aboutsummaryrefslogtreecommitdiffstats
path: root/quantum/process_keycode/process_combo.c
blob: 58d45add2288899de0805abeb487b2dafcf2bf13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/* Copyright 2016 Jack Humbert
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "process_combo.h"
#include "print.h"


#define COMBO_TIMER_ELAPSED -1


__attribute__ ((weak))
combo_t key_combos[] = {

};

__attribute__ ((weak))
void process_combo_event(uint8_t combo_index, bool pressed) {

}

static uint8_t current_combo_index = 0;

static inline void send_combo(uint16_t action, bool pressed)
{
    if (action) {
        if (pressed) {
            register_code16(action);
        } else {
            unregister_code16(action);
        }
    } else {
        process_combo_event(current_combo_index, pressed);
    }
}

#define ALL_COMBO_KEYS_ARE_DOWN     (((1<<count)-1) == combo->state)
#define NO_COMBO_KEYS_ARE_DOWN      (0 == combo->state)
#define KEY_STATE_DOWN(key)         do{ combo->state |= (1<<key); } while(0)
#define KEY_STATE_UP(key)           do{ combo->state &= ~(1<<key); } while(0)
static bool process_single_combo(combo_t *combo, uint16_t keycode, keyrecord_t *record) 
{
    uint8_t count = 0;
    uint8_t index = -1;
    /* Find index of keycode and number of combo keys */
    for (const uint16_t *keys = combo->keys; ;++count) {
        uint16_t key = pgm_read_word(&keys[count]);
        if (keycode == key) index = count;
        if (COMBO_END == key) break;
    }

    /* Return if not a combo key */
    if (-1 == (int8_t)index) return false;

    /* The combos timer is used to signal whether the combo is active */
    bool is_combo_active = COMBO_TIMER_ELAPSED == combo->timer ? false : true;

    if (record->event.pressed) {
        KEY_STATE_DOWN(index);

        if (is_combo_active) {
            if (ALL_COMBO_KEYS_ARE_DOWN) { /* Combo was pressed */
                send_combo(combo->keycode, true);
                combo->timer = COMBO_TIMER_ELAPSED;
            } else { /* Combo key was pressed */
                combo->timer = timer_read();
#ifdef COMBO_ALLOW_ACTION_KEYS
                combo->prev_record = *record;
#else
                combo->prev_key = keycode;
#endif
            }
        }
    } else {
        if (ALL_COMBO_KEYS_ARE_DOWN) { /* Combo was released */
            send_combo(combo->keycode, false);
        }

        if (is_combo_active) { /* Combo key was tapped */
#ifdef COMBO_ALLOW_ACTION_KEYS
            record->event.pressed = true;
            process_action(record, store_or_get_action(record->event.pressed, record->event.key));
            record->event.pressed = false;
            process_action(record, store_or_get_action(record->event.pressed, record->event.key));
#else
            register_code16(keycode);
            send_keyboard_report();
            unregister_code16(keycode);
#endif
            combo->timer = 0;            
        }

        KEY_STATE_UP(index);        
    }

    if (NO_COMBO_KEYS_ARE_DOWN) {
        combo->timer = 0;
    }

    return is_combo_active;
}

bool process_combo(uint16_t keycode, keyrecord_t *record)
{
    bool is_combo_key = false;

    for (current_combo_index = 0; current_combo_index < COMBO_COUNT; ++current_combo_index) {
        combo_t *combo = &key_combos[current_combo_index];
        is_combo_key |= process_single_combo(combo, keycode, record);
    }    

    return !is_combo_key;
}

void matrix_scan_combo(void)
{
    for (int i = 0; i < COMBO_COUNT; ++i) {
        combo_t *combo = &key_combos[i];
        if (combo->timer && 
            combo->timer != COMBO_TIMER_ELAPSED && 
            timer_elapsed(combo->timer) > COMBO_TERM) {
            
            /* This disables the combo, meaning key events for this
             * combo will be handled by the next processors in the chain 
             */
            combo->timer = COMBO_TIMER_ELAPSED;

#ifdef COMBO_ALLOW_ACTION_KEYS
            process_action(&combo->prev_record, 
                store_or_get_action(combo->prev_record.event.pressed, 
                                    combo->prev_record.event.key));
#else
            unregister_code16(combo->prev_key);
            register_code16(combo->prev_key);
#endif
        }
    }
}
class="o">->oqueue, sdp->ob, SERIAL_BUFFERS_SIZE, onotify, sdp); } /** * @brief Configures and starts the driver. * * @param[in] sdp pointer to a @p SerialDriver object * @param[in] config the architecture-dependent serial driver configuration. * If this parameter is set to @p NULL then a default * configuration is used. * * @api */ void sdStart(SerialDriver *sdp, const SerialConfig *config) { chDbgCheck(sdp != NULL, "sdStart"); chSysLock(); chDbgAssert((sdp->state == SD_STOP) || (sdp->state == SD_READY), "sdStart(), #1", "invalid state"); sd_lld_start(sdp, config); sdp->state = SD_READY; chSysUnlock(); } /** * @brief Stops the driver. * @details Any thread waiting on the driver's queues will be awakened with * the message @p Q_RESET. * * @param[in] sdp pointer to a @p SerialDriver object * * @api */ void sdStop(SerialDriver *sdp) { chDbgCheck(sdp != NULL, "sdStop"); chSysLock(); chDbgAssert((sdp->state == SD_STOP) || (sdp->state == SD_READY), "sdStop(), #1", "invalid state"); sd_lld_stop(sdp); sdp->state = SD_STOP; chOQResetI(&sdp->oqueue); chIQResetI(&sdp->iqueue); chSchRescheduleS(); chSysUnlock(); } /** * @brief Handles incoming data. * @details This function must be called from the input interrupt service * routine in order to enqueue incoming data and generate the * related events. * @note The incoming data event is only generated when the input queue * becomes non-empty. * @note In order to gain some performance it is suggested to not use * this function directly but copy this code directly into the * interrupt service routine. * * @param[in] sdp pointer to a @p SerialDriver structure * @param[in] b the byte to be written in the driver's Input Queue * * @iclass */ void sdIncomingDataI(SerialDriver *sdp, uint8_t b) { chDbgCheckClassI(); chDbgCheck(sdp != NULL, "sdIncomingDataI"); if (chIQIsEmptyI(&sdp->iqueue)) chnAddFlagsI(sdp, CHN_INPUT_AVAILABLE); if (chIQPutI(&sdp->iqueue, b) < Q_OK) chnAddFlagsI(sdp, SD_OVERRUN_ERROR); } /** * @brief Handles outgoing data. * @details Must be called from the output interrupt service routine in order * to get the next byte to be transmitted. * @note In order to gain some performance it is suggested to not use * this function directly but copy this code directly into the * interrupt service routine. * * @param[in] sdp pointer to a @p SerialDriver structure * @return The byte value read from the driver's output queue. * @retval Q_EMPTY if the queue is empty (the lower driver usually * disables the interrupt source when this happens). * * @iclass */ msg_t sdRequestDataI(SerialDriver *sdp) { msg_t b; chDbgCheckClassI(); chDbgCheck(sdp != NULL, "sdRequestDataI"); b = chOQGetI(&sdp->oqueue); if (b < Q_OK) chnAddFlagsI(sdp, CHN_OUTPUT_EMPTY); return b; } #endif /* HAL_USE_SERIAL */ /** @} */