aboutsummaryrefslogtreecommitdiffstats
path: root/os/hal/src/hal_serial_usb.c
blob: 480e4da4f83972d96e50ead58e15078111f2ccf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
/*
    ChibiOS - Copyright (C) 2006..2016 Giovanni Di Sirio

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

/**
 * @file    hal_serial_usb.c
 * @brief   Serial over USB Driver code.
 *
 * @addtogroup SERIAL_USB
 * @{
 */

#include "hal.h"

#if (HAL_USE_SERIAL_USB == TRUE) || defined(__DOXYGEN__)

/*===========================================================================*/
/* Driver local definitions.                                                 */
/*===========================================================================*/

/*===========================================================================*/
/* Driver exported variables.                                                */
/*===========================================================================*/

/*===========================================================================*/
/* Driver local variables and types.                                         */
/*===========================================================================*/

/*
 * Current Line Coding.
 */
static cdc_linecoding_t linecoding = {
  {0x00, 0x96, 0x00, 0x00},             /* 38400.                           */
  LC_STOP_1, LC_PARITY_NONE, 8
};

/*===========================================================================*/
/* Driver local functions.                                                   */
/*===========================================================================*/

static bool sdu_start_receive(SerialUSBDriver *sdup) {
  uint8_t *buf;

  /* If the USB driver is not in the appropriate state then transactions
     must not be started.*/
  if ((usbGetDriverStateI(sdup->config->usbp) != USB_ACTIVE) ||
      (sdup->state != SDU_READY)) {
    return true;
  }

  /* Checking if there is already a transaction ongoing on the endpoint.*/
  if (usbGetReceiveStatusI(sdup->config->usbp, sdup->config->bulk_in)) {
    return true;
  }

  /* Checking if there is a buffer ready for incoming data.*/
  buf = ibqGetEmptyBufferI(&sdup->ibqueue);
  if (buf == NULL) {
    return true;
  }

  /* Buffer found, starting a new transaction.*/
  usbStartReceiveI(sdup->config->usbp, sdup->config->bulk_out,
                   buf, SERIAL_USB_BUFFERS_SIZE);

  return false;
}

/*
 * Interface implementation.
 */

static size_t write(void *ip, const uint8_t *bp, size_t n) {

  if (usbGetDriverStateI(((SerialUSBDriver *)ip)->config->usbp) != USB_ACTIVE) {
    return 0;
  }

  return obqWriteTimeout(&((SerialUSBDriver *)ip)->obqueue, bp,
                         n, TIME_INFINITE);
}

static size_t read(void *ip, uint8_t *bp, size_t n) {

  if (usbGetDriverStateI(((SerialUSBDriver *)ip)->config->usbp) != USB_ACTIVE) {
    return 0;
  }

  return ibqReadTimeout(&((SerialUSBDriver *)ip)->ibqueue, bp,
                        n, TIME_INFINITE);
}

static msg_t put(void *ip, uint8_t b) {

  if (usbGetDriverStateI(((SerialUSBDriver *)ip)->config->usbp) != USB_ACTIVE) {
    return MSG_RESET;
  }

  return obqPutTimeout(&((SerialUSBDriver *)ip)->obqueue, b, TIME_INFINITE);
}

static msg_t get(void *ip) {

  if (usbGetDriverStateI(((SerialUSBDriver *)ip)->config->usbp) != USB_ACTIVE) {
    return MSG_RESET;
  }

  return ibqGetTimeout(&((SerialUSBDriver *)ip)->ibqueue, TIME_INFINITE);
}

static msg_t putt(void *ip, uint8_t b, systime_t timeout) {

  if (usbGetDriverStateI(((SerialUSBDriver *)ip)->config->usbp) != USB_ACTIVE) {
    return MSG_RESET;
  }

  return obqPutTimeout(&((SerialUSBDriver *)ip)->obqueue, b, timeout);
}

static msg_t gett(void *ip, systime_t timeout) {

  if (usbGetDriverStateI(((SerialUSBDriver *)ip)->config->usbp) != USB_ACTIVE) {
    return MSG_RESET;
  }

  return ibqGetTimeout(&((SerialUSBDriver *)ip)->ibqueue, timeout);
}

static size_t writet(void *ip, const uint8_t *bp, size_t n, systime_t timeout) {

  if (usbGetDriverStateI(((SerialUSBDriver *)ip)->config->usbp) != USB_ACTIVE) {
    return 0;
  }

  return obqWriteTimeout(&((SerialUSBDriver *)ip)->obqueue, bp, n, timeout);
}

static size_t readt(void *ip, uint8_t *bp, size_t n, systime_t timeout) {

  if (usbGetDriverStateI(((SerialUSBDriver *)ip)->config->usbp) != USB_ACTIVE) {
    return 0;
  }

  return ibqReadTimeout(&((SerialUSBDriver *)ip)->ibqueue, bp, n, timeout);
}

static const struct SerialUSBDriverVMT vmt = {
  write, read, put, get,
  putt, gett, writet, readt
};

/**
 * @brief   Notification of empty buffer released into the input buffers queue.
 *
 * @param[in] bqp       the buffers queue pointer.
 */
static void ibnotify(io_buffers_queue_t *bqp) {
  SerialUSBDriver *sdup = bqGetLinkX(bqp);
  (void) sdu_start_receive(sdup);
}

/**
 * @brief   Notification of filled buffer inserted into the output buffers queue.
 *
 * @param[in] bqp       the buffers queue pointer.
 */
static void obnotify(io_buffers_queue_t *bqp) {
  size_t n;
  SerialUSBDriver *sdup = bqGetLinkX(bqp);

  /* If the USB driver is not in the appropriate state then transactions
     must not be started.*/
  if ((usbGetDriverStateI(sdup->config->usbp) != USB_ACTIVE) ||
      (sdup->state != SDU_READY)) {
    return;
  }

  /* Checking if there is already a transaction ongoing on the endpoint.*/
  if (!usbGetTransmitStatusI(sdup->config->usbp, sdup->config->bulk_in)) {
    /* Trying to get a full buffer.*/
    uint8_t *buf = obqGetFullBufferI(&sdup->obqueue, &n);
    if (buf != NULL) {
      /* Buffer found, starting a new transaction.*/
      usbStartTransmitI(sdup->config->usbp, sdup->config->bulk_in, buf, n);
    }
  }
}

/*===========================================================================*/
/* Driver exported functions.                                                */
/*===========================================================================*/

/**
 * @brief   Serial Driver initialization.
 * @note    This function is implicitly invoked by @p halInit(), there is
 *          no need to explicitly initialize the driver.
 *
 * @init
 */
void sduInit(void) {
}

/**
 * @brief   Initializes a generic full duplex driver object.
 * @details The HW dependent part of the initialization has to be performed
 *          outside, usually in the hardware initialization code.
 *
 * @param[out] sdup     pointer to a @p SerialUSBDriver structure
 *
 * @init
 */
void sduObjectInit(SerialUSBDriver *sdup) {

  sdup->vmt = &vmt;
  osalEventObjectInit(&sdup->event);
  sdup->state = SDU_STOP;
  ibqObjectInit(&sdup->ibqueue, sdup->ib,
                SERIAL_USB_BUFFERS_SIZE, SERIAL_USB_BUFFERS_NUMBER,
                ibnotify, sdup);
  obqObjectInit(&sdup->obqueue, sdup->ob,
                SERIAL_USB_BUFFERS_SIZE, SERIAL_USB_BUFFERS_NUMBER,
                obnotify, sdup);
}

/**
 * @brief   Configures and starts the driver.
 *
 * @param[in] sdup      pointer to a @p SerialUSBDriver object
 * @param[in] config    the serial over USB driver configuration
 *
 * @api
 */
void sduStart(SerialUSBDriver *sdup, const SerialUSBConfig *config) {
  USBDriver *usbp = config->usbp;

  osalDbgCheck(sdup != NULL);

  osalSysLock();
  osalDbgAssert((sdup->state == SDU_STOP) || (sdup->state == SDU_READY),
                "invalid state");
  usbp->in_params[config->bulk_in - 1U]   = sdup;
  usbp->out_params[config->bulk_out - 1U] = sdup;
  if (config->int_in > 0U) {
    usbp->in_params[config->int_in - 1U]  = sdup;
  }
  sdup->config = config;
  sdup->state = SDU_READY;
  osalSysUnlock();
}

