ESC is always sent
      if (get_mods() & (MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI))) {
        shifted = 0;
      }
#endif

#ifdef GRAVE_ESC_SHIFT_OVERRIDE
      // if SHIFT is pressed, ESC is always sent
      if (get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT))) {
        shifted = 0;
      }
#endif

      if (record->event.pressed) {
        grave_esc_was_shifted = shifted;
        add_key(shifted ? KC_GRAVE : KC_ESCAPE);
      }
      else {
        del_key(grave_esc_was_shifted ? KC_GRAVE : KC_ESCAPE);
      }

      send_keyboard_report();
      return false;
    }

#if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_BREATHING)
    case BL_BRTG: {
      if (record->event.pressed)
        breathing_toggle();
      return false;
    }
#endif
  }

  return process_action_kb(record);
}

__attribute__ ((weak))
const bool ascii_to_shift_lut[0x80] PROGMEM = {
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 1, 1, 1, 1, 1, 1, 0,
    1, 1, 1, 1, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 1, 0, 1, 0, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 0, 0, 0, 1, 1,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 1, 1, 1, 1, 0
};

__attribute__ ((weak))
const bool ascii_to_altgr_lut[0x80] PROGMEM = {
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0
};

__attribute__ ((weak))
const uint8_t ascii_to_keycode_lut[0x80] PROGMEM = {
    0, 0, 0, 0, 0, 0, 0, 0,
    KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, KC_ESC, 0, 0, 0, 0,
    KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
    KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
    KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
    KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
    KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
    KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
    KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
    KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
    KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
    KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
    KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
    KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
};

void send_string(const char *str) {
  send_string_with_delay(str, 0);
}

void send_string_P(const char *str) {
  send_string_with_delay_P(str, 0);
}

void send_string_with_delay(const char *str, uint8_t interval) {
    while (1) {
        char ascii_code = *str;
        if (!ascii_code) break;
        if (ascii_code == SS_TAP_CODE) {
          // tap
          uint8_t keycode = *(++str);
          register_code(keycode);
          unregister_code(keycode);
        } else if (ascii_code == SS_DOWN_CODE) {
          // down
          uint8_t keycode = *(++str);
          register_code(keycode);
        } else if (ascii_code == SS_UP_CODE) {
          // up
          uint8_t keycode = *(++str);
          unregister_code(keycode);
        } else {
          send_char(ascii_code);
        }
        ++str;
        // interval
        { uint8_t ms = interval; while (ms--) wait_ms(1); }
    }
}

void send_string_with_delay_P(const char *str, uint8_t interval) {
    while (1) {
        char ascii_code = pgm_read_byte(str);
        if (!ascii_code) break;
        if (ascii_code == SS_TAP_CODE) {
          // tap
          uint8_t keycode = pgm_read_byte(++str);
          register_code(keycode);
          unregister_code(keycode);
        } else if (ascii_code == SS_DOWN_CODE) {
          // down
          uint8_t keycode = pgm_read_byte(++str);
          register_code(keycode);
        } else if (ascii_code == SS_UP_CODE) {
          // up
          uint8_t keycode = pgm_read_byte(++str);
          unregister_code(keycode);
        } else {
          send_char(ascii_code);
        }
        ++str;
        // interval
        { uint8_t ms = interval; while (ms--) wait_ms(1); }
    }
}

void send_char(char ascii_code) {
  uint8_t keycode = pgm_read_byte(&ascii_to_keycode_lut[(uint8_t)ascii_code]);
  bool is_shifted = pgm_read_byte(&ascii_to_shift_lut[(uint8_t)ascii_code]);
  bool is_altgred = pgm_read_byte(&ascii_to_altgr_lut[(uint8_t)ascii_code]);

  if (is_shifted) {
    register_code(KC_LSFT);
  }
  if (is_altgred) {
    register_code(KC_RALT);
  }
  tap_code(keycode);
  if (is_altgred) {
    unregister_code(KC_RALT);
  }
  if (is_shifted) {
    unregister_code(KC_LSFT);
  }
}

