aboutsummaryrefslogtreecommitdiffstats
path: root/os/hal/boards/simulator/board.h
blob: e95e420368a4a66788b7d3fe4caacbb9172a3f21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/*
    ChibiOS - Copyright (C) 2006..2015 Giovanni Di Sirio

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#ifndef _BOARD_H_
#define _BOARD_H_

#if !defined(_FROM_ASM_)
#ifdef __cplusplus
extern "C" {
#endif
  void boardInit(void);
#ifdef __cplusplus
}
#endif
#endif /* _FROM_ASM_ */

#endif /* _BOARD_H_ */
'#n260'>260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
--  Values in synthesis.
--  Copyright (C) 2017 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software; you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation; either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program; if not, write to the Free Software
--  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
--  MA 02110-1301, USA.

with Ada.Unchecked_Conversion;
with System;
with Mutils; use Mutils;

with Netlists.Utils;

package body Synth.Values is
   function To_Bound_Array_Acc is new Ada.Unchecked_Conversion
     (System.Address, Bound_Array_Acc);

   function To_Rec_El_Array_Acc is new Ada.Unchecked_Conversion
     (System.Address, Rec_El_Array_Acc);

   function To_Type_Acc is new Ada.Unchecked_Conversion
     (System.Address, Type_Acc);

   function To_Value_Acc is new Ada.Unchecked_Conversion
     (System.Address, Value_Acc);
   function To_Value_Array_Acc is new Ada.Unchecked_Conversion
     (System.Address, Values.Value_Array_Acc);

   function Is_Static (Val : Value_Acc) return Boolean is
   begin
      case Val.Kind is
         when Value_Discrete
           | Value_Float =>
            return True;
         when Value_Net
           | Value_Wire =>
            return False;
         when Value_Const_Array
           | Value_Const_Record =>
            return True;
         when Value_Array
           | Value_Record =>
            return False;
         when Value_Access
           | Value_File =>
            return True;
         when Value_Alias =>
            return Is_Static (Val.A_Obj);
         when Value_Const =>
            return True;
         when Value_Instance
           | Value_Subtype =>
            --  Not really a value.
            raise Internal_Error;
      end case;
   end Is_Static;

   function Is_Static_Val (Val : Value_Acc) return Boolean is
   begin
      case Val.Kind is
         when Value_Discrete
           | Value_Float =>
            return True;
         when Value_Net =>
            return Netlists.Utils.Is_Const_Net (Val.N);
         when Value_Wire =>
            return Is_Const_Wire (Val.W);
         when Value_Const_Array
           | Value_Const_Record =>
            return True;
         when Value_Array
           | Value_Record =>
            return False;
         when Value_Access
           | Value_File =>
            return True;
         when Value_Const =>
            return True;
         when Value_Alias =>
            return Is_Static_Val (Val.A_Obj);
         when Value_Instance
           | Value_Subtype =>
            --  Not really a value.
            raise Internal_Error;
      end case;
   end Is_Static_Val;

   function Is_Bounded_Type (Typ : Type_Acc) return Boolean is
   begin
      case Typ.Kind is
         when Type_Bit
           | Type_Logic
           | Type_Discrete
           | Type_Float
           | Type_Vector
           | Type_Slice
           | Type_Array
           | Type_Record
           | Type_Access
           | Type_File =>
            return True;
         when Type_Unbounded_Array
           | Type_Unbounded_Vector =>
            return False;
      end case;
   end Is_Bounded_Type;

   function Strip_Alias_Const (V : Value_Acc) return Value_Acc
   is
      Res : Value_Acc;
   begin
      Res := V;
      loop
         case Res.Kind is
            when Value_Const =>
               Res := Res.C_Val;
            when Value_Alias =>
               if Res.A_Off /= 0 then
                  raise Internal_Error;
               end if;
               Res := Res.A_Obj;
            when others =>
               return Res;
         end case;
      end loop;
   end Strip_Alias_Const;

   function Is_Equal (L, R : Value_Acc) return Boolean
   is
      L1 : constant Value_Acc := Strip_Alias_Const (L);
      R1 : constant Value_Acc := Strip_Alias_Const (R);
   begin
      pragma Unreferenced (L, R);
      if L1.Kind /= R1.Kind then
         return False;
      end if;
      if L1 = R1 then
         return True;
      end if;