/**
 * @brief   Stops the driver.
 * @details Any thread waiting on the driver's queues will be awakened with
 *          the message @p MSG_RESET.
 *
 * @param[in] sdup      pointer to a @p SerialUSBDriver object
 *
 * @api
 */
void sduStop(SerialUSBDriver *sdup) {
  USBDriver *usbp = sdup->config->usbp;

  osalDbgCheck(sdup != NULL);

  osalSysLock();

  osalDbgAssert((sdup->state == SDU_STOP) || (sdup->state == SDU_READY),
                "invalid state");

  /* Driver in stopped state.*/
  usbp->in_params[sdup->config->bulk_in - 1U]   = NULL;
  usbp->out_params[sdup->config->bulk_out - 1U] = NULL;
  if (sdup->config->int_in > 0U) {
    usbp->in_params[sdup->config->int_in - 1U]  = NULL;
  }
  sdup->config = NULL;
  sdup->state  = SDU_STOP;

  /* Enforces a disconnection.*/
  sduDisconnectI(sdup);
  osalOsRescheduleS();

  osalSysUnlock();
}

/**
 * @brief   USB device disconnection handler.
 * @note    If this function is not called from an ISR then an explicit call
 *          to @p osalOsRescheduleS() in necessary afterward.
 *
 * @param[in] sdup      pointer to a @p SerialUSBDriver object
 *
 * @iclass
 */
void sduDisconnectI(SerialUSBDriver *sdup) {

  /* Queues reset in order to signal the driver stop to the application.*/
  chnAddFlagsI(sdup, CHN_DISCONNECTED);
  ibqResetI(&sdup->ibqueue);
  obqResetI(&sdup->obqueue);
}

/**
 * @brief   USB device configured handler.
 *
 * @param[in] sdup      pointer to a @p SerialUSBDriver object
 *
 * @iclass
 */
void sduConfigureHookI(SerialUSBDriver *sdup) {

  ibqResetI(&sdup->ibqueue);
  obqResetI(&sdup->obqueue);
  chnAddFlagsI(sdup, CHN_CONNECTED);
  (void) sdu_start_receive(sdup);
}

/**
 * @brief   Default requests hook.
 * @details Applications wanting to use the Serial over USB driver can use
 *          this function as requests hook in the USB configuration.
 *          The following requests are emulated:
 *          - CDC_GET_LINE_CODING.
 *          - CDC_SET_LINE_CODING.
 *          - CDC_SET_CONTROL_LINE_STATE.
 *          .
 *
 * @param[in] usbp      pointer to the @p USBDriver object
 * @return              The hook status.
 * @retval true         Message handled internally.
 * @retval false        Message not handled.
 */
bool sduRequestsHook(USBDriver *usbp) {

  if ((usbp->setup[0] & USB_RTYPE_TYPE_MASK) == USB_RTYPE_TYPE_CLASS) {
    switch (usbp->setup[1]) {
    case CDC_GET_LINE_CODING:
      usbSetupTransfer(usbp, (uint8_t *)&linecoding, sizeof(linecoding), NULL);
      return true;
    case CDC_SET_LINE_CODING:
      usbSetupTransfer(usbp, (uint8_t *)&linecoding, sizeof(linecoding), NULL);
      return true;
    case CDC_SET_CONTROL_LINE_STATE:
      /* Nothing to do, there are no control lines.*/
      usbSetupTransfer(usbp, NULL, 0, NULL);
      return true;
    default:
      return false;
    }
  }
  return false;
}

/**
 * @brief   SOF handler.
 * @details The SOF interrupt is used for automatic flushing of incomplete
 *          buffers pending in the output queue.
 *
 * @param[in] sdup      pointer to a @p SerialUSBDriver object
 *
 * @iclass
 */
void sduSOFHookI(SerialUSBDriver *sdup) {

  /* If the USB driver is not in the appropriate state then transactions
     must not be started.*/
  if ((usbGetDriverStateI(sdup->config->usbp) != USB_ACTIVE) ||
      (sdup->state != SDU_READY)) {
    return;
  }

  /* If there is already a transaction ongoing then another one cannot be
     started.*/
  if (usbGetTransmitStatusI(sdup->config->usbp, sdup->config->bulk_in)) {
    return;
  }

  /* Checking if there only a buffer partially filled, if so then it is
     enforced in the queue and transmitted.*/
  if (obqTryFlushI(&sdup->obqueue)) {
    size_t n;
    uint8_t *buf = obqGetFullBufferI(&sdup->obqueue, &n);

    osalDbgAssert(buf != NULL, "queue is empty");

    usbStartTransmitI(sdup->config->usbp, sdup->config->bulk_in, buf, n);
  }
}

/**
 * @brief   Default data transmitted callback.
 * @details The application must use this function as callback for the IN
 *          data endpoint.
 *
 * @param[in] usbp      pointer to the @p USBDriver object
 * @param[in] ep        IN endpoint number
 */
void sduDataTransmitted(USBDriver *usbp, usbep_t ep) {
  uint8_t *buf;
  size_t n;
  SerialUSBDriver *sdup = usbp->in_params[ep - 1U];

  if (sdup == NULL) {
    return;
  }

  osalSysLockFromISR();

  /* Signaling that space is available in the output queue.*/
  chnAddFlagsI(sdup, CHN_OUTPUT_EMPTY);

  /* Freeing the buffer just transmitted, if it was not a zero size packet.*/
  if (usbp->epc[ep]->in_state->txsize > 0U) {
    obqReleaseEmptyBufferI(&sdup->obqueue);
  }

  /* Checking if there is a buffer ready for transmission.*/
  buf = obqGetFullBufferI(&sdup->obqueue, &n);

  if (buf != NULL) {
    /* The endpoint cannot be busy, we are in the context of the callback,
       so it is safe to transmit without a check.*/
    usbStartTransmitI(usbp, ep, buf, n);
  }
  else if ((usbp->epc[ep]->in_state->txsize > 0U) &&
           ((usbp->epc[ep]->in_state->txsize &
            ((size_t)usbp->epc[ep]->in_maxsize - 1U)) == 0U)) {
    /* Transmit zero sized packet in case the last one has maximum allowed
       size. Otherwise the recipient may expect more data coming soon and
       not return buffered data to app. See section 5.8.3 Bulk Transfer
       Packet Size Constraints of the USB Specification document.*/
    usbStartTransmitI(usbp, ep, usbp->setup, 0);

  }
  else {
    /* Nothing to transmit.*/
  }

  osalSysUnlockFromISR();
}

/**
 * @brief   Default data received callback.
 * @details The application must use this function as callback for the OUT
 *          data endpoint.
 *
 * @param[in] usbp      pointer to the @p USBDriver object
 * @param[in] ep        OUT endpoint number
 */
void sduDataReceived(USBDriver *usbp, usbep_t ep) {
  SerialUSBDriver *sdup = usbp->out_params[ep - 1U];
  if (sdup == NULL) {
    return;
  }

  osalSysLockFromISR();

  /* Signaling that data is available in the input queue.*/
  chnAddFlagsI(sdup, CHN_INPUT_AVAILABLE);

  /* Posting the filled buffer in the queue.*/
  ibqPostFullBufferI(&sdup->ibqueue,
                     usbGetReceiveTransactionSizeX(sdup->config->usbp,
                                                   sdup->config->bulk_out));

  /* The endpoint cannot be busy, we are in the context of the callback,
     so a packet is in the buffer for sure. Trying to get a free buffer
     for the next transaction.*/
  sdu_start_receive(sdup);

  osalSysUnlockFromISR();
}

/**
 * @brief   Default data received callback.
 * @details The application must use this function as callback for the IN
 *          interrupt endpoint.
 *
 * @param[in] usbp      pointer to the @p USBDriver object
 * @param[in] ep        endpoint number
 */
void sduInterruptTransmitted(USBDriver *usbp, usbep_t ep) {

  (void)usbp;
  (void)ep;
}

#endif /* HAL_USE_SERIAL_USB == TRUE */

/** @} */
id='n2207' href='#n2207'>2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
/*
 *  Generic Dynamic compiler generator
 * 
 *  Copyright (c) 2003 Fabrice Bellard
 *
 *  The COFF object format support was extracted from Kazu's QEMU port
 *  to Win32.
 *
 *  Mach-O Support by Matt Reda and Pierre d'Herbemont
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <inttypes.h>
#include <unistd.h>
#include <fcntl.h>

#include "config-host.h"

/* NOTE: we test CONFIG_WIN32 instead of _WIN32 to enabled cross
   compilation */
#if defined(CONFIG_WIN32)
#define CONFIG_FORMAT_COFF
#elif defined(CONFIG_DARWIN)
#define CONFIG_FORMAT_MACH
#else
#define CONFIG_FORMAT_ELF
#endif

