aboutsummaryrefslogtreecommitdiffstats
path: root/demos/STM32/RT-STM32F334R8-NUCLEO64/mcuconf.h
blob: 7433e7a4ee9ab18367a0d1bd932ca4abdb42c7b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*
    ChibiOS - Copyright (C) 2006..2016 Giovanni Di Sirio

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#ifndef MCUCONF_H
#define MCUCONF_H

/*
 * STM32F3xx drivers configuration.
 * The following settings override the default settings present in
 * the various device driver implementation headers.
 * Note that the settings for each driver only have effect if the whole
 * driver is enabled in halconf.h.
 *
 * IRQ priorities:
 * 15...0       Lowest...Highest.
 *
 * DMA priorities:
 * 0...3        Lowest...Highest.
 */

#define STM32F3xx_MCUCONF

/*
 * HAL driver system settings.
 */
#define STM32_NO_INIT                       FALSE
#define STM32_PVD_ENABLE                    FALSE
#define STM32_PLS                           STM32_PLS_LEV0
#define STM32_HSI_ENABLED                   TRUE
#define STM32_LSI_ENABLED                   TRUE
#define STM32_HSE_ENABLED                   FALSE
#define STM32_LSE_ENABLED                   FALSE
#define STM32_SW                            STM32_SW_PLL
#define STM32_PLLSRC                        STM32_PLLSRC_HSI
#define STM32_PREDIV_VALUE                  1
#define STM32_PLLMUL_VALUE                  9
#define STM32_HPRE                          STM32_HPRE_DIV1
#define STM32_PPRE1                         STM32_PPRE1_DIV2
#define STM32_PPRE2                         STM32_PPRE2_DIV2
#define STM32_MCOSEL                        STM32_MCOSEL_NOCLOCK
#define STM32_ADC12PRES                     STM32_ADC12PRES_DIV1
#define STM32_USART1SW                      STM32_USART1SW_PCLK
#define STM32_USART2SW                      STM32_USART2SW_PCLK
#define STM32_USART3SW                      STM32_USART3SW_PCLK
#define STM32_I2C1SW                        STM32_I2C1SW_SYSCLK
#define STM32_TIM1SW                        STM32_TIM1SW_PCLK2
#define STM32_RTCSEL                        STM32_RTCSEL_LSI

/*
 * ADC driver system settings.
 */
#define STM32_ADC_DUAL_MODE                 FALSE
#define STM32_ADC_COMPACT_SAMPLES           FALSE
#define STM32_ADC_USE_ADC1                  FALSE
#define STM32_ADC_USE_ADC2                  FALSE
#define STM32_ADC_ADC1_DMA_STREAM           STM32_DMA_STREAM_ID(1, 1)
#define STM32_ADC_ADC2_DMA_STREAM           STM32_DMA_STREAM_ID(1, 2)
#define STM32_ADC_ADC1_DMA_PRIORITY         2
#define STM32_ADC_ADC2_DMA_PRIORITY         2
#define STM32_ADC_ADC12_IRQ_PRIORITY        5
#define STM32_ADC_ADC1_DMA_IRQ_PRIORITY     5
#define STM32_ADC_ADC2_DMA_IRQ_PRIORITY     5
#define STM32_ADC_ADC12_CLOCK_MODE          ADC_CCR_CKMODE_AHB_DIV1

/*
 * CAN driver system settings.
 */
#define STM32_CAN_USE_CAN1                  FALSE
#define STM32_CAN_CAN1_IRQ_PRIORITY         11

/*
 * DAC driver system settings.
 */
#define STM32_DAC_DUAL_MODE                 FALSE
#define STM32_DAC_USE_DAC1_CH1              TRUE
#define STM32_DAC_USE_DAC1_CH2              TRUE
#define STM32_DAC_USE_DAC2_CH1              TRUE
#define STM32_DAC_DAC1_CH1_IRQ_PRIORITY     10
#define STM32_DAC_DAC1_CH2_IRQ_PRIORITY     10
#define STM32_DAC_DAC2_CH1_IRQ_PRIORITY     10
#define STM32_DAC_DAC1_CH1_DMA_PRIORITY     2
#define STM32_DAC_DAC1_CH2_DMA_PRIORITY     2
#define STM32_DAC_DAC2_CH1_DMA_PRIORITY     2

