aboutsummaryrefslogtreecommitdiffstats
path: root/demos/ARMCM3-STM32F100-DISCOVERY/main.c
blob: 471929a4d7f488390b930bbe50da9fccf238cb27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*
    ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010 Giovanni Di Sirio.

    This file is part of ChibiOS/RT.

    ChibiOS/RT is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.

    ChibiOS/RT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "ch.h"
#include "hal.h"
#include "test.h"

static void pwmpcb(PWMDriver *pwmp);
static void adccb(ADCDriver *adcp, adcsample_t *buffer, size_t n);
static void spicb(SPIDriver *spip);

/* Total number of channels to be sampled by a single ADC operation.*/
#define ADC_GRP1_NUM_CHANNELS   2

/* Depth of the conversion buffer, channels are sampled four times each.*/
#define ADC_GRP1_BUF_DEPTH      4

/*
 * ADC samples buffer.
 */
static adcsample_t samples[ADC_GRP1_NUM_CHANNELS * ADC_GRP1_BUF_DEPTH];

/*
 * ADC conversion group.
 * Mode:        Linear buffer, 4 samples of 2 channels, SW triggered.
 * Channels:    IN10   (41.5 cycles sample time)
 *              Sensor (239.5 cycles sample time)
 */
static const ADCConversionGroup adcgrpcfg = {
  FALSE,
  ADC_GRP1_NUM_CHANNELS,
  adccb,
  /* HW dependent part.*/
  0,
  ADC_CR2_TSVREFE,
  ADC_SMPR1_SMP_AN10(ADC_SAMPLE_41P5) | ADC_SMPR1_SMP_SENSOR(ADC_SAMPLE_239P5),
  0,
  ADC_SQR1_NUM_CH(ADC_GRP1_NUM_CHANNELS),
  0,
  ADC_SQR3_SQ1_N(ADC_CHANNEL_IN10) | ADC_SQR3_SQ0_N(ADC_CHANNEL_SENSOR)
};

/*
 * PWM configuration structure.
 * Cyclic callback enabled, channels 3 and 4 enabled without callbacks,
 * the active state is a logic one.
 */
static PWMConfig pwmcfg = {
  pwmpcb,
  {
    {PWM_OUTPUT_DISABLED, NULL},
    {PWM_OUTPUT_DISABLED, NULL},
    {PWM_OUTPUT_ACTIVE_HIGH, NULL},
    {PWM_OUTPUT_ACTIVE_HIGH, NULL}
  },
  /* HW dependent part.*/
  PWM_COMPUTE_PSC(STM32_TIMCLK1, 10000),    /* 10KHz PWM clock frequency.   */
  PWM_COMPUTE_ARR(10000, 1000000000),       /* PWM period 1S (in nS).       */
  0
};

/*
 * SPI configuration structure.
 * Maximum speed (12MHz), CPHA=0, CPOL=0, 16bits frames, MSb transmitted first.
 * The slave select line is the pin GPIOA_SPI1NSS on the port GPIOA.
 */
static const SPIConfig spicfg = {
  spicb,
  /* HW dependent part.*/
  GPIOA,
  GPIOA_SPI1NSS,
  SPI_CR1_DFF
};

/*
 * PWM cyclic callback.
 * A new ADC conversion is started.
 */
static void pwmpcb(PWMDriver *pwmp) {

  (void)pwmp;

  /* Starts an asynchronous ADC conversion operation, the conversion
     will be executed in parallel to the current PWM cycle and will
     terminate before the next PWM cycle.*/
  chSysLockFromIsr();
  adcStartConversionI(&ADCD1, &adcgrpcfg, samples, ADC_GRP1_BUF_DEPTH);
  chSysUnlockFromIsr();
}

/*
 * ADC end conversion callback.
 * The PWM channels are reprogrammed using the latest ADC samples.
 * The latest samples are transmitted into a single SPI transaction.
 */
void adccb(ADCDriver *adcp, adcsample_t *buffer, size_t n) {