#ifdef CONFIG_FORMAT_ELF

/* elf format definitions. We use these macros to test the CPU to
   allow cross compilation (this tool must be ran on the build
   platform) */
#if defined(HOST_I386)

#define ELF_CLASS	ELFCLASS32
#define ELF_ARCH	EM_386
#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
#undef ELF_USES_RELOCA

#elif defined(HOST_X86_64)

#define ELF_CLASS	ELFCLASS64
#define ELF_ARCH	EM_X86_64
#define elf_check_arch(x) ((x) == EM_X86_64)
#define ELF_USES_RELOCA

#elif defined(HOST_PPC)

#define ELF_CLASS	ELFCLASS32
#define ELF_ARCH	EM_PPC
#define elf_check_arch(x) ((x) == EM_PPC)
#define ELF_USES_RELOCA

#elif defined(HOST_S390)

#define ELF_CLASS	ELFCLASS32
#define ELF_ARCH	EM_S390
#define elf_check_arch(x) ((x) == EM_S390)
#define ELF_USES_RELOCA

#elif defined(HOST_ALPHA)

#define ELF_CLASS	ELFCLASS64
#define ELF_ARCH	EM_ALPHA
#define elf_check_arch(x) ((x) == EM_ALPHA)
#define ELF_USES_RELOCA

#elif defined(HOST_IA64)

#define ELF_CLASS	ELFCLASS64
#define ELF_ARCH	EM_IA_64
#define elf_check_arch(x) ((x) == EM_IA_64)
#define ELF_USES_RELOCA

#elif defined(HOST_SPARC)

#define ELF_CLASS	ELFCLASS32
#define ELF_ARCH	EM_SPARC
#define elf_check_arch(x) ((x) == EM_SPARC || (x) == EM_SPARC32PLUS)
#define ELF_USES_RELOCA

#elif defined(HOST_SPARC64)

#define ELF_CLASS	ELFCLASS64
#define ELF_ARCH	EM_SPARCV9
#define elf_check_arch(x) ((x) == EM_SPARCV9)
#define ELF_USES_RELOCA

#elif defined(HOST_ARM)

#define ELF_CLASS	ELFCLASS32
#define ELF_ARCH	EM_ARM
#define elf_check_arch(x) ((x) == EM_ARM)
#define ELF_USES_RELOC

#elif defined(HOST_M68K)

#define ELF_CLASS	ELFCLASS32
#define ELF_ARCH	EM_68K
#define elf_check_arch(x) ((x) == EM_68K)
#define ELF_USES_RELOCA

#else
#error unsupported CPU - please update the code
#endif

#include "elf.h"

#if ELF_CLASS == ELFCLASS32
typedef int32_t host_long;
typedef uint32_t host_ulong;
#define swabls(x) swab32s(x)
#define swablss(x) swab32ss(x)
#else
typedef int64_t host_long;
typedef uint64_t host_ulong;
#define swabls(x) swab64s(x)
#define swablss(x) swab64ss(x)
#endif

#ifdef ELF_USES_RELOCA
#define SHT_RELOC SHT_RELA
#else
#define SHT_RELOC SHT_REL
#endif

#define EXE_RELOC ELF_RELOC
#define EXE_SYM ElfW(Sym)

#endif /* CONFIG_FORMAT_ELF */

#ifdef CONFIG_FORMAT_COFF

#include "a.out.h"

typedef int32_t host_long;
typedef uint32_t host_ulong;

#define FILENAMELEN 256

typedef struct coff_sym {
    struct external_syment *st_syment;
    char st_name[FILENAMELEN];
    uint32_t st_value;
    int  st_size;
    uint8_t st_type;
    uint8_t st_shndx;
} coff_Sym;

typedef struct coff_rel {
    struct external_reloc *r_reloc;
    int  r_offset;
    uint8_t r_type;
} coff_Rel;

#define EXE_RELOC struct coff_rel
#define EXE_SYM struct coff_sym

#endif /* CONFIG_FORMAT_COFF */

#ifdef CONFIG_FORMAT_MACH

#include <mach-o/loader.h>
#include <mach-o/nlist.h>
#include <mach-o/reloc.h>
#include <mach-o/ppc/reloc.h>

# define check_mach_header(x) (x.magic == MH_MAGIC)
typedef int32_t host_long;
typedef uint32_t host_ulong;

struct nlist_extended
{
   union {
   char *n_name; 
   long  n_strx; 
   } n_un;
   unsigned char n_type; 
   unsigned char n_sect; 
   short st_desc;
   unsigned long st_value;
   unsigned long st_size;
};

#define EXE_RELOC struct relocation_info
#define EXE_SYM struct nlist_extended

#endif /* CONFIG_FORMAT_MACH */

#include "bswap.h"

enum {
    OUT_GEN_OP,
    OUT_CODE,
    OUT_INDEX_OP,
};

/* all dynamically generated functions begin with this code */
#define OP_PREFIX "op_"

int do_swap;

void __attribute__((noreturn)) __attribute__((format (printf, 1, 2))) error(const char *fmt, ...)
{
    va_list ap;
    va_start(ap, fmt);
    fprintf(stderr, "dyngen: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
    va_end(ap);
    exit(1);
}

void *load_data(int fd, long offset, unsigned int size)
{
    char *data;

    data = malloc(size);
    if (!data)
        return NULL;
    lseek(fd, offset, SEEK_SET);
    if (read(fd, data, size) != size) {
        free(data);
        return NULL;
    }
    return data;
}

int strstart(const char *str, const char *val, const char **ptr)
{
    const char *p, *q;
    p = str;
    q = val;
    while (*q != '\0') {
        if (*p != *q)
            return 0;
        p++;
        q++;
    }
    if (ptr)
        *ptr = p;
    return 1;
}

void pstrcpy(char *buf, int buf_size, const char *str)
{
    int c;
    char *q = buf;

    if (buf_size <= 0)
        return;

    for(;;) {
        c = *str++;
        if (c == 0 || q >= buf + buf_size - 1)
            break;
        *q++ = c;
    }
    *q = '\0';
}

void swab16s(uint16_t *p)
{
    *p = bswap16(*p);
}

void swab32s(uint32_t *p)
{
    *p = bswap32(*p);
}

void swab32ss(int32_t *p)
{
    *p = bswap32(*p);
}

void swab64s(uint64_t *p)
{
    *p = bswap64(*p);
}

void swab64ss(int64_t *p)
{
    *p = bswap64(*p);
}

uint16_t get16(uint16_t *p)
{
    uint16_t val;
    val = *p;
    if (do_swap)
        val = bswap16(val);
    return val;
}

uint32_t get32(uint32_t *p)
{
    uint32_t val;
    val = *p;
    if (do_swap)
        val = bswap32(val);
    return val;
}

void put16(uint16_t *p, uint16_t val)
{
    if (do_swap)
        val = bswap16(val);
    *p = val;
}

void put32(uint32_t *p, uint32_t val)
{
    if (do_swap)
        val = bswap32(val);
    *p = val;
}

/* executable information */
EXE_SYM *symtab;
int nb_syms;
int text_shndx;
uint8_t *text;
EXE_RELOC *relocs;
int nb_relocs;

#ifdef CONFIG_FORMAT_ELF

/* ELF file info */
struct elf_shdr *shdr;
uint8_t **sdata;
struct elfhdr ehdr;
char *strtab;

int elf_must_swap(struct elfhdr *h)
{
  union {
      uint32_t i;
      uint8_t b[4];
  } swaptest;

  swaptest.i = 1;
  return (h->e_ident[EI_DATA] == ELFDATA2MSB) != 
      (swaptest.b[0] == 0);
}
  
void elf_swap_ehdr(struct elfhdr *h)
{
    swab16s(&h->e_type);			/* Object file type */
    swab16s(&h->	e_machine);		/* Architecture */
    swab32s(&h->	e_version);		/* Object file version */
    swabls(&h->	e_entry);		/* Entry point virtual address */
    swabls(&h->	e_phoff);		/* Program header table file offset */
    swabls(&h->	e_shoff);		/* Section header table file offset */
    swab32s(&h->	e_flags);		/* Processor-specific flags */
    swab16s(&h->	e_ehsize);		/* ELF header size in bytes */
    swab16s(&h->	e_phentsize);		/* Program header table entry size */
    swab16s(&h->	e_phnum);		/* Program header table entry count */
    swab16s(&h->	e_shentsize);		/* Section header table entry size */
    swab16s(&h->	e_shnum);		/* Section header table entry count */
    swab16s(&h->	e_shstrndx);		/* Section header string table index */
}