void set_single_persistent_default_layer(uint8_t default_layer) {
  #if defined(AUDIO_ENABLE) && defined(DEFAULT_LAYER_SONGS)
    PLAY_SONG(default_layer_songs[default_layer]);
  #endif
  eeconfig_update_default_layer(1U<<default_layer);
  default_layer_set(1U<<default_layer);
}

uint32_t update_tri_layer_state(uint32_t state, uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  uint32_t mask12 = (1UL << layer1) | (1UL << layer2);
  uint32_t mask3 = 1UL << layer3;
  return (state & mask12) == mask12 ? (state | mask3) : (state & ~mask3);
}

void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  layer_state_set(update_tri_layer_state(layer_state, layer1, layer2, layer3));
}

void tap_random_base64(void) {
  #if defined(__AVR_ATmega32U4__)
    uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
  #else
    uint8_t key = rand() % 64;
  #endif
  switch (key) {
    case 0 ... 25:
      register_code(KC_LSFT);
      register_code(key + KC_A);
      unregister_code(key + KC_A);
      unregister_code(KC_LSFT);
      break;
    case 26 ... 51:
      register_code(key - 26 + KC_A);
      unregister_code(key - 26 + KC_A);
      break;
    case 52:
      register_code(KC_0);
      unregister_code(KC_0);
      break;
    case 53 ... 61:
      register_code(key - 53 + KC_1);
      unregister_code(key - 53 + KC_1);
      break;
    case 62:
      register_code(KC_LSFT);
      register_code(KC_EQL);
      unregister_code(KC_EQL);
      unregister_code(KC_LSFT);
      break;
    case 63:
      register_code(KC_SLSH);
      unregister_code(KC_SLSH);
      break;
  }
}

__attribute__((weak))
void bootmagic_lite(void) {
  // The lite version of TMK's bootmagic based on Wilba.
  // 100% less potential for accidentally making the
  // keyboard do stupid things.

  // We need multiple scans because debouncing can't be turned off.
  matrix_scan();
  #if defined(DEBOUNCING_DELAY) && DEBOUNCING_DELAY > 0
    wait_ms(DEBOUNCING_DELAY * 2);
  #elif defined(DEBOUNCE) && DEBOUNCE > 0
    wait_ms(DEBOUNCE * 2);
  #else
    wait_ms(30);
  #endif
  matrix_scan();

  // If the Esc and space bar are held down on power up,
  // reset the EEPROM valid state and jump to bootloader.
  // Assumes Esc is at [0,0].
  // This isn't very generalized, but we need something that doesn't
  // rely on user's keymaps in firmware or EEPROM.
  if (matrix_get_row(BOOTMAGIC_LITE_ROW) & (1 << BOOTMAGIC_LITE_COLUMN)) {
    eeconfig_disable();
    // Jump to bootloader.
    bootloader_jump();
  }
}

void matrix_init_quantum() {
  #ifdef BOOTMAGIC_LITE
    bootmagic_lite();
  #endif
  if (!eeconfig_is_enabled()) {
    eeconfig_init();
  }
  #ifdef BACKLIGHT_ENABLE
    #ifdef LED_MATRIX_ENABLE
        led_matrix_init();
    #else
        backlight_init_ports();
    #endif
  #endif
  #ifdef AUDIO_ENABLE
    audio_init();
  #endif
  #ifdef RGB_MATRIX_ENABLE
    rgb_matrix_init();
  #endif
  #ifdef ENCODER_ENABLE
    encoder_init();
  #endif
  #if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE)
    unicode_input_mode_init();
  #endif
  #ifdef HAPTIC_ENABLE
    haptic_init();
  #endif
  #ifdef OUTPUT_AUTO_ENABLE
    set_output(OUTPUT_AUTO);
  #endif
  matrix_init_kb();
}

void matrix_scan_quantum() {
  #if defined(AUDIO_ENABLE) && !defined(NO_MUSIC_MODE)
    matrix_scan_music();
  #endif

