aboutsummaryrefslogtreecommitdiffstats
path: root/lib/lufa/Projects/Webserver/Lib/FATFs/diskio.h
blob: 65e3048a0a2feaf974679b12d76ff2f74ea6c81c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/*-----------------------------------------------------------------------
/  Low level disk interface module include file
/-----------------------------------------------------------------------*/

#ifndef _DISKIO_DEFINED
#define _DISKIO_DEFINED

#ifdef __cplusplus
extern "C" {
#endif

#include "integer.h"
#include "ff.h"

#include "../DataflashManager.h"


/* Status of Disk Functions */
typedef BYTE	DSTATUS;

/* Results of Disk Functions */
typedef enum {
	RES_OK = 0,		/* 0: Successful */
	RES_ERROR,		/* 1: R/W Error */
	RES_WRPRT,		/* 2: Write Protected */
	RES_NOTRDY,		/* 3: Not Ready */
	RES_PARERR		/* 4: Invalid Parameter */
} DRESULT;


/*---------------------------------------*/
/* Prototypes for disk control functions */

DSTATUS disk_initialize (BYTE);
DSTATUS disk_status (BYTE);
DRESULT disk_read (BYTE, BYTE*, DWORD, BYTE);
DRESULT disk_write (BYTE, const BYTE*, DWORD, BYTE);
DRESULT disk_ioctl (BYTE, BYTE, void*);


/* Disk Status Bits (DSTATUS) */

#define STA_NOINIT		0x01	/* Drive not initialized */
#define STA_NODISK		0x02	/* No medium in the drive */
#define STA_PROTECT		0x04	/* Write protected */


#ifdef __cplusplus
}
#endif

#endif
Comment.Hashbang */ .highlight .cm { color: #888888 } /* Comment.Multiline */ .highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */ .highlight .cpf { color: #888888 } /* Comment.PreprocFile */ .highlight .c1 { color: #888888 } /* Comment.Single */ .highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */ .highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */ .highlight .ge { font-style: italic } /* Generic.Emph */ .highlight .gr { color: #aa0000 } /* Generic.Error */ .highlight .gh { color: #333333 } /* Generic.Heading */ .highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */ .highlight .go { color: #888888 } /* Generic.Output */ .highlight .gp { color: #555555 } /* Generic.Prompt */ .highlight .gs { font-weight: bold } /* Generic.Strong */ .highlight .gu { color: #666666 } /* Generic.Subheading */ .highlight .gt { color: #aa0000 } /* Generic.Traceback */ .highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */ .highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */ .highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */ .highlight .kp { color: #008800 } /* Keyword.Pseudo */ .highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */ .highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */ .highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */ .highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */ .highlight .na { color: #336699 } /* Name.Attribute */ .highlight .nb { color: #003388 } /* Name.Builtin */ .highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */ .highlight .no { color: #003366; font-weight: bold } /* Name.Constant */ .highlight .nd { color: #555555 } /* Name.Decorator */ .highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */ .highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */ .highlight .nl { color: #336699; font-style: italic } /* Name.Label */ .highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */ .highlight .py { color: #336699; font-weight: bold } /* Name.Property */ .highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */ .highlight .nv { color: #336699 } /* Name.Variable */ .highlight .ow { color: #008800 } /* Operator.Word */ .highlight .w { color: #bbbbbb } /* Text.Whitespace */ .highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */ .highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */ .highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */ .highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */ .highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */ .highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */ .highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */ .highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */ .highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */ .highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */ .highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */ .highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */ .highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/*
 * scan matrix
 */
#include <stdint.h>
#include <stdbool.h>
#include "wait.h"
#include "util.h"
#include "matrix.h"
#include "split_util.h"
#include "config.h"
#include "split_flags.h"
#include "quantum.h"
#include "debounce.h"
#include "transport.h"

#if (MATRIX_COLS <= 8)
#  define print_matrix_header() print("\nr/c 01234567\n")
#  define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
#  define matrix_bitpop(i) bitpop(matrix[i])
#  define ROW_SHIFTER ((uint8_t)1)
#elif (MATRIX_COLS <= 16)
#  define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
#  define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
#  define matrix_bitpop(i) bitpop16(matrix[i])
#  define ROW_SHIFTER ((uint16_t)1)
#elif (MATRIX_COLS <= 32)
#  define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
#  define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
#  define matrix_bitpop(i) bitpop32(matrix[i])
#  define ROW_SHIFTER ((uint32_t)1)
#endif

#define ERROR_DISCONNECT_COUNT 5

#define ROWS_PER_HAND (MATRIX_ROWS / 2)

#ifdef DIRECT_PINS
static pin_t direct_pins[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS;
#else
static pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
#endif

/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t raw_matrix[ROWS_PER_HAND];

// row offsets for each hand
uint8_t thisHand, thatHand;

// user-defined overridable functions

__attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); }

__attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); }

__attribute__((weak)) void matrix_init_user(void) {}

__attribute__((weak)) void matrix_scan_user(void) {}

__attribute__((weak)) void matrix_slave_scan_user(void) {}

// helper functions

inline uint8_t matrix_rows(void) { return MATRIX_ROWS; }

inline uint8_t matrix_cols(void) { return MATRIX_COLS; }

bool matrix_is_modified(void) {
  if (debounce_active()) return false;
  return true;
}

inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1 << col)); }

inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; }

void matrix_print(void) {
  print_matrix_header();

  for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
    phex(row);
    print(": ");
    print_matrix_row(row);
    print("\n");
  }
}

uint8_t matrix_key_count(void) {
  uint8_t count = 0;
  for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
    count += matrix_bitpop(i);
  }
  return count;
}