void elf_swap_shdr(struct elf_shdr *h)
{
  swab32s(&h->	sh_name);		/* Section name (string tbl index) */
  swab32s(&h->	sh_type);		/* Section type */
  swabls(&h->	sh_flags);		/* Section flags */
  swabls(&h->	sh_addr);		/* Section virtual addr at execution */
  swabls(&h->	sh_offset);		/* Section file offset */
  swabls(&h->	sh_size);		/* Section size in bytes */
  swab32s(&h->	sh_link);		/* Link to another section */
  swab32s(&h->	sh_info);		/* Additional section information */
  swabls(&h->	sh_addralign);		/* Section alignment */
  swabls(&h->	sh_entsize);		/* Entry size if section holds table */
}

void elf_swap_phdr(struct elf_phdr *h)
{
    swab32s(&h->p_type);			/* Segment type */
    swabls(&h->p_offset);		/* Segment file offset */
    swabls(&h->p_vaddr);		/* Segment virtual address */
    swabls(&h->p_paddr);		/* Segment physical address */
    swabls(&h->p_filesz);		/* Segment size in file */
    swabls(&h->p_memsz);		/* Segment size in memory */
    swab32s(&h->p_flags);		/* Segment flags */
    swabls(&h->p_align);		/* Segment alignment */
}

void elf_swap_rel(ELF_RELOC *rel)
{
    swabls(&rel->r_offset);
    swabls(&rel->r_info);
#ifdef ELF_USES_RELOCA
    swablss(&rel->r_addend);
#endif
}

struct elf_shdr *find_elf_section(struct elf_shdr *shdr, int shnum, const char *shstr, 
                                  const char *name)
{
    int i;
    const char *shname;
    struct elf_shdr *sec;

    for(i = 0; i < shnum; i++) {
        sec = &shdr[i];
        if (!sec->sh_name)
            continue;
        shname = shstr + sec->sh_name;
        if (!strcmp(shname, name))
            return sec;
    }
    return NULL;
}

int find_reloc(int sh_index)
{
    struct elf_shdr *sec;
    int i;

    for(i = 0; i < ehdr.e_shnum; i++) {
        sec = &shdr[i];
        if (sec->sh_type == SHT_RELOC && sec->sh_info == sh_index) 
            return i;
    }
    return 0;
}

static host_ulong get_rel_offset(EXE_RELOC *rel)
{
    return rel->r_offset;
}

static char *get_rel_sym_name(EXE_RELOC *rel)
{
    return strtab + symtab[ELFW(R_SYM)(rel->r_info)].st_name;
}

static char *get_sym_name(EXE_SYM *sym)
{
    return strtab + sym->st_name;
}

/* load an elf object file */
int load_object(const char *filename)
{
    int fd;
    struct elf_shdr *sec, *symtab_sec, *strtab_sec, *text_sec;
    int i, j;
    ElfW(Sym) *sym;
    char *shstr;
    ELF_RELOC *rel;
    
    fd = open(filename, O_RDONLY);
    if (fd < 0) 
        error("can't open file '%s'", filename);
    
    /* Read ELF header.  */
    if (read(fd, &ehdr, sizeof (ehdr)) != sizeof (ehdr))
        error("unable to read file header");

    /* Check ELF identification.  */
    if (ehdr.e_ident[EI_MAG0] != ELFMAG0
     || ehdr.e_ident[EI_MAG1] != ELFMAG1
     || ehdr.e_ident[EI_MAG2] != ELFMAG2
     || ehdr.e_ident[EI_MAG3] != ELFMAG3
     || ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
        error("bad ELF header");
    }

    do_swap = elf_must_swap(&ehdr);
    if (do_swap)
        elf_swap_ehdr(&ehdr);
    if (ehdr.e_ident[EI_CLASS] != ELF_CLASS)
        error("Unsupported ELF class");
    if (ehdr.e_type != ET_REL)
        error("ELF object file expected");
    if (ehdr.e_version != EV_CURRENT)
        error("Invalid ELF version");
    if (!elf_check_arch(ehdr.e_machine))
        error("Unsupported CPU (e_machine=%d)", ehdr.e_machine);

    /* read section headers */
    shdr = load_data(fd, ehdr.e_shoff, ehdr.e_shnum * sizeof(struct elf_shdr));
    if (do_swap) {
        for(i = 0; i < ehdr.e_shnum; i++) {
            elf_swap_shdr(&shdr[i]);
        }
    }

    /* read all section data */
    sdata = malloc(sizeof(void *) * ehdr.e_shnum);
    memset(sdata, 0, sizeof(void *) * ehdr.e_shnum);
    
    for(i = 0;i < ehdr.e_shnum; i++) {
        sec = &shdr[i];
        if (sec->sh_type != SHT_NOBITS)
            sdata[i] = load_data(fd, sec->sh_offset, sec->sh_size);
    }

    sec = &shdr[ehdr.e_shstrndx];
    shstr = (char *)sdata[ehdr.e_shstrndx];

    /* swap relocations */
    for(i = 0; i < ehdr.e_shnum; i++) {
        sec = &shdr[i];
        if (sec->sh_type == SHT_RELOC) {
            nb_relocs = sec->sh_size / sec->sh_entsize;
            if (do_swap) {
                for(j = 0, rel = (ELF_RELOC *)sdata[i]; j < nb_relocs; j++, rel++)
                    elf_swap_rel(rel);
            }
        }
    }
    /* text section */

    text_sec = find_elf_section(shdr, ehdr.e_shnum, shstr, ".text");
    if (!text_sec)
        error("could not find .text section");
    text_shndx = text_sec - shdr;
    text = sdata[text_shndx];

    /* find text relocations, if any */
    relocs = NULL;
    nb_relocs = 0;
    i = find_reloc(text_shndx);
    if (i != 0) {
        relocs = (ELF_RELOC *)sdata[i];
        nb_relocs = shdr[i].sh_size / shdr[i].sh_entsize;
    }

    symtab_sec = find_elf_section(shdr, ehdr.e_shnum, shstr, ".symtab");
    if (!symtab_sec)
        error("could not find .symtab section");
    strtab_sec = &shdr[symtab_sec->sh_link];

    symtab = (ElfW(Sym) *)sdata[symtab_sec - shdr];
    strtab = (char *)sdata[symtab_sec->sh_link];
    
    nb_syms = symtab_sec->sh_size / sizeof(ElfW(Sym));
    if (do_swap) {
        for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
            swab32s(&sym->st_name);
            swabls(&sym->st_value);
            swabls(&sym->st_size);
            swab16s(&sym->st_shndx);
        }
    }
    close(fd);
    return 0;
}

#endif /* CONFIG_FORMAT_ELF */

#ifdef CONFIG_FORMAT_COFF

/* COFF file info */
struct external_scnhdr *shdr;
uint8_t **sdata;
struct external_filehdr fhdr;
struct external_syment *coff_symtab;
char *strtab;
int coff_text_shndx, coff_data_shndx;

int data_shndx;

#define STRTAB_SIZE 4

#define DIR32   0x06
#define DISP32  0x14

#define T_FUNCTION  0x20
#define C_EXTERNAL  2

void sym_ent_name(struct external_syment *ext_sym, EXE_SYM *sym)
{
    char *q;
    int c, i, len;
    
    if (ext_sym->e.e.e_zeroes != 0) {
        q = sym->st_name;
        for(i = 0; i < 8; i++) {
            c = ext_sym->e.e_name[i];
            if (c == '\0')
                break;
            *q++ = c;
        }
        *q = '\0';
    } else {
        pstrcpy(sym->st_name, sizeof(sym->st_name), strtab + ext_sym->e.e.e_offset);
    }

    /* now convert the name to a C name (suppress the leading '_') */
    if (sym->st_name[0] == '_') {
        len = strlen(sym->st_name);
        memmove(sym->st_name, sym->st_name + 1, len - 1);
        sym->st_name[len - 1] = '\0';
    }
}

char *name_for_dotdata(struct coff_rel *rel)
{
	int i;
	struct coff_sym *sym;
	uint32_t text_data;

	text_data = *(uint32_t *)(text + rel->r_offset);

	for (i = 0, sym = symtab; i < nb_syms; i++, sym++) {
		if (sym->st_syment->e_scnum == data_shndx &&
                    text_data >= sym->st_value &&
                    text_data < sym->st_value + sym->st_size) {
                    
                    return sym->st_name;