  #ifdef TAP_DANCE_ENABLE
    matrix_scan_tap_dance();
  #endif

  #ifdef COMBO_ENABLE
    matrix_scan_combo();
  #endif

  #if defined(BACKLIGHT_ENABLE)
    #if defined(LED_MATRIX_ENABLE)
        led_matrix_task();
    #elif defined(BACKLIGHT_PIN)
        backlight_task();
    #endif
  #endif

  #ifdef RGB_MATRIX_ENABLE
    rgb_matrix_task();
  #endif

  #ifdef ENCODER_ENABLE
    encoder_read();
  #endif

  #ifdef HAPTIC_ENABLE
    haptic_task();
  #endif

  matrix_scan_kb();
}
#if defined(BACKLIGHT_ENABLE) && (defined(BACKLIGHT_PIN) || defined(BACKLIGHT_PINS))

// The logic is a bit complex, we support 3 setups:
// 1. hardware PWM when backlight is wired to a PWM pin
// depending on this pin, we use a different output compare unit
// 2. software PWM with hardware timers, but the used timer depends
// on the audio setup (audio wins other backlight)
// 3. full software PWM

#if BACKLIGHT_PIN == B7
#  define HARDWARE_PWM
#  define TCCRxA TCCR1A
#  define TCCRxB TCCR1B
#  define COMxx1 COM1C1
#  define OCRxx  OCR1C
#  define ICRx   ICR1
#elif BACKLIGHT_PIN == B6
#  define HARDWARE_PWM
#  define TCCRxA TCCR1A
#  define TCCRxB TCCR1B
#  define COMxx1 COM1B1
#  define OCRxx  OCR1B
#  define ICRx   ICR1
#elif BACKLIGHT_PIN == B5
#  define HARDWARE_PWM
#  define TCCRxA TCCR1A
#  define TCCRxB TCCR1B
#  define COMxx1 COM1A1
#  define OCRxx  OCR1A
#  define ICRx   ICR1
#elif BACKLIGHT_PIN == C6
#  define HARDWARE_PWM
#  define TCCRxA TCCR3A
#  define TCCRxB TCCR3B
#  define COMxx1 COM1A1
#  define OCRxx  OCR3A
#  define ICRx   ICR3
#elif defined(__AVR_ATmega32A__) && BACKLIGHT_PIN == D4
#  define TCCRxA TCCR1A
#  define TCCRxB TCCR1B
#  define COMxx1 COM1B1
#  define OCRxx  OCR1B
#  define ICRx   ICR1
#  define TIMSK1 TIMSK
#else
#  if !defined(BACKLIGHT_CUSTOM_DRIVER)
#    if !defined(B5_AUDIO) && !defined(B6_AUDIO) && !defined(B7_AUDIO)
     // timer 1 is not used by audio , backlight can use it
#pragma message "Using hardware timer 1 with software PWM"
#      define HARDWARE_PWM
#      define BACKLIGHT_PWM_TIMER
#      define TCCRxA TCCR1A
#      define TCCRxB TCCR1B
#      define OCRxx  OCR1A
#      define OCRxAH OCR1AH
#      define OCRxAL OCR1AL
#      define TIMERx_COMPA_vect TIMER1_COMPA_vect
#      define TIMERx_OVF_vect TIMER1_OVF_vect
#      define OCIExA OCIE1A
#      define TOIEx  TOIE1
#      define ICRx   ICR1
#      ifndef TIMSK
#        define TIMSK TIMSK1
#      endif
#    elif !defined(C6_AUDIO) && !defined(C5_AUDIO) && !defined(C4_AUDIO)
#pragma message "Using hardware timer 3 with software PWM"
// timer 3 is not used by audio, backlight can use it
#      define HARDWARE_PWM
#      define BACKLIGHT_PWM_TIMER
#      define TCCRxA TCCR3A
#      define TCCRxB TCCR3B
#      define OCRxx OCR3A
#      define OCRxAH OCR3AH
#      define OCRxAL OCR3AL
#      define TIMERx_COMPA_vect TIMER3_COMPA_vect
#      define TIMERx_OVF_vect TIMER3_OVF_vect
#      define OCIExA OCIE3A
#      define TOIEx  TOIE3
#      define ICRx   ICR1
#      ifndef TIMSK
#        define TIMSK TIMSK3
#      endif
#    else
#pragma message "Audio in use - using pure software PWM"
#define NO_HARDWARE_PWM
#    endif
#  else
#pragma message "Custom driver defined - using pure software PWM"
#define NO_HARDWARE_PWM
#  endif
#endif