      case L1.Kind is
         when Value_Discrete =>
            return L1.Scal = R1.Scal;
         when Value_Float =>
            return L1.Fp = R1.Fp;
         when Value_Const_Array =>
            if L1.Arr.Len /= R1.Arr.Len then
               return False;
            end if;
            for I in L1.Arr.V'Range loop
               if not Is_Equal (L1.Arr.V (I), R1.Arr.V (I)) then
                  return False;
               end if;
            end loop;
            return True;
         when Value_Const =>
            raise Internal_Error;
         when others =>
            --  TODO.
            raise Internal_Error;
      end case;
   end Is_Equal;

   function Are_Types_Equal (L, R : Type_Acc) return Boolean is
   begin
      if L.Kind /= R.Kind
        or else L.W /= R.W
      then
         return False;
      end if;
      if L = R then
         return True;
      end if;

      case L.Kind is
         when Type_Bit
           | Type_Logic =>
            return True;
         when Type_Discrete =>
            return L.Drange = R.Drange;
         when Type_Float =>
            return L.Frange = R.Frange;
         when Type_Vector =>
            return L.Vbound = R.Vbound
              and then Are_Types_Equal (L.Vec_El, R.Vec_El);
         when Type_Unbounded_Vector =>
            return Are_Types_Equal (L.Uvec_El, R.Uvec_El);
         when Type_Slice =>
            return Are_Types_Equal (L.Slice_El, R.Slice_El);
         when Type_Array =>
            if L.Abounds.Len /= R.Abounds.Len then
               return False;
            end if;
            for I in L.Abounds.D'Range loop
               if L.Abounds.D (I) /= R.Abounds.D (I) then
                  return False;
               end if;
            end loop;
            return Are_Types_Equal (L.Arr_El, R.Arr_El);
         when Type_Unbounded_Array =>
            return L.Uarr_Ndim = R.Uarr_Ndim
              and then Are_Types_Equal (L.Uarr_El, R.Uarr_El);
         when Type_Record =>
            if L.Rec.Len /= R.Rec.Len then
               return False;
            end if;
            for I in L.Rec.E'Range loop
               if not Are_Types_Equal (L.Rec.E (I).Typ, R.Rec.E (I).Typ) then
                  return False;
               end if;
            end loop;
            return True;
         when Type_Access =>
            return Are_Types_Equal (L.Acc_Acc, R.Acc_Acc);
         when Type_File =>
            return Are_Types_Equal (L.File_Typ, R.File_Typ);
      end case;
   end Are_Types_Equal;

   function Discrete_Range_Width (Rng : Discrete_Range_Type) return Width
   is
      Lo, Hi : Int64;
      W : Width;
   begin
      case Rng.Dir is
         when Iir_To =>
            Lo := Rng.Left;
            Hi := Rng.Right;
         when Iir_Downto =>
            Lo := Rng.Right;
            Hi := Rng.Left;
      end case;
      if Lo > Hi then
         --  Null range.
         W := 0;
      elsif Lo >= 0 then
         --  Positive.
         W := Width (Clog2 (Uns64 (Hi) + 1));
      elsif Lo = Int64'First then
         --  Handle possible overflow.
         W := 64;
      elsif Hi < 0 then
         --  Negative only.
         W := Width (Clog2 (Uns64 (-Lo))) + 1;
      else
         declare
            Wl : constant Width := Width (Clog2 (Uns64 (-Lo)));
            Wh : constant Width := Width (Clog2 (Uns64 (Hi)));
         begin
            W := Width'Max (Wl, Wh) + 1;
         end;
      end if;
      return W;
   end Discrete_Range_Width;

   function Create_Bit_Type return Type_Acc
   is
      subtype Bit_Type_Type is Type_Type (Type_Bit);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Bit_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Bit,
                                                Is_Synth => True,
                                                W => 1)));
   end Create_Bit_Type;

   function Create_Logic_Type return Type_Acc
   is
      subtype Logic_Type_Type is Type_Type (Type_Logic);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Logic_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Logic,
                                                Is_Synth => True,
                                                W => 1)));
   end Create_Logic_Type;