		}
	}
	return NULL;
}

static char *get_sym_name(EXE_SYM *sym)
{
    return sym->st_name;
}

static char *get_rel_sym_name(EXE_RELOC *rel)
{
    char *name;
    name = get_sym_name(symtab + *(uint32_t *)(rel->r_reloc->r_symndx));
    if (!strcmp(name, ".data"))
        name = name_for_dotdata(rel);
    if (name[0] == '.')
        return NULL;
    return name;
}

static host_ulong get_rel_offset(EXE_RELOC *rel)
{
    return rel->r_offset;
}

struct external_scnhdr *find_coff_section(struct external_scnhdr *shdr, int shnum, const char *name)
{
    int i;
    const char *shname;
    struct external_scnhdr *sec;

    for(i = 0; i < shnum; i++) {
        sec = &shdr[i];
        if (!sec->s_name)
            continue;
        shname = sec->s_name;
        if (!strcmp(shname, name))
            return sec;
    }
    return NULL;
}

/* load a coff object file */
int load_object(const char *filename)
{
    int fd;
    struct external_scnhdr *sec, *text_sec, *data_sec;
    int i;
    struct external_syment *ext_sym;
    struct external_reloc *coff_relocs;
    struct external_reloc *ext_rel;
    uint32_t *n_strtab;
    EXE_SYM *sym;
    EXE_RELOC *rel;
	
    fd = open(filename, O_RDONLY 
#ifdef _WIN32
              | O_BINARY
#endif
              );
    if (fd < 0) 
        error("can't open file '%s'", filename);
    
    /* Read COFF header.  */
    if (read(fd, &fhdr, sizeof (fhdr)) != sizeof (fhdr))
        error("unable to read file header");

    /* Check COFF identification.  */
    if (fhdr.f_magic != I386MAGIC) {
        error("bad COFF header");
    }
    do_swap = 0;

    /* read section headers */
    shdr = load_data(fd, sizeof(struct external_filehdr) + fhdr.f_opthdr, fhdr.f_nscns * sizeof(struct external_scnhdr));
	
    /* read all section data */
    sdata = malloc(sizeof(void *) * fhdr.f_nscns);
    memset(sdata, 0, sizeof(void *) * fhdr.f_nscns);
    
    const char *p;
    for(i = 0;i < fhdr.f_nscns; i++) {
        sec = &shdr[i];
        if (!strstart(sec->s_name,  ".bss", &p))
            sdata[i] = load_data(fd, sec->s_scnptr, sec->s_size);
    }


    /* text section */
    text_sec = find_coff_section(shdr, fhdr.f_nscns, ".text");
    if (!text_sec)
        error("could not find .text section");
    coff_text_shndx = text_sec - shdr;
    text = sdata[coff_text_shndx];

    /* data section */
    data_sec = find_coff_section(shdr, fhdr.f_nscns, ".data");
    if (!data_sec)
        error("could not find .data section");
    coff_data_shndx = data_sec - shdr;
    
    coff_symtab = load_data(fd, fhdr.f_symptr, fhdr.f_nsyms*SYMESZ);
    for (i = 0, ext_sym = coff_symtab; i < nb_syms; i++, ext_sym++) {
        for(i=0;i<8;i++)
            printf(" %02x", ((uint8_t *)ext_sym->e.e_name)[i]);
        printf("\n");
    }


    n_strtab = load_data(fd, (fhdr.f_symptr + fhdr.f_nsyms*SYMESZ), STRTAB_SIZE);
    strtab = load_data(fd, (fhdr.f_symptr + fhdr.f_nsyms*SYMESZ), *n_strtab); 
    
    nb_syms = fhdr.f_nsyms;

    for (i = 0, ext_sym = coff_symtab; i < nb_syms; i++, ext_sym++) {
      if (strstart(ext_sym->e.e_name, ".text", NULL))
		  text_shndx = ext_sym->e_scnum;
	  if (strstart(ext_sym->e.e_name, ".data", NULL))
		  data_shndx = ext_sym->e_scnum;
    }

	/* set coff symbol */
	symtab = malloc(sizeof(struct coff_sym) * nb_syms);

	int aux_size, j;
	for (i = 0, ext_sym = coff_symtab, sym = symtab; i < nb_syms; i++, ext_sym++, sym++) {
		memset(sym, 0, sizeof(*sym));
		sym->st_syment = ext_sym;
		sym_ent_name(ext_sym, sym);
		sym->st_value = ext_sym->e_value;

		aux_size = *(int8_t *)ext_sym->e_numaux;
		if (ext_sym->e_scnum == text_shndx && ext_sym->e_type == T_FUNCTION) {
			for (j = aux_size + 1; j < nb_syms - i; j++) {
				if ((ext_sym + j)->e_scnum == text_shndx &&
					(ext_sym + j)->e_type == T_FUNCTION ){
					sym->st_size = (ext_sym + j)->e_value - ext_sym->e_value;
					break;
				} else if (j == nb_syms - i - 1) {
					sec = &shdr[coff_text_shndx];
					sym->st_size = sec->s_size - ext_sym->e_value;
					break;
				}
			}
		} else if (ext_sym->e_scnum == data_shndx && *(uint8_t *)ext_sym->e_sclass == C_EXTERNAL) {
			for (j = aux_size + 1; j < nb_syms - i; j++) {
				if ((ext_sym + j)->e_scnum == data_shndx) {
					sym->st_size = (ext_sym + j)->e_value - ext_sym->e_value;
					break;
				} else if (j == nb_syms - i - 1) {
					sec = &shdr[coff_data_shndx];
					sym->st_size = sec->s_size - ext_sym->e_value;
					break;
				}
			}
		} else {
			sym->st_size = 0;
		}
		
		sym->st_type = ext_sym->e_type;
		sym->st_shndx = ext_sym->e_scnum;
	}

		
    /* find text relocations, if any */
    sec = &shdr[coff_text_shndx];
    coff_relocs = load_data(fd, sec->s_relptr, sec->s_nreloc*RELSZ);
    nb_relocs = sec->s_nreloc;

    /* set coff relocation */
    relocs = malloc(sizeof(struct coff_rel) * nb_relocs);
    for (i = 0, ext_rel = coff_relocs, rel = relocs; i < nb_relocs; 
         i++, ext_rel++, rel++) {
        memset(rel, 0, sizeof(*rel));
        rel->r_reloc = ext_rel;
        rel->r_offset = *(uint32_t *)ext_rel->r_vaddr;
        rel->r_type = *(uint16_t *)ext_rel->r_type;
    }
    return 0;
}

#endif /* CONFIG_FORMAT_COFF */

#ifdef CONFIG_FORMAT_MACH

/* File Header */
struct mach_header 	mach_hdr;

/* commands */
struct segment_command 	*segment = 0;
struct dysymtab_command *dysymtabcmd = 0;
struct symtab_command 	*symtabcmd = 0;

/* section */
struct section 	*section_hdr;
struct section *text_sec_hdr;
uint8_t 	**sdata;

/* relocs */
struct relocation_info *relocs;
	
/* symbols */
EXE_SYM			*symtab;
struct nlist 	*symtab_std;
char			*strtab;

/* indirect symbols */
uint32_t 	*tocdylib;

/* Utility functions */

static inline char *find_str_by_index(int index)
{
    return strtab+index;
}

/* Used by dyngen common code */
static char *get_sym_name(EXE_SYM *sym)
{
	char *name = find_str_by_index(sym->n_un.n_strx);
	
	if ( sym->n_type & N_STAB ) /* Debug symbols are ignored */
		return "debug";
			
	if(!name)
		return name;
	if(name[0]=='_')
		return name + 1;
	else
		return name;
}

/* find a section index given its segname, sectname */
static int find_mach_sec_index(struct section *section_hdr, int shnum, const char *segname, 
                                  const char *sectname)
{
    int i;
    struct section *sec = section_hdr;

    for(i = 0; i < shnum; i++, sec++) {
        if (!sec->segname || !sec->sectname)
            continue;
        if (!strcmp(sec->sectname, sectname) && !strcmp(sec->segname, segname))
            return i;
    }
    return -1;
}

/* find a section header given its segname, sectname */
struct section *find_mach_sec_hdr(struct section *section_hdr, int shnum, const char *segname, 
                                  const char *sectname)
{
    int index = find_mach_sec_index(section_hdr, shnum, segname, sectname);
	if(index == -1)
		return NULL;
	return section_hdr+index;
}


static inline void fetch_next_pair_value(struct relocation_info * rel, unsigned int *value)
{
    struct scattered_relocation_info * scarel;
	
    if(R_SCATTERED & rel->r_address) {
        scarel = (struct scattered_relocation_info*)rel;
        if(scarel->r_type != PPC_RELOC_PAIR)
            error("fetch_next_pair_value: looking for a pair which was not found (1)");
        *value = scarel->r_value;
    } else {
		if(rel->r_type != PPC_RELOC_PAIR)
			error("fetch_next_pair_value: looking for a pair which was not found (2)");
		*value = rel->r_address;
	}
}

