aboutsummaryrefslogtreecommitdiffstats
path: root/xen/drivers/cpufreq/cpufreq_ondemand.c
blob: b3f9ab89e65782e41468192607a26241cc6c7db3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/*
 *  xen/arch/x86/acpi/cpufreq/cpufreq_ondemand.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *             Feb 2008 Liu Jinsong <jinsong.liu@intel.com>
 *             Porting cpufreq_ondemand.c from Liunx 2.6.23 to Xen hypervisor 
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <xen/types.h>
#include <xen/percpu.h>
#include <xen/cpumask.h>
#include <xen/types.h>
#include <xen/sched.h>
#include <xen/timer.h>
#include <acpi/cpufreq/cpufreq.h>

#define DEF_FREQUENCY_UP_THRESHOLD              (80)
#define MIN_FREQUENCY_UP_THRESHOLD              (11)
#define MAX_FREQUENCY_UP_THRESHOLD              (100)

#define MIN_DBS_INTERVAL                        (MICROSECS(100))
#define MIN_SAMPLING_RATE_RATIO                 (2)
#define MIN_SAMPLING_MILLISECS                  (MIN_SAMPLING_RATE_RATIO * 10)
#define MIN_STAT_SAMPLING_RATE                  \
    (MIN_SAMPLING_MILLISECS * MILLISECS(1))
#define MIN_SAMPLING_RATE                       \
    (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
#define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (1000)
#define TRANSITION_LATENCY_LIMIT                (10 * 1000 )

static uint64_t def_sampling_rate;
static uint64_t usr_sampling_rate;

/* Sampling types */
enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};

static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);

static unsigned int dbs_enable;    /* number of CPUs using this policy */

static struct dbs_tuners {
    uint64_t     sampling_rate;
    unsigned int up_threshold;
    unsigned int powersave_bias;
} dbs_tuners_ins = {
    .sampling_rate = 0,
    .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
    .powersave_bias = 0,
};

static DEFINE_PER_CPU(struct timer, dbs_timer);

int write_ondemand_sampling_rate(unsigned int sampling_rate)
{
    if ( (sampling_rate > MAX_SAMPLING_RATE / MICROSECS(1)) ||
         (sampling_rate < MIN_SAMPLING_RATE / MICROSECS(1)) )
        return -EINVAL;

    dbs_tuners_ins.sampling_rate = sampling_rate * MICROSECS(1);
    return 0;
}

int write_ondemand_up_threshold(unsigned int up_threshold)
{
    if ( (up_threshold > MAX_FREQUENCY_UP_THRESHOLD) ||
         (up_threshold < MIN_FREQUENCY_UP_THRESHOLD) )
        return -EINVAL;

    dbs_tuners_ins.up_threshold = up_threshold;
    return 0;
}

int get_cpufreq_ondemand_para(uint32_t *sampling_rate_max,
                              uint32_t *sampling_rate_min,
                              uint32_t *sampling_rate,
                              uint32_t *up_threshold)
{
    if (!sampling_rate_max || !sampling_rate_min ||
        !sampling_rate || !up_threshold)
        return -EINVAL;

    *sampling_rate_max = MAX_SAMPLING_RATE/MICROSECS(1);
    *sampling_rate_min = MIN_SAMPLING_RATE/MICROSECS(1);
    *sampling_rate = dbs_tuners_ins.sampling_rate / MICROSECS(1);
    *up_threshold = dbs_tuners_ins.up_threshold;

    return 0;
}

static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
{
    uint64_t cur_ns, total_ns;
    uint64_t max_load_freq = 0;
    struct cpufreq_policy *policy;
    unsigned int max;
    unsigned int j;

    if (!this_dbs_info->enable)
        return;

    policy = this_dbs_info->cur_policy;
    max = policy->max;

    if (unlikely(policy->resume)) {
        __cpufreq_driver_target(policy, max,CPUFREQ_RELATION_H);
        return;
    }

    cur_ns = NOW();
    total_ns = cur_ns - this_dbs_info->prev_cpu_wall;
    this_dbs_info->prev_cpu_wall = NOW();

    if (total_ns < MIN_DBS_INTERVAL)
        return;