   function Create_Discrete_Type (Rng : Discrete_Range_Type; W : Width)
                                 return Type_Acc
   is
      subtype Discrete_Type_Type is Type_Type (Type_Discrete);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Discrete_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Discrete,
                                                Is_Synth => True,
                                                W => W,
                                                Drange => Rng)));
   end Create_Discrete_Type;

   function Create_Float_Type (Rng : Float_Range_Type) return Type_Acc
   is
      subtype Float_Type_Type is Type_Type (Type_Float);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Float_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Float,
                                                Is_Synth => True,
                                                W => 64,
                                                Frange => Rng)));
   end Create_Float_Type;

   function Create_Vector_Type (Bnd : Bound_Type; El_Type : Type_Acc)
                               return Type_Acc
   is
      subtype Vector_Type_Type is Type_Type (Type_Vector);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Vector_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Vector,
                                                Is_Synth => True,
                                                W => Bnd.Len,
                                                Vbound => Bnd,
                                                Vec_El => El_Type)));
   end Create_Vector_Type;

   function Create_Slice_Type (W : Width; El_Type : Type_Acc) return Type_Acc
   is
      subtype Slice_Type_Type is Type_Type (Type_Slice);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Slice_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Slice,
                                                Is_Synth => El_Type.Is_Synth,
                                                W => W,
                                                Slice_El => El_Type)));
   end Create_Slice_Type;

   function Create_Vec_Type_By_Length (Len : Width; El : Type_Acc)
                                      return Type_Acc is
   begin
      return Create_Vector_Type ((Dir => Iir_Downto,
                                  Left => Int32 (Len) - 1,
                                  Right => 0,
                                  Len => Len),
                                 El);
   end Create_Vec_Type_By_Length;

   function Create_Bound_Array (Ndims : Iir_Index32) return Bound_Array_Acc
   is
      use System;
      subtype Data_Type is Bound_Array (Ndims);
      Res : Address;
   begin
      --  Manually allocate the array to handle large arrays without
      --  creating a large temporary value.
      Areapools.Allocate
        (Current_Pool.all, Res,
         Data_Type'Size / Storage_Unit, Data_Type'Alignment);

      declare
         --  Discard the warnings for no pragma Import as we really want
         --  to use the default initialization.
         pragma Warnings (Off);
         Addr1 : constant Address := Res;
         Init : Data_Type;
         for Init'Address use Addr1;
         pragma Warnings (On);
      begin
         null;
      end;

      return To_Bound_Array_Acc (Res);
   end Create_Bound_Array;

   function Create_Array_Type (Bnd : Bound_Array_Acc; El_Type : Type_Acc)
                              return Type_Acc
   is
      subtype Array_Type_Type is Type_Type (Type_Array);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Array_Type_Type);
      W : Width;
   begin
      W := El_Type.W;
      for I in Bnd.D'Range loop
         W := W * Bnd.D (I).Len;
      end loop;
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Array,
                                                Is_Synth => El_Type.Is_Synth,
                                                W => W,
                                                Abounds => Bnd,
                                                Arr_El => El_Type)));
   end Create_Array_Type;

   function Create_Unbounded_Array (Ndim : Iir_Index32; El_Type : Type_Acc)
                                   return Type_Acc
   is
      subtype Unbounded_Type_Type is Type_Type (Type_Unbounded_Array);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Unbounded_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Unbounded_Array,
                                                Is_Synth => El_Type.Is_Synth,
                                                W => 0,
                                                Uarr_Ndim => Ndim,
                                                Uarr_El => El_Type)));
   end Create_Unbounded_Array;

   function Create_Unbounded_Vector (El_Type : Type_Acc) return Type_Acc
   is
      subtype Unbounded_Type_Type is Type_Type (Type_Unbounded_Vector);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Unbounded_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Unbounded_Vector,
                                                Is_Synth => El_Type.Is_Synth,
                                                W => 0,
                                                Uvec_El => El_Type)));
   end Create_Unbounded_Vector;

   function Get_Array_Element (Arr_Type : Type_Acc) return Type_Acc is
   begin
      case Arr_Type.Kind is
         when Type_Vector =>
            return Arr_Type.Vec_El;
         when Type_Array =>
            return Arr_Type.Arr_El;
         when Type_Unbounded_Array =>
            return Arr_Type.Uarr_El;
         when Type_Unbounded_Vector =>
            return Arr_Type.Uvec_El;
         when others =>
            raise Internal_Error;
      end case;
   end Get_Array_Element;