/*
 * EXT driver system settings.
 */
#define STM32_EXT_EXTI0_IRQ_PRIORITY        6
#define STM32_EXT_EXTI1_IRQ_PRIORITY        6
#define STM32_EXT_EXTI2_IRQ_PRIORITY        6
#define STM32_EXT_EXTI3_IRQ_PRIORITY        6
#define STM32_EXT_EXTI4_IRQ_PRIORITY        6
#define STM32_EXT_EXTI5_9_IRQ_PRIORITY      6
#define STM32_EXT_EXTI10_15_IRQ_PRIORITY    6
#define STM32_EXT_EXTI16_IRQ_PRIORITY       6
#define STM32_EXT_EXTI17_IRQ_PRIORITY       6
#define STM32_EXT_EXTI18_IRQ_PRIORITY       6
#define STM32_EXT_EXTI19_IRQ_PRIORITY       6
#define STM32_EXT_EXTI20_IRQ_PRIORITY       6
#define STM32_EXT_EXTI21_22_29_IRQ_PRIORITY 6
#define STM32_EXT_EXTI30_32_IRQ_PRIORITY    6
#define STM32_EXT_EXTI33_IRQ_PRIORITY       6

/*
 * GPT driver system settings.
 */
#define STM32_GPT_USE_TIM1                  FALSE
#define STM32_GPT_USE_TIM2                  FALSE
#define STM32_GPT_USE_TIM3                  FALSE
#define STM32_GPT_USE_TIM6                  FALSE
#define STM32_GPT_USE_TIM7                  FALSE
#define STM32_GPT_TIM1_IRQ_PRIORITY         7
#define STM32_GPT_TIM2_IRQ_PRIORITY         7
#define STM32_GPT_TIM3_IRQ_PRIORITY         7
#define STM32_GPT_TIM6_IRQ_PRIORITY         7
#define STM32_GPT_TIM7_IRQ_PRIORITY         7

/*
 * I2C driver system settings.
 */
#define STM32_I2C_USE_I2C1                  FALSE
#define STM32_I2C_BUSY_TIMEOUT              50
#define STM32_I2C_I2C1_IRQ_PRIORITY         10
#define STM32_I2C_USE_DMA                   TRUE
#define STM32_I2C_I2C1_DMA_PRIORITY         1
#define STM32_I2C_DMA_ERROR_HOOK(i2cp)      osalSysHalt("DMA failure")

/*
 * ICU driver system settings.
 */
#define STM32_ICU_USE_TIM1                  FALSE
#define STM32_ICU_USE_TIM2                  FALSE
#define STM32_ICU_USE_TIM3                  FALSE
#define STM32_ICU_TIM1_IRQ_PRIORITY         7
#define STM32_ICU_TIM2_IRQ_PRIORITY         7
#define STM32_ICU_TIM3_IRQ_PRIORITY         7

/*
 * PWM driver system settings.
 */
#define STM32_PWM_USE_ADVANCED              FALSE
#define STM32_PWM_USE_TIM1                  FALSE
#define STM32_PWM_USE_TIM2                  FALSE
#define STM32_PWM_USE_TIM3                  FALSE
#define STM32_PWM_TIM1_IRQ_PRIORITY         7
#define STM32_PWM_TIM2_IRQ_PRIORITY         7
#define STM32_PWM_TIM3_IRQ_PRIORITY         7

/*
 * SERIAL driver system settings.
 */
#define STM32_SERIAL_USE_USART1             FALSE
#define STM32_SERIAL_USE_USART2             TRUE
#define STM32_SERIAL_USE_USART3             FALSE
#define STM32_SERIAL_USART1_PRIORITY        12
#define STM32_SERIAL_USART2_PRIORITY        12
#define STM32_SERIAL_USART3_PRIORITY        12