// matrix code

#ifdef DIRECT_PINS

static void init_pins(void) {
  for (int row = 0; row < MATRIX_ROWS; row++) {
    for (int col = 0; col < MATRIX_COLS; col++) {
      pin_t pin = direct_pins[row][col];
      if (pin != NO_PIN) {
        setPinInputHigh(pin);
      }
    }
  }
}

static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
  matrix_row_t last_row_value = current_matrix[current_row];
  current_matrix[current_row] = 0;

  for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
    pin_t pin = direct_pins[current_row][col_index];
    if (pin != NO_PIN) {
      current_matrix[current_row] |= readPin(pin) ? 0 : (ROW_SHIFTER << col_index);
    }
  }

  return (last_row_value != current_matrix[current_row]);
}

#elif (DIODE_DIRECTION == COL2ROW)

static void select_row(uint8_t row) {
  writePinLow(row_pins[row]);
  setPinOutput(row_pins[row]);
}

static void unselect_row(uint8_t row) { setPinInputHigh(row_pins[row]); }

static void unselect_rows(void) {
  for (uint8_t x = 0; x < ROWS_PER_HAND; x++) {
    setPinInputHigh(row_pins[x]);
  }
}

static void init_pins(void) {
  unselect_rows();
  for (uint8_t x = 0; x < MATRIX_COLS; x++) {
    setPinInputHigh(col_pins[x]);
  }
}

static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
  // Store last value of row prior to reading
  matrix_row_t last_row_value = current_matrix[current_row];

  // Clear data in matrix row
  current_matrix[current_row] = 0;

  // Select row and wait for row selecton to stabilize
  select_row(current_row);
  wait_us(30);

  // For each col...
  for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
    // Populate the matrix row with the state of the col pin
    current_matrix[current_row] |= readPin(col_pins[col_index]) ? 0 : (ROW_SHIFTER << col_index);
  }

  // Unselect row
  unselect_row(current_row);

  return (last_row_value != current_matrix[current_row]);
}

#elif (DIODE_DIRECTION == ROW2COL)

static void select_col(uint8_t col) {
  writePinLow(col_pins[col]);
  setPinOutput(col_pins[col]);
}

static void unselect_col(uint8_t col) { setPinInputHigh(col_pins[col]); }

static void unselect_cols(void) {
  for (uint8_t x = 0; x < MATRIX_COLS; x++) {
    setPinInputHigh(col_pins[x]);
  }
}

static void init_pins(void) {
  unselect_cols();
  for (uint8_t x = 0; x < ROWS_PER_HAND; x++) {
    setPinInputHigh(row_pins[x]);
  }
}

static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) {
  bool matrix_changed = false;

  // Select col and wait for col selecton to stabilize
  select_col(current_col);
  wait_us(30);

  // For each row...
  for (uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++) {
    // Store last value of row prior to reading
    matrix_row_t last_row_value = current_matrix[row_index];

    // Check row pin state
    if (readPin(row_pins[row_index])) {
      // Pin HI, clear col bit
      current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
    } else {
      // Pin LO, set col bit
      current_matrix[row_index] |= (ROW_SHIFTER << current_col);
    }

    // Determine if the matrix changed state
    if ((last_row_value != current_matrix[row_index]) && !(matrix_changed)) {
      matrix_changed = true;
    }
  }

  // Unselect col
  unselect_col(current_col);

  return matrix_changed;
}

#endif

void matrix_init(void) {
  debug_enable = true;
  debug_matrix = true;
  debug_mouse  = true;

  // Set pinout for right half if pinout for that half is defined
  if (!isLeftHand) {
#ifdef MATRIX_ROW_PINS_RIGHT
    const uint8_t row_pins_right[MATRIX_ROWS] = MATRIX_ROW_PINS_RIGHT;
    for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
      row_pins[i] = row_pins_right[i];
    }
#endif
#ifdef MATRIX_COL_PINS_RIGHT
    const uint8_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT;
    for (uint8_t i = 0; i < MATRIX_COLS; i++) {
      col_pins[i] = col_pins_right[i];
    }
#endif
  }

  thisHand = isLeftHand ? 0 : (ROWS_PER_HAND);
  thatHand = ROWS_PER_HAND - thisHand;

  // initialize key pins
  init_pins();

  // initialize matrix state: all keys off
  for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
    matrix[i] = 0;
  }

  debounce_init(ROWS_PER_HAND);

  matrix_init_quantum();
}

uint8_t _matrix_scan(void) {
  bool changed = false;

#if defined(DIRECT_PINS) || (DIODE_DIRECTION == COL2ROW)
  // Set row, read cols
  for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
    changed |= read_cols_on_row(raw_matrix, current_row);
  }
#elif (DIODE_DIRECTION == ROW2COL)
  // Set col, read rows
  for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
    changed |= read_rows_on_col(raw_matrix, current_col);
  }
#endif

  debounce(raw_matrix, matrix + thisHand, ROWS_PER_HAND, changed);

  return 1;
}

uint8_t matrix_scan(void) {
  uint8_t ret = _matrix_scan();

  if (is_keyboard_master()) {
    static uint8_t error_count;

    if (!transport_master(matrix + thatHand)) {
      error_count++;

      if (error_count > ERROR_DISCONNECT_COUNT) {
        // reset other half if disconnected
        for (int i = 0; i < ROWS_PER_HAND; ++i) {
          matrix[thatHand + i] = 0;
        }
      }
    } else {
      error_count = 0;
    }

    matrix_scan_quantum();
  } else {
    transport_slave(matrix + thisHand);
    matrix_slave_scan_user();
  }

  return ret;
}