aboutsummaryrefslogtreecommitdiffstats
path: root/lib/lufa/Projects/TempDataLogger/Config/LUFAConfig.h
blob: f7d7e627080ee410472b8ff3a61a1bd1eda7d241 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/*
             LUFA Library
     Copyright (C) Dean Camera, 2017.

  dean [at] fourwalledcubicle [dot] com
           www.lufa-lib.org
*/

/*
  Copyright 2017  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, distribute, and sell this
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaims all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *  \brief LUFA Library Configuration Header File
 *
 *  This header file is used to configure LUFA's compile time options,
 *  as an alternative to the compile time constants supplied through
 *  a makefile.
 *
 *  For information on what each token does, refer to the LUFA
 *  manual section "Summary of Compile Tokens".
 */

#ifndef _LUFA_CONFIG_H_
#define _LUFA_CONFIG_H_

	#if (ARCH == ARCH_AVR8)

		/* Non-USB Related Configuration Tokens: */
//		#define DISABLE_TERMINAL_CODES

		/* USB Class Driver Related Tokens: */
//		#define HID_HOST_BOOT_PROTOCOL_ONLY
//		#define HID_STATETABLE_STACK_DEPTH       {Insert Value Here}
//		#define HID_USAGE_STACK_DEPTH            {Insert Value Here}
//		#define HID_MAX_COLLECTIONS              {Insert Value Here}
//		#define HID_MAX_REPORTITEMS              {Insert Value Here}
//		#define HID_MAX_REPORT_IDS               {Insert Value Here}
//		#define NO_CLASS_DRIVER_AUTOFLUSH

		/* General USB Driver Related Tokens: */
//		#define ORDERED_EP_CONFIG
		#define USE_STATIC_OPTIONS               (USB_DEVICE_OPT_FULLSPEED | USB_OPT_REG_ENABLED | USB_OPT_AUTO_PLL)
		#define USB_DEVICE_ONLY
//		#define USB_HOST_ONLY
//		#define USB_STREAM_TIMEOUT_MS            {Insert Value Here}
//		#define NO_LIMITED_CONTROLLER_CONNECT
//		#define NO_SOF_EVENTS

		/* USB Device Mode Driver Related Tokens: */
//		#define USE_RAM_DESCRIPTORS
		#define USE_FLASH_DESCRIPTORS
//		#define USE_EEPROM_DESCRIPTORS
//		#define NO_INTERNAL_SERIAL
		#define FIXED_CONTROL_ENDPOINT_SIZE      8
		#define DEVICE_STATE_AS_GPIOR            0
		#define FIXED_NUM_CONFIGURATIONS         1
//		#define CONTROL_ONLY_DEVICE
		#define INTERRUPT_CONTROL_ENDPOINT
//		#define NO_DEVICE_REMOTE_WAKEUP
//		#define NO_DEVICE_SELF_POWER

		/* USB Host Mode Driver Related Tokens: */
//		#define HOST_STATE_AS_GPIOR              0
//		#define USB_HOST_TIMEOUT_MS              {Insert Value Here}
//		#define HOST_DEVICE_SETTLE_DELAY_MS	     {Insert Value Here}
//		#define NO_AUTO_VBUS_MANAGEMENT
//		#define INVERTED_VBUS_ENABLE_LINE

	#else

		#error Unsupported architecture for this LUFA configuration file.

	#endif
#endif
f='#n418'>418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
/******************************************************************************
 * arch/x86/hpet.c
 * 
 * HPET management.
 */

#include <xen/config.h>
#include <xen/errno.h>
#include <xen/time.h>
#include <xen/timer.h>
#include <xen/smp.h>
#include <xen/softirq.h>
#include <xen/irq.h>
#include <asm/fixmap.h>
#include <asm/div64.h>
#include <asm/hpet.h>
#include <asm/msi.h>
#include <mach_apic.h>

#define MAX_DELTA_NS MILLISECS(10*1000)
#define MIN_DELTA_NS MICROSECS(20)