    /* Get Idle Time */
    for_each_cpu(j, policy->cpus) {
        uint64_t idle_ns, total_idle_ns;
        uint64_t load, load_freq, freq_avg;
        struct cpu_dbs_info_s *j_dbs_info;

        j_dbs_info = &per_cpu(cpu_dbs_info, j);
        total_idle_ns = get_cpu_idle_time(j);
        idle_ns = total_idle_ns - j_dbs_info->prev_cpu_idle;
        j_dbs_info->prev_cpu_idle = total_idle_ns;

        if (unlikely(total_ns < idle_ns))
            continue;

        load = 100 * (total_ns - idle_ns) / total_ns;

        freq_avg = cpufreq_driver_getavg(j, GOV_GETAVG);

        load_freq = load * freq_avg;
        if (load_freq > max_load_freq)
            max_load_freq = load_freq;
    }

    /* Check for frequency increase */
    if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
        /* if we are already at full speed then break out early */
        if (policy->cur == max)
            return;
        __cpufreq_driver_target(policy, max, CPUFREQ_RELATION_H);
        return;
    }

    /* Check for frequency decrease */
    /* if we cannot reduce the frequency anymore, break out early */
    if (policy->cur == policy->min)
        return;

    /*
     * The optimal frequency is the frequency that is the lowest that
     * can support the current CPU usage without triggering the up
     * policy. To be safe, we focus 10 points under the threshold.
     */
    if (max_load_freq < (dbs_tuners_ins.up_threshold - 10) * policy->cur) {
        uint64_t freq_next;

        freq_next = max_load_freq / (dbs_tuners_ins.up_threshold - 10);

        __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
    }
}

static void do_dbs_timer(void *dbs)
{
    struct cpu_dbs_info_s *dbs_info = (struct cpu_dbs_info_s *)dbs;

    if (!dbs_info->enable)
        return;

    dbs_check_cpu(dbs_info);

    set_timer(&per_cpu(dbs_timer, dbs_info->cpu),
            align_timer(NOW() , dbs_tuners_ins.sampling_rate));
}

static void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
{
    dbs_info->enable = 1;

    init_timer(&per_cpu(dbs_timer, dbs_info->cpu), do_dbs_timer,
        (void *)dbs_info, dbs_info->cpu);

    set_timer(&per_cpu(dbs_timer, dbs_info->cpu), NOW()+dbs_tuners_ins.sampling_rate);

    if ( processor_pminfo[dbs_info->cpu]->perf.shared_type
            == CPUFREQ_SHARED_TYPE_HW )
    {
        dbs_info->stoppable = 1;
    }
}

static void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
{
    dbs_info->enable = 0;
    dbs_info->stoppable = 0;
    kill_timer(&per_cpu(dbs_timer, dbs_info->cpu));
}

int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
{
    unsigned int cpu = policy->cpu;
    struct cpu_dbs_info_s *this_dbs_info;
    unsigned int j;

    this_dbs_info = &per_cpu(cpu_dbs_info, cpu);

    switch (event) {
    case CPUFREQ_GOV_START:
        if ((!cpu_online(cpu)) || (!policy->cur))
            return -EINVAL;

        if (policy->cpuinfo.transition_latency >
            (TRANSITION_LATENCY_LIMIT * 1000)) {
            printk(KERN_WARNING "ondemand governor failed to load "
                "due to too long transition latency\n");
            return -EINVAL;
        }
        if (this_dbs_info->enable)
            /* Already enabled */
            break;

        dbs_enable++;

        for_each_cpu(j, policy->cpus) {
            struct cpu_dbs_info_s *j_dbs_info;
            j_dbs_info = &per_cpu(cpu_dbs_info, j);
            j_dbs_info->cur_policy = policy;

            j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
            j_dbs_info->prev_cpu_wall = NOW();
        }
        this_dbs_info->cpu = cpu;
        /*
         * Start the timerschedule work, when this governor
         * is used for first time
         */
        if ((dbs_enable == 1) && !dbs_tuners_ins.sampling_rate) {
            def_sampling_rate = policy->cpuinfo.transition_latency *
                DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;

            if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
                def_sampling_rate = MIN_STAT_SAMPLING_RATE;