#ifndef BACKLIGHT_ON_STATE
#define BACKLIGHT_ON_STATE 0
#endif

void backlight_on(uint8_t backlight_pin) {
#if BACKLIGHT_ON_STATE == 0
  writePinLow(backlight_pin);
#else
  writePinHigh(backlight_pin);
#endif
}

void backlight_off(uint8_t backlight_pin) {
#if BACKLIGHT_ON_STATE == 0
  writePinHigh(backlight_pin);
#else
  writePinLow(backlight_pin);
#endif
}


#if defined(NO_HARDWARE_PWM) || defined(BACKLIGHT_PWM_TIMER)  // pwm through software

// we support multiple backlight pins
#ifndef BACKLIGHT_LED_COUNT
#define BACKLIGHT_LED_COUNT 1
#endif

#if BACKLIGHT_LED_COUNT == 1
#define BACKLIGHT_PIN_INIT { BACKLIGHT_PIN }
#else
#define BACKLIGHT_PIN_INIT BACKLIGHT_PINS
#endif

#define FOR_EACH_LED(x)                             \
  for (uint8_t i = 0; i < BACKLIGHT_LED_COUNT; i++) \
  {                                                 \
    uint8_t backlight_pin = backlight_pins[i];      \
    { \
      x                         \
    }                                             \
  }

static const uint8_t backlight_pins[BACKLIGHT_LED_COUNT] = BACKLIGHT_PIN_INIT;

#else // full hardware PWM

// we support only one backlight pin
static const uint8_t backlight_pin = BACKLIGHT_PIN;
#define FOR_EACH_LED(x) x

#endif

#ifdef NO_HARDWARE_PWM
__attribute__((weak))
void backlight_init_ports(void)
{
  // Setup backlight pin as output and output to on state.
  FOR_EACH_LED(
    setPinOutput(backlight_pin);
    backlight_on(backlight_pin);
  )
}

__attribute__ ((weak))
void backlight_set(uint8_t level) {}

uint8_t backlight_tick = 0;

#ifndef BACKLIGHT_CUSTOM_DRIVER
void backlight_task(void) {
  if ((0xFFFF >> ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2))) & (1 << backlight_tick)) {
    FOR_EACH_LED(
      backlight_on(backlight_pin);
    )
  }
  else {
    FOR_EACH_LED(
      backlight_off(backlight_pin);
    )
  }
  backlight_tick = (backlight_tick + 1) % 16;
}
#endif

#ifdef BACKLIGHT_BREATHING
  #ifndef BACKLIGHT_CUSTOM_DRIVER
  #error "Backlight breathing only available with hardware PWM. Please disable."
  #endif
#endif

#else // hardware pwm through timer

#ifdef BACKLIGHT_PWM_TIMER

// The idea of software PWM assisted by hardware timers is the following
// we use the hardware timer in fast PWM mode like for hardware PWM, but
// instead of letting the Output Match Comparator control the led pin
// (which is not possible since the backlight is not wired to PWM pins on the
// CPU), we do the LED on/off by oursleves.
// The timer is setup to count up to 0xFFFF, and we set the Output Compare
// register to the current 16bits backlight level (after CIE correction).
// This means the CPU will trigger a compare match interrupt when the counter
// reaches the backlight level, where we turn off the LEDs,
// but also an overflow interrupt when the counter rolls back to 0,
// in which we're going to turn on the LEDs.
// The LED will then be on for OCRxx/0xFFFF time, adjusted every 244Hz.