#define MAX_HPET_NUM 32

#define HPET_EVT_USED_BIT   2
#define HPET_EVT_USED       (1 << HPET_EVT_USED_BIT)

struct hpet_event_channel
{
    unsigned long mult;
    int           shift;
    s_time_t      next_event;
    cpumask_t     cpumask;
    spinlock_t    lock;
    void          (*event_handler)(struct hpet_event_channel *);

    unsigned int idx;   /* physical channel idx */
    int cpu;            /* msi target */
    unsigned int vector;/* msi vector */
    unsigned int flags; /* HPET_EVT_x */
} __cacheline_aligned;
static struct hpet_event_channel legacy_hpet_event;
static struct hpet_event_channel hpet_events[MAX_HPET_NUM];
static unsigned int num_hpets_used; /* msi hpet channels used for broadcast */

DEFINE_PER_CPU(struct hpet_event_channel *, cpu_bc_channel);

static int vector_channel[NR_IRQS] = {[0 ... NR_IRQS-1] = -1};

#define vector_to_channel(vector)   vector_channel[vector]

unsigned long hpet_address;

void msi_compose_msg(struct pci_dev *pdev, int vector, struct msi_msg *msg);

/* force_hpet_broadcast: if true, force using hpet_broadcast to fix lapic stop
   issue for deep C state with pit disabled */
int force_hpet_broadcast;
boolean_param("hpetbroadcast", force_hpet_broadcast);

/*
 * Calculate a multiplication factor for scaled math, which is used to convert
 * nanoseconds based values to clock ticks:
 *
 * clock_ticks = (nanoseconds * factor) >> shift.
 *
 * div_sc is the rearranged equation to calculate a factor from a given clock
 * ticks / nanoseconds ratio:
 *
 * factor = (clock_ticks << shift) / nanoseconds
 */
static inline unsigned long div_sc(unsigned long ticks, unsigned long nsec,
                                   int shift)
{
    uint64_t tmp = ((uint64_t)ticks) << shift;

    do_div(tmp, nsec);
    return (unsigned long) tmp;
}

/*
 * Convert nanoseconds based values to clock ticks:
 *
 * clock_ticks = (nanoseconds * factor) >> shift.
 */
static inline unsigned long ns2ticks(unsigned long nsec, int shift,
                                     unsigned long factor)
{
    uint64_t tmp = ((uint64_t)nsec * factor) >> shift;

    return (unsigned long) tmp;
}

static int hpet_next_event(unsigned long delta, int timer)
{
    uint32_t cnt, cmp;
    unsigned long flags;

    local_irq_save(flags);
    cnt = hpet_read32(HPET_COUNTER);
    cmp = cnt + delta;
    hpet_write32(cmp, HPET_Tn_CMP(timer));
    cmp = hpet_read32(HPET_COUNTER);
    local_irq_restore(flags);

    /* Are we within two ticks of the deadline passing? Then we may miss. */
    return ((cmp + 2 - cnt) > delta) ? -ETIME : 0;
}

static int reprogram_hpet_evt_channel(
    struct hpet_event_channel *ch,
    s_time_t expire, s_time_t now, int force)
{
    int64_t delta;
    int ret;

    if ( unlikely(expire < 0) )
    {
        printk(KERN_DEBUG "reprogram: expire < 0\n");
        return -ETIME;
    }

    delta = expire - now;
    if ( (delta <= 0) && !force )
        return -ETIME;

    ch->next_event = expire;

    if ( expire == STIME_MAX )
    {
        /* We assume it will take a long time for the timer to wrap. */
        hpet_write32(0, HPET_Tn_CMP(ch->idx));
        return 0;
    }

    delta = min_t(int64_t, delta, MAX_DELTA_NS);
    delta = max_t(int64_t, delta, MIN_DELTA_NS);
    delta = ns2ticks(delta, ch->shift, ch->mult);

    ret = hpet_next_event(delta, ch->idx);
    while ( ret && force )
    {
        delta += delta;
        ret = hpet_next_event(delta, ch->idx);
    }

    return ret;
}

static int evt_do_broadcast(cpumask_t mask)
{
    int ret = 0, cpu = smp_processor_id();