/* find a sym name given its value, in a section number */
static const char * find_sym_with_value_and_sec_number( int value, int sectnum, int * offset )
{
	int i, ret = -1;
	
	for( i = 0 ; i < nb_syms; i++ )
	{
	    if( !(symtab[i].n_type & N_STAB) && (symtab[i].n_type & N_SECT) &&
			 (symtab[i].n_sect ==  sectnum) && (symtab[i].st_value <= value) )
		{
			if( (ret<0) || (symtab[i].st_value >= symtab[ret].st_value) )
				ret = i;
		}
	}
	if( ret < 0 ) {
		*offset = 0;
		return 0;
	} else {
		*offset = value - symtab[ret].st_value;
		return get_sym_name(&symtab[ret]);
	}
}

/* 
 *  Find symbol name given a (virtual) address, and a section which is of type 
 *  S_NON_LAZY_SYMBOL_POINTERS or S_LAZY_SYMBOL_POINTERS or S_SYMBOL_STUBS
 */
static const char * find_reloc_name_in_sec_ptr(int address, struct section * sec_hdr)
{
    unsigned int tocindex, symindex, size;
    const char *name = 0;
    
    /* Sanity check */
    if(!( address >= sec_hdr->addr && address < (sec_hdr->addr + sec_hdr->size) ) )
        return (char*)0;
		
	if( sec_hdr->flags & S_SYMBOL_STUBS ){
		size = sec_hdr->reserved2;
		if(size == 0)
		    error("size = 0");
		
	}
	else if( sec_hdr->flags & S_LAZY_SYMBOL_POINTERS ||
	            sec_hdr->flags & S_NON_LAZY_SYMBOL_POINTERS)
		size = sizeof(unsigned long);
	else
		return 0;
		
    /* Compute our index in toc */
	tocindex = (address - sec_hdr->addr)/size;
	symindex = tocdylib[sec_hdr->reserved1 + tocindex];
	
	name = get_sym_name(&symtab[symindex]);

    return name;
}

static const char * find_reloc_name_given_its_address(int address)
{
    unsigned int i;
    for(i = 0; i < segment->nsects ; i++)
    {
        const char * name = find_reloc_name_in_sec_ptr(address, &section_hdr[i]);
        if((long)name != -1)
            return name;
    }
    return 0;
}

static const char * get_reloc_name(EXE_RELOC * rel, int * sslide)
{
	char * name = 0;
	struct scattered_relocation_info * sca_rel = (struct scattered_relocation_info*)rel;
	int sectnum = rel->r_symbolnum;
	int sectoffset;
	int other_half=0;
	
	/* init the slide value */
	*sslide = 0;
	
	if(R_SCATTERED & rel->r_address)
		return (char *)find_reloc_name_given_its_address(sca_rel->r_value);

	if(rel->r_extern)
	{
		/* ignore debug sym */
		if ( symtab[rel->r_symbolnum].n_type & N_STAB ) 
			return 0;
		return get_sym_name(&symtab[rel->r_symbolnum]);
	}

	/* Intruction contains an offset to the symbols pointed to, in the rel->r_symbolnum section */
	sectoffset = *(uint32_t *)(text + rel->r_address) & 0xffff;
			
	if(sectnum==0xffffff)
		return 0;

	/* Sanity Check */
	if(sectnum > segment->nsects)
		error("sectnum > segment->nsects");

	switch(rel->r_type)
	{
		case PPC_RELOC_LO16: fetch_next_pair_value(rel+1, &other_half); sectoffset |= (other_half << 16);
			break;
		case PPC_RELOC_HI16: fetch_next_pair_value(rel+1, &other_half); sectoffset = (sectoffset << 16) | (uint16_t)(other_half & 0xffff);
			break;
		case PPC_RELOC_HA16: fetch_next_pair_value(rel+1, &other_half); sectoffset = (sectoffset << 16) + (int16_t)(other_half & 0xffff);
			break;
		case PPC_RELOC_BR24:
			sectoffset = ( *(uint32_t *)(text + rel->r_address) & 0x03fffffc );
			if (sectoffset & 0x02000000) sectoffset |= 0xfc000000;
			break;
		default:
			error("switch(rel->type) not found");
	}

	if(rel->r_pcrel)
		sectoffset += rel->r_address;
			
	if (rel->r_type == PPC_RELOC_BR24)
		name = (char *)find_reloc_name_in_sec_ptr((int)sectoffset, &section_hdr[sectnum-1]);

	/* search it in the full symbol list, if not found */
	if(!name)
		name = (char *)find_sym_with_value_and_sec_number(sectoffset, sectnum, sslide);
	
	return name;
}

/* Used by dyngen common code */
static const char * get_rel_sym_name(EXE_RELOC * rel)
{
	int sslide;
	return get_reloc_name( rel, &sslide);
}

/* Used by dyngen common code */
static host_ulong get_rel_offset(EXE_RELOC *rel)
{
	struct scattered_relocation_info * sca_rel = (struct scattered_relocation_info*)rel;
    if(R_SCATTERED & rel->r_address)
		return sca_rel->r_address;
	else
		return rel->r_address;
}

/* load a mach-o object file */
int load_object(const char *filename)
{
	int fd;
	unsigned int offset_to_segment = 0;
    unsigned int offset_to_dysymtab = 0;
    unsigned int offset_to_symtab = 0;
    struct load_command lc;
    unsigned int i, j;
	EXE_SYM *sym;
	struct nlist *syment;
    
	fd = open(filename, O_RDONLY);
    if (fd < 0) 
        error("can't open file '%s'", filename);
		
    /* Read Mach header.  */
    if (read(fd, &mach_hdr, sizeof (mach_hdr)) != sizeof (mach_hdr))
        error("unable to read file header");

    /* Check Mach identification.  */
    if (!check_mach_header(mach_hdr)) {
        error("bad Mach header");
    }
    
    if (mach_hdr.cputype != CPU_TYPE_POWERPC)
        error("Unsupported CPU");
        
    if (mach_hdr.filetype != MH_OBJECT)
        error("Unsupported Mach Object");
    
    /* read segment headers */
    for(i=0, j=sizeof(mach_hdr); i<mach_hdr.ncmds ; i++)
    {
        if(read(fd, &lc, sizeof(struct load_command)) != sizeof(struct load_command))
            error("unable to read load_command");
        if(lc.cmd == LC_SEGMENT)
        {
            offset_to_segment = j;
            lseek(fd, offset_to_segment, SEEK_SET);
            segment = malloc(sizeof(struct segment_command));
            if(read(fd, segment, sizeof(struct segment_command)) != sizeof(struct segment_command))
                error("unable to read LC_SEGMENT");
        }
        if(lc.cmd == LC_DYSYMTAB)
        {
            offset_to_dysymtab = j;
            lseek(fd, offset_to_dysymtab, SEEK_SET);
            dysymtabcmd = malloc(sizeof(struct dysymtab_command));
            if(read(fd, dysymtabcmd, sizeof(struct dysymtab_command)) != sizeof(struct dysymtab_command))
                error("unable to read LC_DYSYMTAB");
        }
        if(lc.cmd == LC_SYMTAB)
        {
            offset_to_symtab = j;
            lseek(fd, offset_to_symtab, SEEK_SET);
            symtabcmd = malloc(sizeof(struct symtab_command));
            if(read(fd, symtabcmd, sizeof(struct symtab_command)) != sizeof(struct symtab_command))
                error("unable to read LC_SYMTAB");
        }
        j+=lc.cmdsize;

        lseek(fd, j, SEEK_SET);
    }

    if(!segment)
        error("unable to find LC_SEGMENT");

    /* read section headers */
    section_hdr = load_data(fd, offset_to_segment + sizeof(struct segment_command), segment->nsects * sizeof(struct section));

    /* read all section data */
    sdata = (uint8_t **)malloc(sizeof(void *) * segment->nsects);
    memset(sdata, 0, sizeof(void *) * segment->nsects);
    
	/* Load the data in section data */
	for(i = 0; i < segment->nsects; i++) {
        sdata[i] = load_data(fd, section_hdr[i].offset, section_hdr[i].size);
    }
	
    /* text section */
	text_sec_hdr = find_mach_sec_hdr(section_hdr, segment->nsects, SEG_TEXT, SECT_TEXT);
	i = find_mach_sec_index(section_hdr, segment->nsects, SEG_TEXT, SECT_TEXT);
	if (i == -1 || !text_sec_hdr)
        error("could not find __TEXT,__text section");
    text = sdata[i];
	