// Triggered when the counter reaches the OCRx value
ISR(TIMERx_COMPA_vect) {
  FOR_EACH_LED(
    backlight_off(backlight_pin);
  )
}

// Triggered when the counter reaches the TOP value
// this one triggers at F_CPU/65536 =~ 244 Hz
ISR(TIMERx_OVF_vect) {
#ifdef BACKLIGHT_BREATHING
  breathing_task();
#endif
  // for very small values of OCRxx (or backlight level)
  // we can't guarantee this whole code won't execute
  // at the same time as the compare match interrupt
  // which means that we might turn on the leds while
  // trying to turn them off, leading to flickering
  // artifacts (especially while breathing, because breathing_task
  // takes many computation cycles).
  // so better not turn them on while the counter TOP is very low.
  if (OCRxx > 256) {
    FOR_EACH_LED(
      backlight_on(backlight_pin);
    )
  }
}

#endif

#define TIMER_TOP 0xFFFFU

// See http://jared.geek.nz/2013/feb/linear-led-pwm
static uint16_t cie_lightness(uint16_t v) {
  if (v <= 5243) // if below 8% of max
    return v / 9; // same as dividing by 900%
  else {
    uint32_t y = (((uint32_t) v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
    // to get a useful result with integer division, we shift left in the expression above
    // and revert what we've done again after squaring.
    y = y * y * y >> 8;
    if (y > 0xFFFFUL) // prevent overflow
      return 0xFFFFU;
    else
      return (uint16_t) y;
  }
}

// range for val is [0..TIMER_TOP]. PWM pin is high while the timer count is below val.
static inline void set_pwm(uint16_t val) {
	OCRxx = val;
}

#ifndef BACKLIGHT_CUSTOM_DRIVER
__attribute__ ((weak))
void backlight_set(uint8_t level) {
  if (level > BACKLIGHT_LEVELS)
    level = BACKLIGHT_LEVELS;

  if (level == 0) {
    #ifdef BACKLIGHT_PWM_TIMER
      if (OCRxx) {
        TIMSK &= ~(_BV(OCIExA));
        TIMSK &= ~(_BV(TOIEx));
        FOR_EACH_LED(
          backlight_off(backlight_pin);
        )
      }
    #else
    // Turn off PWM control on backlight pin
    TCCRxA &= ~(_BV(COMxx1));
    #endif
  } else {
    #ifdef BACKLIGHT_PWM_TIMER
      if (!OCRxx) {
        TIMSK |= _BV(OCIExA);
        TIMSK |= _BV(TOIEx);
      }
    #else
    // Turn on PWM control of backlight pin
    TCCRxA |= _BV(COMxx1);
    #endif
  }
  // Set the brightness
  set_pwm(cie_lightness(TIMER_TOP * (uint32_t)level / BACKLIGHT_LEVELS));
}

void backlight_task(void) {}
#endif  // BACKLIGHT_CUSTOM_DRIVER

#ifdef BACKLIGHT_BREATHING

#define BREATHING_NO_HALT  0
#define BREATHING_HALT_OFF 1
#define BREATHING_HALT_ON  2
#define BREATHING_STEPS 128

static uint8_t breathing_period = BREATHING_PERIOD;
static uint8_t breathing_halt = BREATHING_NO_HALT;
static uint16_t breathing_counter = 0;