    if ( cpu_isset(cpu, mask) )
    {
        cpu_clear(cpu, mask);
        raise_softirq(TIMER_SOFTIRQ);
        ret = 1;
    }

    if ( !cpus_empty(mask) )
    {
       cpumask_raise_softirq(mask, TIMER_SOFTIRQ);
       ret = 1;
    }
    return ret;
}

static void handle_hpet_broadcast(struct hpet_event_channel *ch)
{
    cpumask_t mask;
    s_time_t now, next_event;
    int cpu;

    spin_lock_irq(&ch->lock);

again:
    ch->next_event = STIME_MAX;
    next_event = STIME_MAX;
    mask = (cpumask_t)CPU_MASK_NONE;
    now = NOW();

    /* find all expired events */
    for_each_cpu_mask(cpu, ch->cpumask)
    {
        if ( per_cpu(timer_deadline, cpu) <= now )
            cpu_set(cpu, mask);
        else if ( per_cpu(timer_deadline, cpu) < next_event )
            next_event = per_cpu(timer_deadline, cpu);
    }

    /* wakeup the cpus which have an expired event. */
    evt_do_broadcast(mask);

    if ( next_event != STIME_MAX )
    {
        if ( reprogram_hpet_evt_channel(ch, next_event, now, 0) )
            goto again;
    }
    spin_unlock_irq(&ch->lock);
}

static void hpet_interrupt_handler(int vector, void *data,
        struct cpu_user_regs *regs)
{
    struct hpet_event_channel *ch = (struct hpet_event_channel *)data;
    if ( !ch->event_handler )
    {
        printk(XENLOG_WARNING "Spurious HPET timer interrupt on HPET timer %d\n", ch->idx);
        return;
    }

    ch->event_handler(ch);
}

static void hpet_msi_unmask(unsigned int vector)
{
    unsigned long cfg;
    int ch_idx = vector_to_channel(vector);
    struct hpet_event_channel *ch;

    BUG_ON(ch_idx < 0);
    ch = &hpet_events[ch_idx];

    cfg = hpet_read32(HPET_Tn_CFG(ch->idx));
    cfg |= HPET_TN_FSB;
    hpet_write32(cfg, HPET_Tn_CFG(ch->idx));
}

static void hpet_msi_mask(unsigned int vector)
{
    unsigned long cfg;
    int ch_idx = vector_to_channel(vector);
    struct hpet_event_channel *ch;

    BUG_ON(ch_idx < 0);
    ch = &hpet_events[ch_idx];

    cfg = hpet_read32(HPET_Tn_CFG(ch->idx));
    cfg &= ~HPET_TN_FSB;
    hpet_write32(cfg, HPET_Tn_CFG(ch->idx));
}

static void hpet_msi_write(unsigned int vector, struct msi_msg *msg)
{
    int ch_idx = vector_to_channel(vector);
    struct hpet_event_channel *ch;

    BUG_ON(ch_idx < 0);
    ch = &hpet_events[ch_idx];

    hpet_write32(msg->data, HPET_Tn_ROUTE(ch->idx));
    hpet_write32(msg->address_lo, HPET_Tn_ROUTE(ch->idx) + 4);
}

static void hpet_msi_read(unsigned int vector, struct msi_msg *msg)
{
    int ch_idx = vector_to_channel(vector);
    struct hpet_event_channel *ch;

    BUG_ON(ch_idx < 0);
    ch = &hpet_events[ch_idx];

    msg->data = hpet_read32(HPET_Tn_ROUTE(ch->idx));
    msg->address_lo = hpet_read32(HPET_Tn_ROUTE(ch->idx) + 4);
    msg->address_hi = 0;
}

static unsigned int hpet_msi_startup(unsigned int vector)
{
    hpet_msi_unmask(vector);
    return 0;
}

static void hpet_msi_shutdown(unsigned int vector)
{
    hpet_msi_mask(vector);
}

static void hpet_msi_ack(unsigned int vector)
{
    ack_APIC_irq();
}

static void hpet_msi_end(unsigned int vector)
{
}

static void hpet_msi_set_affinity(unsigned int vector, cpumask_t mask)
{
    struct msi_msg msg;
    unsigned int dest;
    cpumask_t tmp;