/*
 * SPI driver system settings.
 */
#define STM32_SPI_USE_SPI1                  FALSE
#define STM32_SPI_SPI1_DMA_PRIORITY         1
#define STM32_SPI_SPI1_IRQ_PRIORITY         10
#define STM32_SPI_DMA_ERROR_HOOK(spip)      osalSysHalt("DMA failure")

/*
 * ST driver system settings.
 */
#define STM32_ST_IRQ_PRIORITY               8
#define STM32_ST_USE_TIMER                  2

/*
 * UART driver system settings.
 */
#define STM32_UART_USE_USART1               FALSE
#define STM32_UART_USE_USART2               FALSE
#define STM32_UART_USE_USART3               FALSE
#define STM32_UART_USART1_IRQ_PRIORITY      12
#define STM32_UART_USART2_IRQ_PRIORITY      12
#define STM32_UART_USART3_IRQ_PRIORITY      12
#define STM32_UART_USART1_DMA_PRIORITY      0
#define STM32_UART_USART2_DMA_PRIORITY      0
#define STM32_UART_USART3_DMA_PRIORITY      0
#define STM32_UART_DMA_ERROR_HOOK(uartp)    osalSysHalt("DMA failure")

/*
 * WDG driver system settings.
 */
#define STM32_WDG_USE_IWDG                  FALSE

