aboutsummaryrefslogtreecommitdiffstats
path: root/lib/lufa/Projects/TempDataLogger/Lib/FATFs
ModeNameSize
-rw-r--r--00readme.txt6666logstatsplain
-rw-r--r--diskio.c2681logstatsplain
-rw-r--r--diskio.h1258logstatsplain
-rw-r--r--ff.c138964logstatsplain
-rw-r--r--ff.h12098logstatsplain
-rw-r--r--ffconf.h7331logstatsplain
-rw-r--r--integer.h820logstatsplain
>160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/*
 * PowerPC64 atomic bit operations.
 * Dave Engebretsen, Todd Inglett, Don Reed, Pat McCarthy, Peter Bergner,
 * Anton Blanchard
 *
 * Originally taken from the 32b PPC code.  Modified to use 64b values for
 * the various counters & memory references.
 *
 * Bitops are odd when viewed on big-endian systems.  They were designed
 * on little endian so the size of the bitset doesn't matter (low order bytes
 * come first) as long as the bit in question is valid.
 *
 * Bits are "tested" often using the C expression (val & (1<<nr)) so we do
 * our best to stay compatible with that.  The assumption is that val will
 * be unsigned long for such tests.  As such, we assume the bits are stored
 * as an array of unsigned long (the usual case is a single unsigned long,
 * of course).  Here's an example bitset with bit numbering:
 *
 *   |63..........0|127........64|195.......128|255.......196|
 *
 * This leads to a problem. If an int, short or char is passed as a bitset
 * it will be a bad memory reference since we want to store in chunks
 * of unsigned long (64 bits here) size.
 *
 * There are a few little-endian macros used mostly for filesystem bitmaps,
 * these work on similar bit arrays layouts, but byte-oriented:
 *
 *   |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
 *
 * The main difference is that bit 3-5 in the bit number field needs to be
 * reversed compared to the big-endian bit fields. This can be achieved
 * by XOR with 0b111000 (0x38).
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#ifndef _PPC64_BITOPS_H
#define _PPC64_BITOPS_H

#include <asm/memory.h>

/*
 * clear_bit doesn't imply a memory barrier
 */
#define smp_mb__before_clear_bit()	smp_mb()
#define smp_mb__after_clear_bit()	smp_mb()

static __inline__ int test_bit(unsigned long nr, __const__ volatile unsigned long *addr)
{
	volatile unsigned long *laddr = (volatile unsigned long *)addr;
	return (1UL & (laddr[nr >> 6] >> (nr & 63)));
}

static __inline__ void set_bit(unsigned long nr, volatile unsigned long *addr)
{
	unsigned long old;
	unsigned long mask = 1UL << (nr & 0x3f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 6);

	__asm__ __volatile__(
"1:	ldarx	%0,0,%3		# set_bit\n\
	or	%0,%0,%2\n\
	stdcx.	%0,0,%3\n\
	bne-	1b"
	: "=&r" (old), "=m" (*p)
	: "r" (mask), "r" (p), "m" (*p)
	: "cc");
}

static __inline__ void clear_bit(unsigned long nr, volatile unsigned long *addr)
{
	unsigned long old;
	unsigned long mask = 1UL << (nr & 0x3f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 6);

	__asm__ __volatile__(
"1:	ldarx	%0,0,%3		# clear_bit\n\
	andc	%0,%0,%2\n\
	stdcx.	%0,0,%3\n\
	bne-	1b"
	: "=&r" (old), "=m" (*p)
	: "r" (mask), "r" (p), "m" (*p)
	: "cc");
}

static __inline__ void change_bit(unsigned long nr, volatile unsigned long *addr)
{
	unsigned long old;
	unsigned long mask = 1UL << (nr & 0x3f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 6);

	__asm__ __volatile__(
"1:	ldarx	%0,0,%3		# change_bit\n\
	xor	%0,%0,%2\n\
	stdcx.	%0,0,%3\n\
	bne-	1b"
	: "=&r" (old), "=m" (*p)
	: "r" (mask), "r" (p), "m" (*p)
	: "cc");
}

static __inline__ int test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
{
	unsigned long old, t;
	unsigned long mask = 1UL << (nr & 0x3f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 6);