    cpus_and(tmp, mask, cpu_online_map);
    if ( cpus_empty(tmp) )
        mask = TARGET_CPUS;

    dest = cpu_mask_to_apicid(mask);

    hpet_msi_read(vector, &msg);

    msg.data &= ~MSI_DATA_VECTOR_MASK;
    msg.data |= MSI_DATA_VECTOR(vector);
    msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
    msg.address_lo |= MSI_ADDR_DEST_ID(dest);

    hpet_msi_write(vector, &msg);
    irq_desc[vector].affinity = mask;
}

/*
 * IRQ Chip for MSI HPET Devices,
 */
static struct hw_interrupt_type hpet_msi_type = {
    .typename   = "HPET-MSI",
    .startup    = hpet_msi_startup,
    .shutdown   = hpet_msi_shutdown,
    .enable	    = hpet_msi_unmask,
    .disable    = hpet_msi_mask,
    .ack        = hpet_msi_ack,
    .end        = hpet_msi_end,
    .set_affinity   = hpet_msi_set_affinity,
};

static int hpet_setup_msi_irq(unsigned int vector)
{
    int ret;
    struct msi_msg msg;
    struct hpet_event_channel *ch = &hpet_events[vector_to_channel(vector)];

    irq_desc[vector].handler = &hpet_msi_type;
    ret = request_irq_vector(vector, hpet_interrupt_handler,
                      0, "HPET", ch);
    if ( ret < 0 )
        return ret;

    msi_compose_msg(NULL, vector, &msg);
    hpet_msi_write(vector, &msg);

    return 0;
}

static int hpet_assign_irq(struct hpet_event_channel *ch)
{
    unsigned int vector;

    vector = assign_irq_vector(AUTO_ASSIGN_IRQ);
    if ( !vector )
        return -EINVAL;

    irq_vector[vector] = vector;
    vector_irq[vector] = vector;
    vector_channel[vector] = ch - &hpet_events[0];

    if ( hpet_setup_msi_irq(vector) )
    {
        irq_vector[vector] = 0;
        vector_irq[vector] = FREE_TO_ASSIGN_IRQ;
        vector_channel[vector] = -1;
        return -EINVAL;
    }

    ch->vector = vector;
    return 0;
}

static int hpet_fsb_cap_lookup(void)
{
    unsigned int id;
    unsigned int num_chs, num_chs_used;
    int i;

    id = hpet_read32(HPET_ID);

    num_chs = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
    num_chs++; /* Value read out starts from 0 */

    num_chs_used = 0;
    for ( i = 0; i < num_chs; i++ )
    {
        struct hpet_event_channel *ch = &hpet_events[num_chs_used];
        unsigned long cfg = hpet_read32(HPET_Tn_CFG(i));

        /* Only consider HPET timer with MSI support */
        if ( !(cfg & HPET_TN_FSB_CAP) )
            continue;

        ch->flags = 0;
        ch->idx = i;

        if ( hpet_assign_irq(ch) )
            continue;

        /* set default irq affinity */
        ch->cpu = num_chs_used;
        per_cpu(cpu_bc_channel, ch->cpu) = ch;
        irq_desc[ch->vector].handler->
            set_affinity(ch->vector, cpumask_of_cpu(ch->cpu));

        num_chs_used++;

        if ( num_chs_used == num_possible_cpus() )
            break;
    }

    printk(XENLOG_INFO
           "HPET: %d timers in total, %d timers will be used for broadcast\n",
           num_chs, num_chs_used);

    return num_chs_used;
}

static int next_channel;
static spinlock_t next_lock = SPIN_LOCK_UNLOCKED;

static struct hpet_event_channel *hpet_get_channel(int cpu)
{
    int i;
    int next;
    struct hpet_event_channel *ch;

    spin_lock(&next_lock);
    next = next_channel = (next_channel + 1) % num_hpets_used;
    spin_unlock(&next_lock);

    /* try unused channel first */
    for ( i = next; i < next + num_hpets_used; i++ )
    {
        ch = &hpet_events[i % num_hpets_used];
        if ( !test_and_set_bit(HPET_EVT_USED_BIT, &ch->flags) )
        {
            ch->cpu = cpu;
            return ch;
        }
    }