#endif /* MCUCONF_H */
pan class="o">*pte, struct page *pte_page, unsigned long address, void *data) { mmu_update_t **v = (mmu_update_t **)data; (*v)->ptr = ((u64)pfn_to_mfn(page_to_pfn(pte_page)) << PAGE_SHIFT) | ((unsigned long)pte & ~PAGE_MASK); (*v)++; return 0; } static int __direct_remap_pfn_range(struct mm_struct *mm, unsigned long address, unsigned long mfn, unsigned long size, pgprot_t prot, domid_t domid) { int rc; unsigned long i, start_address; mmu_update_t *u, *v, *w; u = v = w = (mmu_update_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT); if (u == NULL) return -ENOMEM; start_address = address; flush_cache_all(); for (i = 0; i < size; i += PAGE_SIZE) { if ((v - u) == (PAGE_SIZE / sizeof(mmu_update_t))) { /* Fill in the PTE pointers. */ rc = generic_page_range(mm, start_address, address - start_address, direct_remap_area_pte_fn, &w); if (rc) goto out; w = u; rc = -EFAULT; if (HYPERVISOR_mmu_update(u, v - u, NULL, domid) < 0) goto out; v = u; start_address = address; } /* * Fill in the machine address: PTE ptr is done later by * __direct_remap_area_pages(). */ v->val = pte_val_ma(pfn_pte_ma(mfn, prot)); mfn++; address += PAGE_SIZE; v++; } if (v != u) { /* get the ptep's filled in */ rc = generic_page_range(mm, start_address, address - start_address, direct_remap_area_pte_fn, &w); if (rc) goto out; rc = -EFAULT; if (unlikely(HYPERVISOR_mmu_update(u, v - u, NULL, domid) < 0)) goto out; } rc = 0; out: flush_tlb_all(); free_page((unsigned long)u); return rc; } int direct_remap_pfn_range(struct vm_area_struct *vma, unsigned long address, unsigned long mfn, unsigned long size, pgprot_t prot, domid_t domid) { /* Same as remap_pfn_range(). */ vma->vm_flags |= VM_IO | VM_RESERVED; return __direct_remap_pfn_range( vma->vm_mm, address, mfn, size, prot, domid); } EXPORT_SYMBOL(direct_remap_pfn_range); int direct_kernel_remap_pfn_range(unsigned long address, unsigned long mfn, unsigned long size, pgprot_t prot, domid_t domid) { return __direct_remap_pfn_range( &init_mm, address, mfn, size, prot, domid); } EXPORT_SYMBOL(direct_kernel_remap_pfn_range); static int lookup_pte_fn( pte_t *pte, struct page *pte_page, unsigned long addr, void *data) { uint64_t *ptep = (uint64_t *)data; if (ptep) *ptep = ((uint64_t)pfn_to_mfn(page_to_pfn(pte_page)) << PAGE_SHIFT) | ((unsigned long)pte & ~PAGE_MASK); return 0; } int create_lookup_pte_addr(struct mm_struct *mm, unsigned long address, uint64_t *ptep) { return generic_page_range(mm, address, PAGE_SIZE, lookup_pte_fn, ptep); } EXPORT_SYMBOL(create_lookup_pte_addr); static int noop_fn( pte_t *pte, struct page *pte_page, unsigned long addr, void *data) { return 0; } int touch_pte_range(struct mm_struct *mm, unsigned long address, unsigned long size) { return generic_page_range(mm, address, size, noop_fn, NULL); } EXPORT_SYMBOL(touch_pte_range); #ifdef CONFIG_XEN_PHYSDEV_ACCESS /* * Does @address reside within a non-highmem page that is local to this virtual * machine (i.e., not an I/O page, nor a memory page belonging to another VM). * See the comment that accompanies pte_pfn() in pgtable-2level.h to understand * why this works. */ static inline int is_local_lowmem(unsigned long address) { extern unsigned long max_low_pfn; unsigned long mfn = address >> PAGE_SHIFT; unsigned long pfn = mfn_to_pfn(mfn); return ((pfn < max_low_pfn) && (phys_to_machine_mapping[pfn] == mfn)); } /* * Generic mapping function (not visible outside): */ /* * Remap an arbitrary physical address space into the kernel virtual * address space. Needed when the kernel wants to access high addresses * directly. * * NOTE! We need to allow non-page-aligned mappings too: we will obviously * have to convert them into an offset in a page-aligned mapping, but the * caller shouldn't need to know that small detail. */ void __iomem * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags) { void __iomem * addr; struct vm_struct * area; unsigned long offset, last_addr; domid_t domid = DOMID_IO; /* Don't allow wraparound or zero size */ last_addr = phys_addr + size - 1; if (!size || last_addr < phys_addr) return NULL; /* * Don't remap the low PCI/ISA area, it's always mapped.. */ if (xen_start_info->flags & SIF_PRIVILEGED && phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS) return (void __iomem *) isa_bus_to_virt(phys_addr); /* * Don't allow anybody to remap normal RAM that we're using.. */ if (is_local_lowmem(phys_addr)) { char *t_addr, *t_end; struct page *page; t_addr = bus_to_virt(phys_addr); t_end = t_addr + (size - 1); for(page = virt_to_page(t_addr); page <= virt_to_page(t_end); page++) if(!PageReserved(page)) return NULL; domid = DOMID_SELF; } /* * Mappings have to be page-aligned */ offset = phys_addr & ~PAGE_MASK; phys_addr &= PAGE_MASK; size = PAGE_ALIGN(last_addr+1) - phys_addr; /* * Ok, go