   function Get_Array_Bound (Typ : Type_Acc; Dim : Dim_Type)
                            return Bound_Type is
   begin
      case Typ.Kind is
         when Type_Vector =>
            if Dim /= 1 then
               raise Internal_Error;
            end if;
            return Typ.Vbound;
         when Type_Array =>
            return Typ.Abounds.D (Iir_Index32 (Dim));
         when others =>
            raise Internal_Error;
      end case;
   end Get_Array_Bound;

   function Create_Rec_El_Array (Nels : Iir_Index32) return Rec_El_Array_Acc
   is
      use System;
      subtype Data_Type is Rec_El_Array (Nels);
      Res : Address;
   begin
      --  Manually allocate the array to handle large arrays without
      --  creating a large temporary value.
      Areapools.Allocate
        (Current_Pool.all, Res,
         Data_Type'Size / Storage_Unit, Data_Type'Alignment);

      declare
         --  Discard the warnings for no pragma Import as we really want
         --  to use the default initialization.
         pragma Warnings (Off);
         Addr1 : constant Address := Res;
         Init : Data_Type;
         for Init'Address use Addr1;
         pragma Warnings (On);
      begin
         null;
      end;

      return To_Rec_El_Array_Acc (Res);
   end Create_Rec_El_Array;

   function Create_Record_Type (Els : Rec_El_Array_Acc; W : Width)
                               return Type_Acc
   is
      subtype Record_Type_Type is Type_Type (Type_Record);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Record_Type_Type);
      Is_Synth : Boolean;
   begin
      Is_Synth := True;
      for I in Els.E'Range loop
         if not Els.E (I).Typ.Is_Synth then
            Is_Synth := False;
            exit;
         end if;
      end loop;
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Record,
                                                Is_Synth => Is_Synth,
                                                W => W,
                                                Rec => Els)));
   end Create_Record_Type;

   function Create_Access_Type (Acc_Type : Type_Acc) return Type_Acc
   is
      subtype Access_Type_Type is Type_Type (Type_Access);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Access_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Access,
                                                Is_Synth => False,
                                                W => 32,
                                                Acc_Acc => Acc_Type)));
   end Create_Access_Type;

   function Create_File_Type (File_Type : Type_Acc) return Type_Acc
   is
      subtype File_Type_Type is Type_Type (Type_File);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (File_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_File,
                                                Is_Synth => False,
                                                W => 32,
                                                File_Typ => File_Type)));
   end Create_File_Type;

   function Create_Value_Wire (W : Wire_Id; Wtype : Type_Acc) return Value_Acc
   is
      subtype Value_Type_Wire is Value_Type (Values.Value_Wire);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Wire);
   begin
      pragma Assert (Wtype /= null);
      return To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Wire,
                                   W => W,
                                   Typ => Wtype)));
   end Create_Value_Wire;

   function Create_Value_Net (N : Net; Ntype : Type_Acc) return Value_Acc
   is
      subtype Value_Type_Net is Value_Type (Value_Net);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Net);
   begin
      pragma Assert (Ntype /= null);
      return To_Value_Acc
        (Alloc (Current_Pool,
                Value_Type_Net'(Kind => Value_Net, N => N, Typ => Ntype)));
   end Create_Value_Net;

   function Create_Value_Discrete (Val : Int64; Vtype : Type_Acc)
                                  return Value_Acc
   is
      subtype Value_Type_Discrete is Value_Type (Value_Discrete);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Discrete);
   begin
      pragma Assert (Vtype /= null);
      return To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Discrete, Scal => Val,
                                   Typ => Vtype)));
   end Create_Value_Discrete;

   function Create_Value_Float (Val : Fp64; Vtype : Type_Acc) return Value_Acc
   is
      subtype Value_Type_Float is Value_Type (Value_Float);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Float);
   begin
      pragma Assert (Vtype /= null);
      return To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Float,
                                   Typ => Vtype,
                                   Fp => Val)));
   end Create_Value_Float;

   function Create_Value_Access (Vtype : Type_Acc; Acc : Heap_Index)
                                return Value_Acc
   is
      subtype Value_Type_Access is Value_Type (Value_Access);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Access);
   begin
      pragma Assert (Vtype /= null);
      return To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Access,
                                   Typ => Vtype,
                                   Acc => Acc)));
   end Create_Value_Access;