    /* share a in-use channel */
    ch = &hpet_events[next];
    if ( !test_and_set_bit(HPET_EVT_USED_BIT, &ch->flags) )
        ch->cpu = cpu;

    return ch;
}

static void hpet_attach_channel_share(int cpu, struct hpet_event_channel *ch)
{
    per_cpu(cpu_bc_channel, cpu) = ch;

    /* try to be the channel owner again while holding the lock */
    if ( !test_and_set_bit(HPET_EVT_USED_BIT, &ch->flags) )
        ch->cpu = cpu;

    if ( ch->cpu != cpu )
        return;

    /* set irq affinity */
    irq_desc[ch->vector].handler->
        set_affinity(ch->vector, cpumask_of_cpu(ch->cpu));
}

static void hpet_detach_channel_share(int cpu)
{
    struct hpet_event_channel *ch = per_cpu(cpu_bc_channel, cpu);

    per_cpu(cpu_bc_channel, cpu) = NULL;

    if ( cpu != ch->cpu )
        return;

    if ( cpus_empty(ch->cpumask) )
    {
        ch->cpu = -1;
        clear_bit(HPET_EVT_USED_BIT, &ch->flags);
        return;
    }

    ch->cpu = first_cpu(ch->cpumask);
    /* set irq affinity */
    irq_desc[ch->vector].handler->
        set_affinity(ch->vector, cpumask_of_cpu(ch->cpu));
}

static void (*hpet_attach_channel)(int cpu, struct hpet_event_channel *ch);
static void (*hpet_detach_channel)(int cpu);

void hpet_broadcast_init(void)
{
    u64 hpet_rate;
    u32 hpet_id, cfg;
    int i;

    hpet_rate = hpet_setup();
    if ( hpet_rate == 0 )
        return;

    num_hpets_used = hpet_fsb_cap_lookup();
    if ( num_hpets_used > 0 )
    {
        /* Stop HPET legacy interrupts */
        cfg = hpet_read32(HPET_CFG);
        cfg &= ~HPET_CFG_LEGACY;
        hpet_write32(cfg, HPET_CFG);

        for ( i = 0; i < num_hpets_used; i++ )
        {
            /* set HPET Tn as oneshot */
            cfg = hpet_read32(HPET_Tn_CFG(hpet_events[i].idx));
            cfg &= ~HPET_TN_PERIODIC;
            cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
            hpet_write32(cfg, HPET_Tn_CFG(hpet_events[i].idx));
  
            hpet_events[i].mult = div_sc((unsigned long)hpet_rate,
                                         1000000000ul, 32);
            hpet_events[i].shift = 32;
            hpet_events[i].next_event = STIME_MAX;
            hpet_events[i].event_handler = handle_hpet_broadcast;
            spin_lock_init(&hpet_events[i].lock);
        }

        if ( num_hpets_used < num_possible_cpus() )
        {
            hpet_attach_channel = hpet_attach_channel_share;
            hpet_detach_channel = hpet_detach_channel_share;
        }

        return;
    }

    hpet_id = hpet_read32(HPET_ID);
    if ( !(hpet_id & HPET_ID_LEGSUP) || !force_hpet_broadcast )
        return;

    /* Start HPET legacy interrupts */
    cfg = hpet_read32(HPET_CFG);
    cfg |= HPET_CFG_LEGACY;
    hpet_write32(cfg, HPET_CFG);

    /* set HPET T0 as oneshot */
    cfg = hpet_read32(HPET_T0_CFG);
    cfg &= ~HPET_TN_PERIODIC;
    cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
    hpet_write32(cfg, HPET_T0_CFG);