#ifdef BACKLIGHT_PWM_TIMER
static bool breathing = false;

bool is_breathing(void) {
  return breathing;
}

#define breathing_interrupt_enable() do { breathing = true; } while (0)
#define breathing_interrupt_disable() do { breathing = false; } while (0)
#else

bool is_breathing(void) {
    return !!(TIMSK1 & _BV(TOIE1));
}

#define breathing_interrupt_enable() do {TIMSK1 |= _BV(TOIE1);} while (0)
#define breathing_interrupt_disable() do {TIMSK1 &= ~_BV(TOIE1);} while (0)
#endif

#define breathing_min() do {breathing_counter = 0;} while (0)
#define breathing_max() do {breathing_counter = breathing_period * 244 / 2;} while (0)

void breathing_enable(void)
{
  breathing_counter = 0;
  breathing_halt = BREATHING_NO_HALT;
  breathing_interrupt_enable();
}

void breathing_pulse(void)
{
    if (get_backlight_level() == 0)
      breathing_min();
    else
      breathing_max();
    breathing_halt = BREATHING_HALT_ON;
    breathing_interrupt_enable();
}

void breathing_disable(void)
{
    breathing_interrupt_disable();
    // Restore backlight level
    backlight_set(get_backlight_level());
}

void breathing_self_disable(void)
{
  if (get_backlight_level() == 0)
    breathing_halt = BREATHING_HALT_OFF;
  else
    breathing_halt = BREATHING_HALT_ON;
}

void breathing_toggle(void) {
  if (is_breathing())
    breathing_disable();
  else
    breathing_enable();
}

void breathing_period_set(uint8_t value)
{
  if (!value)
    value = 1;
  breathing_period = value;
}

void breathing_period_default(void) {
  breathing_period_set(BREATHING_PERIOD);
}

void breathing_period_inc(void)
{
  breathing_period_set(breathing_period+1);
}

void breathing_period_dec(void)
{
  breathing_period_set(breathing_period-1);
}

/* To generate breathing curve in python:
 * from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
 */
static const uint8_t breathing_table[BREATHING_STEPS] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

// Use this before the cie_lightness function.
static inline uint16_t scale_backlight(uint16_t v) {
  return v / BACKLIGHT_LEVELS * get_backlight_level();
}

#ifdef BACKLIGHT_PWM_TIMER
void breathing_task(void)
#else
/* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
 * about 244 times per second.
 */
ISR(TIMER1_OVF_vect)
#endif
{
  uint16_t interval = (uint16_t) breathing_period * 244 / BREATHING_STEPS;
  // resetting after one period to prevent ugly reset at overflow.
  breathing_counter = (breathing_counter + 1) % (breathing_period * 244);
  uint8_t index = breathing_counter / interval % BREATHING_STEPS;

  if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) ||
      ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1)))
  {
      breathing_interrupt_disable();
  }

  set_pwm(cie_lightness(scale_backlight((uint16_t) pgm_read_byte(&breathing_table[index]) * 0x0101U)));
}

#endif // BACKLIGHT_BREATHING

__attribute__ ((weak))
void backlight_init_ports(void)
{
  // Setup backlight pin as output and output to on state.
  FOR_EACH_LED(
    setPinOutput(backlight_pin);
    backlight_on(backlight_pin);
  )

  // I could write a wall of text here to explain... but TL;DW
  // Go read the ATmega32u4 datasheet.
  // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on

#ifdef BACKLIGHT_PWM_TIMER
  // TimerX setup, Fast PWM mode count to TOP set in ICRx
  TCCRxA = _BV(WGM11); // = 0b00000010;
  // clock select clk/1
  TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
#else // hardware PWM
  // Pin PB7 = OCR1C (Timer 1, Channel C)
  // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
  // (i.e. start high, go low when counter matches.)
  // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
  // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1

  /*
  14.8.3:
  "In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]."
  "In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15)."
  */
  TCCRxA = _BV(COMxx1) | _BV(WGM11);            // = 0b00001010;
  TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
#endif
  // Use full 16-bit resolution. Counter counts to ICR1 before reset to 0.
  ICRx = TIMER_TOP;

  backlight_init();
  #ifdef BACKLIGHT_BREATHING
    breathing_enable();
  #endif
}