   function Create_Value_File (Vtype : Type_Acc; File : File_Index)
                              return Value_Acc
   is
      subtype Value_Type_File is Value_Type (Value_File);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_File);
   begin
      pragma Assert (Vtype /= null);
      return To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_File,
                                   Typ => Vtype,
                                   File => File)));
   end Create_Value_File;

   function Create_Value_Array (Len : Iir_Index32) return Value_Array_Acc
   is
      use System;
      subtype Data_Type is Values.Value_Array_Type (Len);
      Res : Address;
   begin
      --  Manually allocate the array to handle large arrays without
      --  creating a large temporary value.
      Areapools.Allocate
        (Current_Pool.all, Res,
         Data_Type'Size / Storage_Unit, Data_Type'Alignment);

      declare
         --  Discard the warnings for no pragma Import as we really want
         --  to use the default initialization.
         pragma Warnings (Off);
         Addr1 : constant Address := Res;
         Init : Data_Type;
         for Init'Address use Addr1;
         pragma Warnings (On);
      begin
         null;
      end;

      return To_Value_Array_Acc (Res);
   end Create_Value_Array;

   function Create_Value_Array (Bounds : Type_Acc; Arr : Value_Array_Acc)
                               return Value_Acc
   is
      subtype Value_Type_Array is Value_Type (Value_Array);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Array);

      Res : Value_Acc;
   begin
      pragma Assert (Bounds /= null);
      Res := To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Array,
                                   Arr => Arr, Typ => Bounds)));
      return Res;
   end Create_Value_Array;

   function Create_Value_Const_Array (Bounds : Type_Acc; Arr : Value_Array_Acc)
                               return Value_Acc
   is
      subtype Value_Type_Const_Array is Value_Type (Value_Const_Array);
      function Alloc is
         new Areapools.Alloc_On_Pool_Addr (Value_Type_Const_Array);

      Res : Value_Acc;
   begin
      pragma Assert (Bounds /= null);
      Res := To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Const_Array,
                                   Arr => Arr, Typ => Bounds)));
      return Res;
   end Create_Value_Const_Array;

   function Get_Array_Flat_Length (Typ : Type_Acc) return Width is
   begin
      case Typ.Kind is
         when Type_Vector =>
            return Typ.Vbound.Len;
         when Type_Array =>
            declare
               Len : Width;
            begin
               Len := 1;
               for I in Typ.Abounds.D'Range loop
                  Len := Len * Typ.Abounds.D (I).Len;
               end loop;
               return Len;
            end;
         when others =>
            raise Internal_Error;
      end case;
   end Get_Array_Flat_Length;

   procedure Create_Array_Data (Arr : Value_Acc)
   is
      Len : Width;
   begin
      case Arr.Typ.Kind is
         when Type_Array =>
            Len := Get_Array_Flat_Length (Arr.Typ);
         when Type_Vector =>
            Len := Arr.Typ.Vbound.Len;
         when others =>
            raise Internal_Error;
      end case;

      Arr.Arr := Create_Value_Array (Iir_Index32 (Len));
   end Create_Array_Data;

   function Create_Value_Array (Bounds : Type_Acc) return Value_Acc
   is
      Res : Value_Acc;
   begin
      Res := Create_Value_Array (Bounds, null);
      Create_Array_Data (Res);
      return Res;
   end Create_Value_Array;

   function Create_Value_Record (Typ : Type_Acc; Els : Value_Array_Acc)
                                return Value_Acc
   is
      subtype Value_Type_Record is Value_Type (Value_Record);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Record);
   begin
      return To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Record,
                                   Typ => Typ,
                                   Rec => Els)));
   end Create_Value_Record;

   function Create_Value_Const_Record (Typ : Type_Acc; Els : Value_Array_Acc)
                                      return Value_Acc
   is
      subtype Value_Type_Const_Record is Value_Type (Value_Const_Record);
      function Alloc is
         new Areapools.Alloc_On_Pool_Addr (Value_Type_Const_Record);
   begin
      return To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Const_Record,
                                   Typ => Typ,
                                   Rec => Els)));
   end Create_Value_Const_Record;