    /*
     * The period is a femto seconds value. We need to calculate the scaled
     * math multiplication factor for nanosecond to hpet tick conversion.
     */
    legacy_hpet_event.mult = div_sc((unsigned long)hpet_rate, 1000000000ul, 32);
    legacy_hpet_event.shift = 32;
    legacy_hpet_event.next_event = STIME_MAX;
    legacy_hpet_event.event_handler = handle_hpet_broadcast;
    legacy_hpet_event.idx = 0;
    legacy_hpet_event.flags = 0;
    spin_lock_init(&legacy_hpet_event.lock);

    for_each_cpu(i)
        per_cpu(cpu_bc_channel, i) = &legacy_hpet_event;
}

void hpet_broadcast_enter(void)
{
    int cpu = smp_processor_id();
    struct hpet_event_channel *ch = per_cpu(cpu_bc_channel, cpu);

    if ( !ch )
        ch = hpet_get_channel(cpu);
    BUG_ON( !ch );

    ASSERT(!local_irq_is_enabled());
    spin_lock(&ch->lock);

    if ( hpet_attach_channel )
        hpet_attach_channel(cpu, ch);

    disable_APIC_timer();

    cpu_set(cpu, ch->cpumask);

    /* reprogram if current cpu expire time is nearer */
    if ( this_cpu(timer_deadline) < ch->next_event )
        reprogram_hpet_evt_channel(ch, this_cpu(timer_deadline), NOW(), 1);

    spin_unlock(&ch->lock);
}

void hpet_broadcast_exit(void)
{
    int cpu = smp_processor_id();
    struct hpet_event_channel *ch = per_cpu(cpu_bc_channel, cpu);

    BUG_ON( !ch );

    spin_lock_irq(&ch->lock);

    if ( cpu_test_and_clear(cpu, ch->cpumask) )
    {
        /* Cancel any outstanding LAPIC event and re-enable interrupts. */
        reprogram_timer(0);
        enable_APIC_timer();
        
        /* Reprogram the deadline; trigger timer work now if it has passed. */
        if ( !reprogram_timer(per_cpu(timer_deadline, cpu)) )
            raise_softirq(TIMER_SOFTIRQ);

        if ( cpus_empty(ch->cpumask) && ch->next_event != STIME_MAX )
            reprogram_hpet_evt_channel(ch, STIME_MAX, 0, 0);
    }

    if ( hpet_detach_channel )
        hpet_detach_channel(cpu);

    spin_unlock_irq(&ch->lock);
}

int hpet_broadcast_is_available(void)
{
    return (legacy_hpet_event.event_handler == handle_hpet_broadcast
            || num_hpets_used > 0);
}

int hpet_legacy_irq_tick(void)
{
    if ( !legacy_hpet_event.event_handler )
        return 0;
    legacy_hpet_event.event_handler(&legacy_hpet_event);
    return 1;
}

u64 hpet_setup(void)
{
    static u64 hpet_rate;
    static u32 system_reset_latch;
    u32 hpet_id, hpet_period, cfg;
    int i;

    if ( system_reset_latch == system_reset_counter )
        return hpet_rate;
    system_reset_latch = system_reset_counter;

    if ( hpet_address == 0 )
        return 0;

    set_fixmap_nocache(FIX_HPET_BASE, hpet_address);

    hpet_id = hpet_read32(HPET_ID);
    if ( (hpet_id & HPET_ID_REV) == 0 )
    {
        printk("BAD HPET revision id.\n");
        return 0;
    }

    /* Check for sane period (100ps <= period <= 100ns). */
    hpet_period = hpet_read32(HPET_PERIOD);
    if ( (hpet_period > 100000000) || (hpet_period < 100000) )
    {
        printk("BAD HPET period %u.\n", hpet_period);
        return 0;
    }

    cfg = hpet_read32(HPET_CFG);
    cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
    hpet_write32(cfg, HPET_CFG);

    for ( i = 0; i <= ((hpet_id >> 8) & 31); i++ )
    {
        cfg = hpet_read32(HPET_Tn_CFG(i));
        cfg &= ~HPET_TN_ENABLE;
        hpet_write32(cfg, HPET_Tn_CFG(i));
    }

    cfg = hpet_read32(HPET_CFG);
    cfg |= HPET_CFG_ENABLE;
    hpet_write32(cfg, HPET_CFG);

    hpet_rate = 1000000000000000ULL; /* 10^15 */
    (void)do_div(hpet_rate, hpet_period);

    return hpet_rate;
}