#endif // hardware backlight

#else // no backlight

__attribute__ ((weak))
void backlight_init_ports(void) {}

__attribute__ ((weak))
void backlight_set(uint8_t level) {}

#endif // backlight

#ifdef HD44780_ENABLED
#include "hd44780.h"
#endif


// Functions for spitting out values
//

void send_dword(uint32_t number) { // this might not actually work
    uint16_t word = (number >> 16);
    send_word(word);
    send_word(number & 0xFFFFUL);
}

void send_word(uint16_t number) {
    uint8_t byte = number >> 8;
    send_byte(byte);
    send_byte(number & 0xFF);
}

void send_byte(uint8_t number) {
    uint8_t nibble = number >> 4;
    send_nibble(nibble);
    send_nibble(number & 0xF);
}

void send_nibble(uint8_t number) {
    switch (number) {
        case 0:
            register_code(KC_0);
            unregister_code(KC_0);
            break;
        case 1 ... 9:
            register_code(KC_1 + (number - 1));
            unregister_code(KC_1 + (number - 1));
            break;
        case 0xA ... 0xF:
            register_code(KC_A + (number - 0xA));
            unregister_code(KC_A + (number - 0xA));
            break;
    }
}


__attribute__((weak))
uint16_t hex_to_keycode(uint8_t hex)
{
  hex = hex & 0xF;
  if (hex == 0x0) {
    return KC_0;
  } else if (hex < 0xA) {
    return KC_1 + (hex - 0x1);
  } else {
    return KC_A + (hex - 0xA);
  }
}

void api_send_unicode(uint32_t unicode) {
#ifdef API_ENABLE
    uint8_t chunk[4];
    dword_to_bytes(unicode, chunk);
    MT_SEND_DATA(DT_UNICODE, chunk, 5);
#endif
}

__attribute__ ((weak))
void led_set_user(uint8_t usb_led) {

}

__attribute__ ((weak))
void led_set_kb(uint8_t usb_led) {
    led_set_user(usb_led);
}

__attribute__ ((weak))
void led_init_ports(void)
{

}

__attribute__ ((weak))
void led_set(uint8_t usb_led)
{

  // Example LED Code
  //
    // // Using PE6 Caps Lock LED
    // if (usb_led & (1<<USB_LED_CAPS_LOCK))
    // {
    //     // Output high.
    //     DDRE |= (1<<6);
    //     PORTE |= (1<<6);
    // }
    // else
    // {
    //     // Output low.
    //     DDRE &= ~(1<<6);
    //     PORTE &= ~(1<<6);
    // }

#if defined(BACKLIGHT_CAPS_LOCK) && defined(BACKLIGHT_ENABLE)
  // Use backlight as Caps Lock indicator
  uint8_t bl_toggle_lvl = 0;

  if (IS_LED_ON(usb_led, USB_LED_CAPS_LOCK) && !backlight_config.enable) {
    // Turning Caps Lock ON and backlight is disabled in config
    // Toggling backlight to the brightest level
    bl_toggle_lvl = BACKLIGHT_LEVELS;
  } else if (IS_LED_OFF(usb_led, USB_LED_CAPS_LOCK) && backlight_config.enable) {
    // Turning Caps Lock OFF and backlight is enabled in config
    // Toggling backlight and restoring config level
    bl_toggle_lvl = backlight_config.level;
  }

  // Set level without modify backlight_config to keep ability to restore state
  backlight_set(bl_toggle_lvl);
#endif

  led_set_kb(usb_led);
}


//------------------------------------------------------------------------------
// Override these functions in your keymap file to play different tunes on
// different events such as startup and bootloader jump

__attribute__ ((weak))
void startup_user() {}

__attribute__ ((weak))
void shutdown_user() {}

//------------------------------------------------------------------------------