for it.. */ area = get_vm_area(size, VM_IOREMAP | (flags << 20)); if (!area) return NULL; area->phys_addr = phys_addr; addr = (void __iomem *) area->addr; flags |= _PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED; #ifdef __x86_64__ flags |= _PAGE_USER; #endif if (__direct_remap_pfn_range(&init_mm, (unsigned long)addr, phys_addr>>PAGE_SHIFT, size, __pgprot(flags), domid)) { vunmap((void __force *) addr); return NULL; } return (void __iomem *) (offset + (char __iomem *)addr); } /** * ioremap_nocache - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap_nocache performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * This version of ioremap ensures that the memory is marked uncachable * on the CPU as well as honouring existing caching rules from things like * the PCI bus. Note that there are other caches and buffers on many * busses. In particular driver authors should read up on PCI writes * * It's useful if some control registers are in such an area and * write combining or read caching is not desirable: * * Must be freed with iounmap. */ void __iomem *ioremap_nocache (unsigned long phys_addr, unsigned long size) { unsigned long last_addr; void __iomem *p = __ioremap(phys_addr, size, _PAGE_PCD); if (!p) return p; /* Guaranteed to be > phys_addr, as per __ioremap() */ last_addr = phys_addr + size - 1; if (is_local_lowmem(last_addr)) { struct page *ppage = virt_to_page(bus_to_virt(phys_addr)); unsigned long npages; phys_addr &= PAGE_MASK; /* This might overflow and become zero.. */ last_addr = PAGE_ALIGN(last_addr); /* .. but that's ok, because modulo-2**n arithmetic will make * the page-aligned "last - first" come out right. */ npages = (last_addr - phys_addr) >> PAGE_SHIFT; if (change_page_attr(ppage, npages, PAGE_KERNEL_NOCACHE) < 0) { iounmap(p); p = NULL; } global_flush_tlb(); } return p; } void iounmap(volatile void __iomem *addr) { struct vm_struct *p; if ((void __force *) addr <= high_memory) return; /* * __ioremap special-cases the PCI/ISA range by not instantiating a * vm_area and by simply returning an address into the kernel mapping * of ISA space. So handle that here. */ if ((unsigned long) addr >= fix_to_virt(FIX_ISAMAP_BEGIN)) return; write_lock(&vmlist_lock); p = __remove_vm_area((void *) (PAGE_MASK & (unsigned long __force) addr)); if (!p) { printk("iounmap: bad address %p\n", addr); goto out_unlock; } if ((p->flags >> 20) && is_local_lowmem(p->phys_addr)) { /* p->size includes the guard page, but cpa doesn't like that */ change_page_attr(virt_to_page(bus_to_virt(p->phys_addr)), (p->size - PAGE_SIZE) >> PAGE_SHIFT, PAGE_KERNEL); global_flush_tlb(); } out_unlock: write_unlock(&vmlist_lock); kfree(p); } #ifdef __i386__ void __init *bt_ioremap(unsigned long phys_addr, unsigned long size) { unsigned long offset, last_addr; unsigned int nrpages; enum fixed_addresses idx; /* Don't allow wraparound or zero size */ last_addr = phys_addr + size - 1; if (!size || last_addr < phys_addr) return NULL; /* * Don't remap the low PCI/ISA area, it's always mapped.. */ if (xen_start_info->flags & SIF_PRIVILEGED && phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS) return isa_bus_to_virt(phys_addr); /* * Mappings have to be page-aligned */ offset = phys_addr & ~PAGE_MASK; phys_addr &= PAGE_MASK; size = PAGE_ALIGN(last_addr) - phys_addr; /* * Mappings have to fit in the FIX_BTMAP area. */ nrpages = size >> PAGE_SHIFT; if (nrpages > NR_FIX_BTMAPS) return NULL; /* * Ok, go for it.. */ idx = FIX_BTMAP_BEGIN; while (nrpages > 0) { set_fixmap(idx, phys_addr); phys_addr += PAGE_SIZE; --idx; --nrpages; } return (void*) (offset + fix_to_virt(FIX_BTMAP_BEGIN)); } void __init bt_iounmap(void *addr, unsigned long size) { unsigned long virt_addr; unsigned long offset; unsigned int nrpages; enum fixed_addresses idx; virt_addr = (unsigned long)addr; if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN)) return; if (virt_addr >= fix_to_virt(FIX_ISAMAP_BEGIN)) return; offset = virt_addr & ~PAGE_MASK; nrpages = PAGE_ALIGN(offset + size - 1) >> PAGE_SHIFT; idx = FIX_BTMAP_BEGIN; while (nrpages > 0) { clear_fixmap(idx); --idx; --nrpages; } } #endif /* __i386__ */ #else /* CONFIG_XEN_PHYSDEV_ACCESS */ void __iomem * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags) { return NULL; } void __iomem *ioremap_nocache (unsigned long phys_addr, unsigned long size) { return NULL; } void iounmap(volatile void __iomem *addr) { } #ifdef __i386__ void __init *bt_ioremap(unsigned long phys_addr, unsigned long size) { return NULL; } void __init bt_iounmap(void *addr, unsigned long size) { } #endif /* __i386__ */ #endif /* CONFIG_XEN_PHYSDEV_ACCESS */ /* * Local variables: * c-file-style: "linux" * indent-tabs-mode: t * c-indent-level: 8 * c-basic-offset: 8 * tab-width: 8 * End: */