1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
/*
ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010,
2011,2012 Giovanni Di Sirio.
This file is part of ChibiOS/RT.
ChibiOS/RT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS/RT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ch.h"
#include "hal.h"
#include "test.h"
#include "chprintf.h"
#include "shell.h"
#include "lis302dl.h"
#include "usbcfg.h"
/* Virtual serial port over USB.*/
static SerialUSBDriver SDU1;
/*===========================================================================*/
/* Command line related. */
/*===========================================================================*/
#define SHELL_WA_SIZE THD_WA_SIZE(2048)
#define TEST_WA_SIZE THD_WA_SIZE(256)
static void cmd_mem(BaseSequentialStream *chp, int argc, char *argv[]) {
size_t n, size;
(void)argv;
if (argc > 0) {
chprintf(chp, "Usage: mem\r\n");
return;
}
n = chHeapStatus(NULL, &size);
chprintf(chp, "core free memory : %u bytes\r\n", chCoreStatus());
chprintf(chp, "heap fragments : %u\r\n", n);
chprintf(chp, "heap free total : %u bytes\r\n", size);
}
static void cmd_threads(BaseSequentialStream *chp, int argc, char *argv[]) {
static const char *states[] = {THD_STATE_NAMES};
Thread *tp;
(void)argv;
if (argc > 0) {
chprintf(chp, "Usage: threads\r\n");
return;
}
chprintf(chp, " addr stack prio refs state time\r\n");
tp = chRegFirstThread();
do {
chprintf(chp, "%.8lx %.8lx %4lu %4lu %9s %lu\r\n",
(uint32_t)tp, (uint32_t)tp->p_ctx.r13,
(uint32_t)tp->p_prio, (uint32_t)(tp->p_refs - 1),
states[tp->p_state], (uint32_t)tp->p_time);
tp = chRegNextThread(tp);
} while (tp != NULL);
}
static void cmd_test(BaseSequentialStream *chp, int argc, char *argv[]) {
Thread *tp;
(void)argv;
if (argc > 0) {
chprintf(chp, "Usage: test\r\n");
return;
}
tp = chThdCreateFromHeap(NULL, TEST_WA_SIZE, chThdGetPriority(),
TestThread, chp);
if (tp == NULL) {
chprintf(chp, "out of memory\r\n");
return;
}
chThdWait(tp);
}
static const ShellCommand commands[] = {
{"mem", cmd_mem},
{"threads", cmd_threads},
{"test", cmd_test},
{NULL, NULL}
};
static const ShellConfig shell_cfg1 = {
(BaseSequentialStream *)&SDU1,
commands
};
/*===========================================================================*/
/* Accelerometer related. */
/*===========================================================================*/
/*
* PWM configuration structure.
* Cyclic callback enabled, channels 1 and 4 enabled without callbacks,
* the active state is a logic one.
*/
static const PWMConfig pwmcfg = {
100000, /* 100kHz PWM clock frequency. */
128, /* PWM period is 128 cycles. */
NULL,
{
{PWM_OUTPUT_ACTIVE_HIGH, NULL},
{PWM_OUTPUT_ACTIVE_HIGH, NULL},
{PWM_OUTPUT_ACTIVE_HIGH, NULL},
{PWM_OUTPUT_ACTIVE_HIGH, NULL}
},
/* HW dependent part.*/
0
};
/*
* SPI1 configuration structure.
* Speed 5.25MHz, CPHA=1, CPOL=1, 8bits frames, MSb transmitted first.
* The slave select line is the pin GPIOE_CS_SPI on the port GPIOE.
*/
static const SPIConfig spi1cfg = {
NULL,
/* HW dependent part.*/
GPIOE,
GPIOE_CS_SPI,
SPI_CR1_BR_0 | SPI_CR1_BR_1 | SPI_CR1_CPOL | SPI_CR1_CPHA
};
/*
* SPI2 configuration structure.
* Speed 21MHz, CPHA=0, CPOL=0, 8bits frames, MSb transmitted first.
* The slave select line is the pin 12 on the port GPIOA.
*/
static const SPIConfig spi2cfg = {
NULL,
/* HW dependent part.*/
GPIOB,
12,
0
};
/*
* This is a periodic thread that does absolutely nothing except flashing
* a LED.