    /* Make sure dysym was loaded */
    if(!(int)dysymtabcmd)
        error("could not find __DYSYMTAB segment");
    
    /* read the table of content of the indirect sym */
    tocdylib = load_data( fd, dysymtabcmd->indirectsymoff, dysymtabcmd->nindirectsyms * sizeof(uint32_t) );
    
    /* Make sure symtab was loaded  */
    if(!(int)symtabcmd)
        error("could not find __SYMTAB segment");
    nb_syms = symtabcmd->nsyms;

    symtab_std = load_data(fd, symtabcmd->symoff, symtabcmd->nsyms * sizeof(struct nlist));
    strtab = load_data(fd, symtabcmd->stroff, symtabcmd->strsize);
	
	symtab = malloc(sizeof(EXE_SYM) * nb_syms);
	
	/* Now transform the symtab, to an extended version, with the sym size, and the C name */
	for(i = 0, sym = symtab, syment = symtab_std; i < nb_syms; i++, sym++, syment++) {
        struct nlist *sym_follow, *sym_next = 0;
        unsigned int j;
		memset(sym, 0, sizeof(*sym));
		
		if ( syment->n_type & N_STAB ) /* Debug symbols are skipped */
            continue;
			
		memcpy(sym, syment, sizeof(*syment));
			
		/* Find the following symbol in order to get the current symbol size */
        for(j = 0, sym_follow = symtab_std; j < nb_syms; j++, sym_follow++) {
            if ( sym_follow->n_sect != 1 || sym_follow->n_type & N_STAB || !(sym_follow->n_value > sym->st_value))
                continue;
            if(!sym_next) {
                sym_next = sym_follow;
                continue;
            }
            if(!(sym_next->n_value > sym_follow->n_value))
                continue;
            sym_next = sym_follow;
        }
		if(sym_next)
            sym->st_size = sym_next->n_value - sym->st_value;
		else
            sym->st_size = text_sec_hdr->size - sym->st_value;
	}
	
    /* Find Reloc */
    relocs = load_data(fd, text_sec_hdr->reloff, text_sec_hdr->nreloc * sizeof(struct relocation_info));
    nb_relocs = text_sec_hdr->nreloc;

	close(fd);
	return 0;
}

#endif /* CONFIG_FORMAT_MACH */

void get_reloc_expr(char *name, int name_size, const char *sym_name)
{
    const char *p;

    if (strstart(sym_name, "__op_param", &p)) {
        snprintf(name, name_size, "param%s", p);
    } else if (strstart(sym_name, "__op_gen_label", &p)) {
        snprintf(name, name_size, "gen_labels[param%s]", p);
    } else {
#ifdef HOST_SPARC
        if (sym_name[0] == '.')
            snprintf(name, name_size,
                     "(long)(&__dot_%s)",
                     sym_name + 1);
        else
#endif
            snprintf(name, name_size, "(long)(&%s)", sym_name);
    }
}

#ifdef HOST_IA64

#define PLT_ENTRY_SIZE	16	/* 1 bundle containing "brl" */

struct plt_entry {
    struct plt_entry *next;
    const char *name;
    unsigned long addend;
} *plt_list;

static int
get_plt_index (const char *name, unsigned long addend)
{
    struct plt_entry *plt, *prev= NULL;
    int index = 0;

    /* see if we already have an entry for this target: */
    for (plt = plt_list; plt; ++index, prev = plt, plt = plt->next)
	if (strcmp(plt->name, name) == 0 && plt->addend == addend)
	    return index;

    /* nope; create a new PLT entry: */

    plt = malloc(sizeof(*plt));
    if (!plt) {
	perror("malloc");
	exit(1);
    }
    memset(plt, 0, sizeof(*plt));
    plt->name = strdup(name);
    plt->addend = addend;

    /* append to plt-list: */
    if (prev)
	prev->next = plt;
    else
	plt_list = plt;
    return index;
}

#endif

#ifdef HOST_ARM

int arm_emit_ldr_info(const char *name, unsigned long start_offset,
                      FILE *outfile, uint8_t *p_start, uint8_t *p_end,
                      ELF_RELOC *relocs, int nb_relocs)
{
    uint8_t *p;
    uint32_t insn;
    int offset, min_offset, pc_offset, data_size, spare, max_pool;
    uint8_t data_allocated[1024];
    unsigned int data_index;
    int type;
    
    memset(data_allocated, 0, sizeof(data_allocated));
    
    p = p_start;
    min_offset = p_end - p_start;
    spare = 0x7fffffff;
    while (p < p_start + min_offset) {
        insn = get32((uint32_t *)p);
        /* TODO: Armv5e ldrd.  */
        /* TODO: VFP load.  */
        if ((insn & 0x0d5f0000) == 0x051f0000) {
            /* ldr reg, [pc, #im] */
            offset = insn & 0xfff;
            if (!(insn & 0x00800000))
                offset = -offset;
            max_pool = 4096;
            type = 0;
        } else if ((insn & 0x0e5f0f00) == 0x0c1f0100) {
            /* FPA ldf.  */
            offset = (insn & 0xff) << 2;
            if (!(insn & 0x00800000))
                offset = -offset;
            max_pool = 1024;
            type = 1;
        } else if ((insn & 0x0fff0000) == 0x028f0000) {
            /* Some gcc load a doubleword immediate with
               add regN, pc, #imm
               ldmia regN, {regN, regM}
               Hope and pray the compiler never generates somethin like
               add reg, pc, #imm1; ldr reg, [reg, #-imm2]; */
            int r;

            r = (insn & 0xf00) >> 7;
            offset = ((insn & 0xff) >> r) | ((insn & 0xff) << (32 - r));
            max_pool = 1024;
            type = 2;
        } else {
            max_pool = 0;
            type = -1;
        }
        if (type >= 0) {
            /* PC-relative load needs fixing up.  */
            if (spare > max_pool - offset)
                spare = max_pool - offset;
            if ((offset & 3) !=0)
                error("%s:%04x: pc offset must be 32 bit aligned", 
                      name, start_offset + p - p_start);
            if (offset < 0)
                error("%s:%04x: Embedded literal value",
                      name, start_offset + p - p_start);
            pc_offset = p - p_start + offset + 8;
            if (pc_offset <= (p - p_start) || 
                pc_offset >= (p_end - p_start))
                error("%s:%04x: pc offset must point inside the function code", 
                      name, start_offset + p - p_start);
            if (pc_offset < min_offset)
                min_offset = pc_offset;
            if (outfile) {
                /* The intruction position */
                fprintf(outfile, "    arm_ldr_ptr->ptr = gen_code_ptr + %d;\n", 
                        p - p_start);
                /* The position of the constant pool data.  */
                data_index = ((p_end - p_start) - pc_offset) >> 2;
                fprintf(outfile, "    arm_ldr_ptr->data_ptr = arm_data_ptr - %d;\n", 
                        data_index);
                fprintf(outfile, "    arm_ldr_ptr->type = %d;\n", type);
                fprintf(outfile, "    arm_ldr_ptr++;\n");
            }
        }
        p += 4;
    }

    /* Copy and relocate the constant pool data.  */
    data_size = (p_end - p_start) - min_offset;
    if (data_size > 0 && outfile) {
        spare += min_offset;
        fprintf(outfile, "    arm_data_ptr -= %d;\n", data_size >> 2);
        fprintf(outfile, "    arm_pool_ptr -= %d;\n", data_size);
        fprintf(outfile, "    if (arm_pool_ptr > gen_code_ptr + %d)\n"
                         "        arm_pool_ptr = gen_code_ptr + %d;\n",
                         spare, spare);

        data_index = 0;
        for (pc_offset = min_offset;
             pc_offset < p_end - p_start;
             pc_offset += 4) {

            ELF_RELOC *rel;
            int i, addend, type;
            const char *sym_name;
            char relname[1024];