	__asm__ __volatile__(
	EIEIO_ON_SMP
"1:	ldarx	%0,0,%3		# test_and_set_bit\n\
	or	%1,%0,%2 \n\
	stdcx.	%1,0,%3 \n\
	bne-	1b"
	ISYNC_ON_SMP
	: "=&r" (old), "=&r" (t)
	: "r" (mask), "r" (p)
	: "cc", "memory");

	return (old & mask) != 0;
}

static __inline__ int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
{
	unsigned long old, t;
	unsigned long mask = 1UL << (nr & 0x3f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 6);

	__asm__ __volatile__(
	EIEIO_ON_SMP
"1:	ldarx	%0,0,%3		# test_and_clear_bit\n\
	andc	%1,%0,%2\n\
	stdcx.	%1,0,%3\n\
	bne-	1b"
	ISYNC_ON_SMP
	: "=&r" (old), "=&r" (t)
	: "r" (mask), "r" (p)
	: "cc", "memory");

	return (old & mask) != 0;
}

static __inline__ int test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
{
	unsigned long old, t;
	unsigned long mask = 1UL << (nr & 0x3f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 6);

	__asm__ __volatile__(
	EIEIO_ON_SMP
"1:	ldarx	%0,0,%3		# test_and_change_bit\n\
	xor	%1,%0,%2\n\
	stdcx.	%1,0,%3\n\
	bne-	1b"
	ISYNC_ON_SMP
	: "=&r" (old), "=&r" (t)
	: "r" (mask), "r" (p)
	: "cc", "memory");

	return (old & mask) != 0;
}

static __inline__ void set_bits(unsigned long mask, unsigned long *addr)
{
	unsigned long old;

	__asm__ __volatile__(
"1:	ldarx	%0,0,%3		# set_bit\n\
	or	%0,%0,%2\n\
	stdcx.	%0,0,%3\n\
	bne-	1b"
	: "=&r" (old), "=m" (*addr)
	: "r" (mask), "r" (addr), "m" (*addr)
	: "cc");
}

/*
 * non-atomic versions
 */
static __inline__ void __set_bit(unsigned long nr, volatile unsigned long *addr)
{
	unsigned long mask = 1UL << (nr & 0x3f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 6);

	*p |= mask;
}

static __inline__ void __clear_bit(unsigned long nr, volatile unsigned long *addr)
{
	unsigned long mask = 1UL << (nr & 0x3f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 6);

	*p &= ~mask;
}

static __inline__ void __change_bit(unsigned long nr, volatile unsigned long *addr)
{
	unsigned long mask = 1UL << (nr & 0x3f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 6);

	*p ^= mask;
}

static __inline__ int __test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
{
	unsigned long mask = 1UL << (nr & 0x3f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
	unsigned long old = *p;

	*p = old | mask;
	return (old & mask) != 0;
}

static __inline__ int __test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
{
	unsigned long mask = 1UL << (nr & 0x3f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
	unsigned long old = *p;

	*p = old & ~mask;
	return (old & mask) != 0;
}

static __inline__ int __test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
{
	unsigned long mask = 1UL << (nr & 0x3f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
	unsigned long old = *p;

	*p = old ^ mask;
	return (old & mask) != 0;
}

/*
 * Return the zero-based bit position (from RIGHT TO LEFT, 63 -> 0) of the
 * most significant (left-most) 1-bit in a double word.
 */
static __inline__ int __ilog2(unsigned long x)
{
	int lz;

	asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
	return 63 - lz;
}

/*
 * Determines the bit position of the least significant (rightmost) 0 bit
 * in the specified double word. The returned bit position will be zero-based,
 * starting from the right side (63 - 0).
 */
static __inline__ unsigned long ffz(unsigned long x)
{
	/* no zero exists anywhere in the 8 byte area. */
	if ((x = ~x) == 0)
		return 64;

	/*
	 * Calculate the bit position of the least signficant '1' bit in x
	 * (since x has been changed this will actually be the least signficant
	 * '0' bit in * the original x).  Note: (x & -x) gives us a mask that
	 * is the least significant * (RIGHT-most) 1-bit of the value in x.
	 */
	return __ilog2(x & -x);
}

static __inline__ int __ffs(unsigned long x)
{
	return __ilog2(x & -x);