*/
static WORKING_AREA(waThread1, 128);
static msg_t Thread1(void *arg) {
static int8_t xbuf[4], ybuf[4]; /* Last accelerometer data.*/
systime_t time; /* Next deadline.*/
(void)arg;
chRegSetThreadName("reader");
/* LIS302DL initialization.*/
lis302dlWriteRegister(&SPID1, LIS302DL_CTRL_REG1, 0x43);
lis302dlWriteRegister(&SPID1, LIS302DL_CTRL_REG2, 0x00);
lis302dlWriteRegister(&SPID1, LIS302DL_CTRL_REG3, 0x00);
/* Reader thread loop.*/
time = chTimeNow();
while (TRUE) {
int32_t x, y;
unsigned i;
/* Keeping an history of the latest four accelerometer readings.*/
for (i = 3; i > 0; i--) {
xbuf[i] = xbuf[i - 1];
ybuf[i] = ybuf[i - 1];
}
/* Reading MEMS accelerometer X and Y registers.*/
xbuf[0] = (int8_t)lis302dlReadRegister(&SPID1, LIS302DL_OUTX);
ybuf[0] = (int8_t)lis302dlReadRegister(&SPID1, LIS302DL_OUTY);
/* Transmitting accelerometer the data over SPI2.*/
spiSelect(&SPID2);
spiSend(&SPID2, 4, xbuf);
spiSend(&SPID2, 4, ybuf);
spiUnselect(&SPID2);
/* Calculating average of the latest four accelerometer readings.*/
x = ((int32_t)xbuf[0] + (int32_t)xbuf[1] +
(int32_t)xbuf[2] + (int32_t)xbuf[3]) / 4;
y = ((int32_t)ybuf[0] + (int32_t)ybuf[1] +
(int32_t)ybuf[2] + (int32_t)ybuf[3]) / 4;
/* Reprogramming the four PWM channels using the accelerometer data.*/
if (y < 0) {
pwmEnableChannel(&PWMD4, 0, (pwmcnt_t)-y);
pwmEnableChannel(&PWMD4, 2, (pwmcnt_t)0);
}
else {
pwmEnableChannel(&PWMD4, 2, (pwmcnt_t)y);
pwmEnableChannel(&PWMD4, 0, (pwmcnt_t)0);
}
if (x < 0) {
pwmEnableChannel(&PWMD4, 1, (pwmcnt_t)-x);
pwmEnableChannel(&PWMD4, 3, (pwmcnt_t)0);
}
else {
pwmEnableChannel(&PWMD4, 3, (pwmcnt_t)x);
pwmEnableChannel(&PWMD4, 1, (pwmcnt_t)0);
}
/* Waiting until the next 250 milliseconds time interval.*/
chThdSleepUntil(time += MS2ST(100));
}
}
/*===========================================================================*/
/* Initialization and main thread. */
/*===========================================================================*/
/*
* Application entry point.
*/
int main(void) {
Thread *shelltp = NULL;
/*
* System initializations.
* - HAL initialization, this also initializes the configured device drivers
* and performs the board-specific initializations.
* - Kernel initialization, the main() function becomes a thread and the
* RTOS is active.
*/
halInit();
chSysInit();
/*
* Initializes a serial-over-USB CDC driver.
*/
sduObjectInit(&SDU1);
sduStart(&SDU1, &serusbcfg);
/*
* Activates the USB driver and then the USB bus pull-up on D+.
* Note, a delay is inserted in order to not have to disconnect the cable
* after a reset.
*/
usbDisconnectBus(serusbcfg.usbp);
chThdSleepMilliseconds(1000);
usbStart(serusbcfg.usbp, &usbcfg);
usbConnectBus(serusbcfg.usbp);
/*
* Activates the serial driver 2 using the driver default configuration.
* PA2(TX) and PA3(RX) are routed to USART2.
*/
sdStart(&SD2, NULL);
palSetPadMode(GPIOA, 2, PAL_MODE_ALTERNATE(7));
palSetPadMode(GPIOA, 3, PAL_MODE_ALTERNATE(7));
/*
* Initializes the SPI driver 1 in order to access the MEMS. The signals
* are already initialized in the board file.
*/
spiStart(&SPID1, &spi1cfg);
/*
* Initializes the SPI driver 2. The SPI2 signals are routed as follow:
* PB12 - NSS.
* PB13 - SCK.
* PB14 - MISO.
* PB15 - MOSI.
*/
spiStart(&SPID2, &spi2cfg);
palSetPad(GPIOB, 12);
palSetPadMode(GPIOB, 12, PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST); /* NSS. */
palSetPadMode(GPIOB, 13, PAL_MODE_ALTERNATE(5) |
PAL_STM32_OSPEED_HIGHEST); /* SCK. */
palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(5)); /* MISO. */
palSetPadMode(GPIOB, 15, PAL_MODE_ALTERNATE(5) |
PAL_STM32_OSPEED_HIGHEST); /* MOSI. */
/*
* Initializes the PWM driver 4, routes the TIM4 outputs to the board LEDs.
*/
pwmStart(&PWMD4, &pwmcfg);
palSetPadMode(GPIOD, GPIOD_LED4, PAL_MODE_ALTERNATE(2)); /* Green. */
palSetPadMode(GPIOD, GPIOD_LED3, PAL_MODE_ALTERNATE(2)); /* Orange. */
palSetPadMode(GPIOD, GPIOD_LED5, PAL_MODE_ALTERNATE(2)); /* Red. */
palSetPadMode(GPIOD, GPIOD_LED6, PAL_MODE_ALTERNATE(2)); /* Blue. */
/*
* Creates the example thread.
*/
chThdCreateStatic(waThread1, sizeof(waThread1),
NORMALPRIO + 10, Thread1, NULL);
/*
* Normal main() thread activity, in this demo it does nothing except
* sleeping in a loop and check the button state, when the button is
* pressed the test procedure is launched with output on the serial
* driver 2.
*/
while (TRUE) {
if (!shelltp) {
if (SDU1.config->usbp->state == USB_ACTIVE) {
/* Spawns a new shell.*/
shelltp = shellCreate(&shell_cfg1, SHELL_WA_SIZE, NORMALPRIO);
}
}
else{
/* If the previous shell has been exited.*/
if (chThdTerminated(shelltp)) {
/* Recovers memory of the previous shell.*/
chThdRelease(shelltp);
shelltp = NULL;
}
}
chThdSleepMilliseconds(500);
}
}
|