            if (!usr_sampling_rate)
                dbs_tuners_ins.sampling_rate = def_sampling_rate;
            else if (usr_sampling_rate < MIN_SAMPLING_RATE) {
                printk(KERN_WARNING "cpufreq/ondemand: "
                       "specified sampling rate too low, using %"PRIu64"\n",
                       MIN_SAMPLING_RATE);
                dbs_tuners_ins.sampling_rate = MIN_SAMPLING_RATE;
            } else if (usr_sampling_rate > MAX_SAMPLING_RATE) {
                printk(KERN_WARNING "cpufreq/ondemand: "
                       "specified sampling rate too high, using %"PRIu64"\n",
                       MAX_SAMPLING_RATE);
                dbs_tuners_ins.sampling_rate = MAX_SAMPLING_RATE;
            } else
                dbs_tuners_ins.sampling_rate = usr_sampling_rate;
        }
        dbs_timer_init(this_dbs_info);

        break;

    case CPUFREQ_GOV_STOP:
        dbs_timer_exit(this_dbs_info);
        dbs_enable--;

        break;

    case CPUFREQ_GOV_LIMITS:
        if ( this_dbs_info->cur_policy == NULL )
        {
            printk(KERN_WARNING "CPU%d ondemand governor not started yet,"
                    "unable to GOV_LIMIT\n", cpu);
            return -EINVAL;
        }
        if (policy->max < this_dbs_info->cur_policy->cur)
            __cpufreq_driver_target(this_dbs_info->cur_policy,
                policy->max, CPUFREQ_RELATION_H);
        else if (policy->min > this_dbs_info->cur_policy->cur)
            __cpufreq_driver_target(this_dbs_info->cur_policy,
                policy->min, CPUFREQ_RELATION_L);
        break;
    }
    return 0;
}

static bool_t __init cpufreq_dbs_handle_option(const char *name, const char *val)
{
    if ( !strcmp(name, "rate") && val )
    {
        usr_sampling_rate = simple_strtoull(val, NULL, 0) * MICROSECS(1);
    }
    else if ( !strcmp(name, "up_threshold") && val )
    {
        unsigned long tmp = simple_strtoul(val, NULL, 0);

        if ( tmp < MIN_FREQUENCY_UP_THRESHOLD )
        {
            printk(XENLOG_WARNING "cpufreq/ondemand: "
                   "specified threshold too low, using %d\n",
                   MIN_FREQUENCY_UP_THRESHOLD);
            tmp = MIN_FREQUENCY_UP_THRESHOLD;
        }
        else if ( tmp > MAX_FREQUENCY_UP_THRESHOLD )
        {
            printk(XENLOG_WARNING "cpufreq/ondemand: "
                   "specified threshold too high, using %d\n",
                   MAX_FREQUENCY_UP_THRESHOLD);
            tmp = MAX_FREQUENCY_UP_THRESHOLD;
        }
        dbs_tuners_ins.up_threshold = tmp;
    }
    else if ( !strcmp(name, "bias") && val )
    {
        unsigned long tmp = simple_strtoul(val, NULL, 0);

        if ( tmp > 1000 )
        {
            printk(XENLOG_WARNING "cpufreq/ondemand: "
                   "specified bias too high, using 1000\n");
            tmp = 1000;
        }
        dbs_tuners_ins.powersave_bias = tmp;
    }
    else
        return 0;
    return 1;
}

struct cpufreq_governor cpufreq_gov_dbs = {
    .name = "ondemand",
    .governor = cpufreq_governor_dbs,
    .handle_option = cpufreq_dbs_handle_option
};

static int __init cpufreq_gov_dbs_init(void)
{
    return cpufreq_register_governor(&cpufreq_gov_dbs);
}
__initcall(cpufreq_gov_dbs_init);

void cpufreq_dbs_timer_suspend(void)
{
    int cpu;

    cpu = smp_processor_id();

    if ( per_cpu(cpu_dbs_info,cpu).stoppable )
    {
        stop_timer( &per_cpu(dbs_timer, cpu) );
    }
}

void cpufreq_dbs_timer_resume(void)
{
    int cpu;
    struct timer* t;
    s_time_t now;

    cpu = smp_processor_id();

    if ( per_cpu(cpu_dbs_info,cpu).stoppable )
    {
        now = NOW();
        t = &per_cpu(dbs_timer, cpu);
        if (t->expires <= now)
        {
            t->function(t->data);
        }
        else
        {
            set_timer(t, align_timer(now , dbs_tuners_ins.sampling_rate));
        }
    }
}