   function Create_Value_Instance (Inst : Instance_Id) return Value_Acc
   is
      subtype Value_Type_Instance is Value_Type (Value_Instance);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Instance);
   begin
      return To_Value_Acc
        (Alloc (Current_Pool,
                (Kind => Value_Instance, Instance => Inst, Typ => null)));
   end Create_Value_Instance;

   function Create_Value_Subtype (Typ : Type_Acc) return Value_Acc
   is
      subtype Value_Type_Subtype is Value_Type (Value_Subtype);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Subtype);
   begin
      return To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Subtype, Typ => Typ)));
   end Create_Value_Subtype;

   function Create_Value_Alias (Obj : Value_Acc; Off : Uns32; Typ : Type_Acc)
                               return Value_Acc
   is
      subtype Value_Type_Alias is Value_Type (Value_Alias);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Alias);
   begin
      return To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Alias,
                                   A_Obj => Obj,
                                   A_Off => Off,
                                   Typ => Typ)));
   end Create_Value_Alias;

   function Create_Value_Const (Val : Value_Acc; Loc : Syn_Src)
                               return Value_Acc
   is
      subtype Value_Type_Const is Value_Type (Value_Const);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Const);
   begin
      pragma Assert (Val = null or else Val.Kind /= Value_Const);
      return To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Const,
                                   C_Val => Val,
                                   C_Loc => Loc,
                                   C_Net => No_Net,
                                   Typ => Val.Typ)));
   end Create_Value_Const;

   procedure Strip_Const (Val : in out Value_Acc) is
   begin
      if Val.Kind = Value_Const then
         Val := Val.C_Val;
      end if;
   end Strip_Const;

   function Strip_Const (Val : Value_Acc) return Value_Acc is
   begin
      if Val.Kind = Value_Const then
         return Val.C_Val;
      else
         return Val;
      end if;
   end Strip_Const;

   function Copy (Src : Value_Acc) return Value_Acc;

   function Copy_Array (Arr : Value_Array_Acc) return Value_Array_Acc
   is
      Res : Value_Array_Acc;
   begin
      Res := Create_Value_Array (Arr.Len);
      for I in Res.V'Range loop
         Res.V (I) := Copy (Arr.V (I));
      end loop;
      return Res;
   end Copy_Array;

   function Copy (Src : Value_Acc) return Value_Acc
   is
      Res : Value_Acc;
      Arr : Value_Array_Acc;
   begin
      case Src.Kind is
         when Value_Net =>
            Res := Create_Value_Net (Src.N, Src.Typ);
         when Value_Wire =>
            Res := Create_Value_Wire (Src.W, Src.Typ);
         when Value_Discrete =>
            Res := Create_Value_Discrete (Src.Scal, Src.Typ);
         when Value_Float =>
            Res := Create_Value_Float (Src.Fp, Src.Typ);
         when Value_Subtype =>
            Res := Create_Value_Subtype (Src.Typ);
         when Value_Array =>
            Arr := Copy_Array (Src.Arr);
            Res := Create_Value_Array (Src.Typ, Arr);
         when Value_Const_Array =>
            Arr := Copy_Array (Src.Arr);
            Res := Create_Value_Const_Array (Src.Typ, Arr);
         when Value_Record =>
            Arr := Copy_Array (Src.Rec);
            Res := Create_Value_Record (Src.Typ, Arr);
         when Value_Const_Record =>
            Arr := Copy_Array (Src.Rec);
            Res := Create_Value_Const_Record (Src.Typ, Arr);
         when Value_Access =>
            Res := Create_Value_Access (Src.Typ, Src.Acc);
         when Value_File =>
            Res := Create_Value_File (Src.Typ, Src.File);
         when Value_Instance =>
            raise Internal_Error;
         when Value_Const =>
            raise Internal_Error;
         when Value_Alias =>
            raise Internal_Error;
      end case;
      return Res;
   end Copy;

   function Unshare (Src : Value_Acc; Pool : Areapool_Acc)
                    return Value_Acc
   is
      Prev_Pool : constant Areapool_Acc := Current_Pool;
      Res : Value_Acc;
   begin
      Current_Pool := Pool;
      Res := Copy (Src);
      Current_Pool := Prev_Pool;
      return Res;
   end Unshare;