  (void) buffer; (void) n;
  /* Note, only in the ADC_COMPLETE state because the ADC driver fires an
     intermediate callback when the buffer is half full.*/
  if (adcp->ad_state == ADC_COMPLETE) {
    adcsample_t avg_ch1, avg_ch2;

    /* Calculates the average values from the ADC samples.*/
    avg_ch1 = (samples[0] + samples[2] + samples[4] + samples[6]) / 4;
    avg_ch2 = (samples[1] + samples[3] + samples[5] + samples[7]) / 4;

    chSysLockFromIsr();

    /* Changes the channels pulse width, the change will be effective
       starting from the next cycle.*/
    pwmEnableChannelI(&PWMD3, 2, PWM_FRACTION_TO_WIDTH(&PWMD3, 4096, avg_ch1));
    pwmEnableChannelI(&PWMD3, 3, PWM_FRACTION_TO_WIDTH(&PWMD3, 4096, avg_ch2));

    /* SPI slave selection and transmission start.*/
    spiSelectI(&SPID1);
    spiStartSendI(&SPID1, ADC_GRP1_NUM_CHANNELS * ADC_GRP1_BUF_DEPTH, samples);

    chSysUnlockFromIsr();
  }
}

/*
 * SPI end transfer callback.
 */
static void spicb(SPIDriver *spip) {

  /* On transfer end just releases the slave select line.*/
  chSysLockFromIsr();
  spiUnselectI(spip);
  chSysUnlockFromIsr();
}

/*
 * This is a periodic thread that does absolutely nothing except increasing
 * a seconds counter.
 */
static WORKING_AREA(waThread1, 128);
static msg_t Thread1(void *arg) {
  static uint32_t seconds_counter;

  (void)arg;
  while (TRUE) {
    chThdSleepMilliseconds(1000);
    seconds_counter++;
  }
}

/*
 * Application entry point.
 */
int main(void) {

  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
  halInit();
  chSysInit();

  /*
   * Activates the serial driver 1 using the driver default configuration.
   */
  sdStart(&SD1, NULL);

  /*
   * If the user button is pressed after the reset then the test suite is
   * executed immediately before activating the various device drivers in
   * order to not alter the benchmark scores.
   */
  if (palReadPad(GPIOA, GPIOA_BUTTON))
    TestThread(&SD1);

  /*
   * Initializes the SPI driver 1.
   */
  spiStart(&SPID1, &spicfg);

  /*
   * Initializes the ADC driver 1.
   * The pin PC0 on the port GPIOC is programmed as analog input.
   */
  adcStart(&ADCD1, NULL);
  palSetGroupMode(GPIOC, PAL_PORT_BIT(0), PAL_MODE_INPUT_ANALOG);

  /*
   * Initializes the PWM driver 1, re-routes the TIM3 outputs, programs the
   * pins as alternate functions.
   * Note, the AFIO access routes the TIM3 output pins on the PC6...PC9
   * where the LEDs are connected.
   */
  pwmStart(&PWMD3, &pwmcfg);
  AFIO->MAPR |= AFIO_MAPR_TIM3_REMAP_0 | AFIO_MAPR_TIM3_REMAP_1;
  palSetGroupMode(GPIOC, PAL_PORT_BIT(GPIOC_LED3) | PAL_PORT_BIT(GPIOC_LED4),
                  PAL_MODE_STM32_ALTERNATE_PUSHPULL);

  /*
   * Creates the example thread.
   */
  chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO, Thread1, NULL);

  /*
   * Normal main() thread activity, in this demo it does nothing except
   * sleeping in a loop and check the button state, when the button is
   * pressed the test procedure is launched with output on the serial
   * driver 1.
   */
  while (TRUE) {
    if (palReadPad(GPIOA, GPIOA_BUTTON))
      TestThread(&SD1);
    chThdSleepMilliseconds(500);
  }
}