            /* data value */
            addend = get32((uint32_t *)(p_start + pc_offset));
            relname[0] = '\0';
            for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
                if (rel->r_offset == (pc_offset + start_offset)) {
                    sym_name = get_rel_sym_name(rel);
                    /* the compiler leave some unnecessary references to the code */
                    get_reloc_expr(relname, sizeof(relname), sym_name);
                    type = ELF32_R_TYPE(rel->r_info);
                    if (type != R_ARM_ABS32)
                        error("%s: unsupported data relocation", name);
                    break;
                }
            }
            fprintf(outfile, "    arm_data_ptr[%d] = 0x%x",
                    data_index, addend);
            if (relname[0] != '\0')
                fprintf(outfile, " + %s", relname);
            fprintf(outfile, ";\n");

            data_index++;
        }
    }

    if (p == p_start)
        goto arm_ret_error;
    p -= 4;
    insn = get32((uint32_t *)p);
    /* The last instruction must be an ldm instruction.  There are several
       forms generated by gcc:
        ldmib sp, {..., pc}  (implies a sp adjustment of +4)
        ldmia sp, {..., pc}
        ldmea fp, {..., pc} */
    if ((insn & 0xffff8000) == 0xe99d8000) {
        if (outfile) {
            fprintf(outfile,
                    "    *(uint32_t *)(gen_code_ptr + %d) = 0xe28dd004;\n",
                    p - p_start);
        }
        p += 4;
    } else if ((insn & 0xffff8000) != 0xe89d8000
        && (insn & 0xffff8000) != 0xe91b8000) {
    arm_ret_error:
        if (!outfile)
            printf("%s: invalid epilog\n", name);
    }
    return p - p_start;
}
#endif


#define MAX_ARGS 3

/* generate op code */
void gen_code(const char *name, host_ulong offset, host_ulong size, 
              FILE *outfile, int gen_switch)
{
    int copy_size = 0;
    uint8_t *p_start, *p_end;
    host_ulong start_offset;
    int nb_args, i, n;
    uint8_t args_present[MAX_ARGS];
    const char *sym_name, *p;
    EXE_RELOC *rel;

    /* Compute exact size excluding prologue and epilogue instructions.
     * Increment start_offset to skip epilogue instructions, then compute
     * copy_size the indicate the size of the remaining instructions (in
     * bytes).
     */
    p_start = text + offset;
    p_end = p_start + size;
    start_offset = offset;
#if defined(HOST_I386) || defined(HOST_X86_64)
#ifdef CONFIG_FORMAT_COFF
    {
        uint8_t *p;
        p = p_end - 1;
        if (p == p_start)
            error("empty code for %s", name);
        while (*p != 0xc3) {
            p--;
            if (p <= p_start)
                error("ret or jmp expected at the end of %s", name);
        }
        copy_size = p - p_start;
    }
#else
    {
        int len;
        len = p_end - p_start;
        if (len == 0)
            error("empty code for %s", name);
        if (p_end[-1] == 0xc3) {
            len--;
        } else {
            error("ret or jmp expected at the end of %s", name);
        }
        copy_size = len;
    }
#endif    
#elif defined(HOST_PPC)
    {
        uint8_t *p;
        p = (void *)(p_end - 4);
        if (p == p_start)
            error("empty code for %s", name);
        if (get32((uint32_t *)p) != 0x4e800020)
            error("blr expected at the end of %s", name);
        copy_size = p - p_start;
    }
#elif defined(HOST_S390)
    {
        uint8_t *p;
        p = (void *)(p_end - 2);
        if (p == p_start)
            error("empty code for %s", name);
        if (get16((uint16_t *)p) != 0x07fe && get16((uint16_t *)p) != 0x07f4)
            error("br %%r14 expected at the end of %s", name);
        copy_size = p - p_start;
    }
#elif defined(HOST_ALPHA)
    {
        uint8_t *p;
        p = p_end - 4;
#if 0
        /* XXX: check why it occurs */
        if (p == p_start)
            error("empty code for %s", name);
#endif
        if (get32((uint32_t *)p) != 0x6bfa8001)
            error("ret expected at the end of %s", name);
        copy_size = p - p_start;	    
    }
#elif defined(HOST_IA64)
    {
        uint8_t *p;
        p = (void *)(p_end - 4);
        if (p == p_start)
            error("empty code for %s", name);
        /* br.ret.sptk.many b0;; */
        /* 08 00 84 00 */
        if (get32((uint32_t *)p) != 0x00840008)
            error("br.ret.sptk.many b0;; expected at the end of %s", name);
	copy_size = p_end - p_start;
    }
#elif defined(HOST_SPARC)
    {
#define INSN_SAVE       0x9de3a000
#define INSN_RET        0x81c7e008
#define INSN_RETL       0x81c3e008
#define INSN_RESTORE    0x81e80000
#define INSN_RETURN     0x81cfe008
#define INSN_NOP        0x01000000
#define INSN_ADD_SP     0x9c03a000 // add %sp, nn, %sp
#define INSN_SUB_SP     0x9c23a000 // sub %sp, nn, %sp

        uint32_t start_insn, end_insn1, end_insn2;
        uint8_t *p;
        p = (void *)(p_end - 8);
        if (p <= p_start)
            error("empty code for %s", name);
        start_insn = get32((uint32_t *)(p_start + 0x0));
        end_insn1 = get32((uint32_t *)(p + 0x0));
        end_insn2 = get32((uint32_t *)(p + 0x4));
        if (((start_insn & ~0x1fff) == INSN_SAVE) ||
            (start_insn & ~0x1fff) == INSN_ADD_SP) {
            p_start += 0x4;
            start_offset += 0x4;
            if (end_insn1 == INSN_RET && end_insn2 == INSN_RESTORE)
                /* SPARC v7: ret; restore; */ ;
            else if (end_insn1 == INSN_RETURN && end_insn2 == INSN_NOP)
                /* SPARC v9: return; nop; */ ;
            else if (end_insn1 == INSN_RETL && (end_insn2 & ~0x1fff) == INSN_SUB_SP)
                /* SPARC v7: retl; sub %sp, nn, %sp; */ ;
            else

                error("ret; restore; not found at end of %s", name);
        } else if (end_insn1 == INSN_RETL && end_insn2 == INSN_NOP) {
            ;
        } else {
            error("No save at the beginning of %s", name);
        }
#if 0
        /* Skip a preceeding nop, if present.  */
        if (p > p_start) {
            skip_insn = get32((uint32_t *)(p - 0x4));
            if (skip_insn == INSN_NOP)
                p -= 4;
        }
#endif
        copy_size = p - p_start;
    }
#elif defined(HOST_SPARC64)
    {
#define INSN_SAVE       0x9de3a000
#define INSN_RET        0x81c7e008
#define INSN_RETL       0x81c3e008
#define INSN_RESTORE    0x81e80000
#define INSN_RETURN     0x81cfe008
#define INSN_NOP        0x01000000
#define INSN_ADD_SP     0x9c03a000 // add %sp, nn, %sp
#define INSN_SUB_SP     0x9c23a000 // sub %sp, nn, %sp

        uint32_t start_insn, end_insn1, end_insn2, skip_insn;
        uint8_t *p;
        p = (void *)(p_end - 8);
#if 0
        /* XXX: check why it occurs */
        if (p <= p_start)
            error("empty code for %s", name);
#endif
        start_insn = get32((uint32_t *)(p_start + 0x0));
        end_insn1 = get32((uint32_t *)(p + 0x0));
        end_insn2 = get32((uint32_t *)(p + 0x4));
        if (((start_insn & ~0x1fff) == INSN_SAVE) ||
            (start_insn & ~0x1fff) == INSN_ADD_SP) {
            p_start += 0x4;
            start_offset += 0x4;
            if (end_insn1 == INSN_RET && end_insn2 == INSN_RESTORE)
                /* SPARC v7: ret; restore; */ ;
            else if (end_insn1 == INSN_RETURN && end_insn2 == INSN_NOP)
                /* SPARC v9: return; nop; */ ;
            else if (end_insn1 == INSN_RETL && (end_insn2 & ~0x1fff) == INSN_SUB_SP)
                /* SPARC v7: retl; sub %sp, nn, %sp; */ ;
            else

                error("ret; restore; not found at end of %s", name);
        } else if (end_insn1 == INSN_RETL && end_insn2 == INSN_NOP) {
            ;
        } else {
            error("No save at the beginning of %s", name);
        }
        
        /* Skip a preceeding nop, if present.  */
        if (p > p_start) {
            skip_insn = get32((uint32_t *)(p - 0x4));
            if (skip_insn == 0x01000000)
                p -= 4;
        }
        
        copy_size = p - p_start;
    }
#elif defined(HOST_ARM)
    {
        uint32_t insn;

        if ((p_end - p_start) <= 16)
            error("%s: function too small", name);
        if (get32((uint32_t *)p_start) != 0xe1a0c00d ||
            (get32((uint32_t *)(p_start + 4)) & 0xffff0000) != 0xe92d0000 ||
            get32((uint32_t *)(p_start + 8)) != 0xe24cb004)
            error("%s: invalid prolog", name);
        p_start += 12;
        start_offset += 12;
        insn = get32((uint32_t *)p_start);
        if ((insn & 0xffffff00) == 0xe24dd000) {
            /* Stack adjustment.  Assume op uses the frame pointer.  */
            p_start -= 4;