   function Get_Type_Width (Atype : Type_Acc) return Width is
   begin
      pragma Assert (Atype.Kind /= Type_Unbounded_Array);
      return Atype.W;
   end Get_Type_Width;

   function Get_Bound_Length (T : Type_Acc; Dim : Iir_Index32) return Width is
   begin
      case T.Kind is
         when Type_Vector =>
            if Dim /= 1 then
               raise Internal_Error;
            end if;
            return T.Vbound.Len;
         when Type_Slice =>
            if Dim /= 1 then
               raise Internal_Error;
            end if;
            return T.W;
         when Type_Array =>
            return T.Abounds.D (Dim).Len;
         when others =>
            raise Internal_Error;
      end case;
   end Get_Bound_Length;

   function Is_Matching_Bounds (L, R : Type_Acc) return Boolean is
   begin
      case L.Kind is
         when Type_Bit
           | Type_Logic
           | Type_Discrete
           | Type_Float =>
            pragma Assert (L.Kind = R.Kind);
            return True;
         when Type_Vector
           | Type_Slice =>
            return Get_Bound_Length (L, 1) = Get_Bound_Length (R, 1);
         when Type_Array =>
            for I in L.Abounds.D'Range loop
               if Get_Bound_Length (L, I) /= Get_Bound_Length (R, I) then
                  return False;
               end if;
            end loop;
            return True;
         when Type_Unbounded_Array
           | Type_Unbounded_Vector =>
            raise Internal_Error;
         when Type_Record =>
            --  FIXME: handle vhdl-08
            return True;
         when Type_Access =>
            return True;
         when Type_File =>
            raise Internal_Error;
      end case;
   end Is_Matching_Bounds;

   function Create_Value_Default (Typ : Type_Acc) return Value_Acc is
   begin
      case Typ.Kind is
         when Type_Bit
           | Type_Logic =>
            --  FIXME: what about subtype ?
            return Create_Value_Discrete (0, Typ);
         when Type_Discrete =>
            return Create_Value_Discrete (Typ.Drange.Left, Typ);
         when Type_Float =>
            return Create_Value_Float (Typ.Frange.Left, Typ);
         when Type_Vector =>
            declare
               El_Typ : constant Type_Acc := Typ.Vec_El;
               Arr : Value_Array_Acc;
            begin
               Arr := Create_Value_Array (Iir_Index32 (Typ.Vbound.Len));
               for I in Arr.V'Range loop
                  Arr.V (I) := Create_Value_Default (El_Typ);
               end loop;
               return Create_Value_Const_Array (Typ, Arr);
            end;
         when Type_Unbounded_Vector =>
            raise Internal_Error;
         when Type_Slice =>
            raise Internal_Error;
         when Type_Array =>
            declare
               El_Typ : constant Type_Acc := Get_Array_Element (Typ);
               Arr : Value_Array_Acc;
            begin
               Arr := Create_Value_Array
                 (Iir_Index32 (Get_Array_Flat_Length (Typ)));
               for I in Arr.V'Range loop
                  Arr.V (I) := Create_Value_Default (El_Typ);
               end loop;
               return Create_Value_Const_Array (Typ, Arr);
            end;
         when Type_Unbounded_Array =>
            raise Internal_Error;
         when Type_Record =>
            declare
               Els : Value_Array_Acc;
            begin
               Els := Create_Value_Array (Typ.Rec.Len);
               for I in Els.V'Range loop
                  Els.V (I) := Create_Value_Default (Typ.Rec.E (I).Typ);
               end loop;
               return Create_Value_Const_Record (Typ, Els);
            end;
         when Type_Access =>
            return Create_Value_Access (Typ, Null_Heap_Index);
         when Type_File =>
            raise Internal_Error;
      end case;
   end Create_Value_Default;

   function Value_To_String (Val : Value_Acc) return String
   is
      Str : String (1 .. Natural (Val.Arr.Len));
   begin
      for I in Val.Arr.V'Range loop
         Str (Natural (I)) := Character'Val (Val.Arr.V (I).Scal);
      end loop;
      return Str;
   end Value_To_String;

   procedure Init is
   begin
      Instance_Pool := Global_Pool'Access;
      Boolean_Type := Create_Bit_Type;
      Logic_Type := Create_Logic_Type;
      Bit_Type := Create_Bit_Type;
   end Init;
end Synth.Values;