aboutsummaryrefslogtreecommitdiffstats
path: root/xen/common/schedule.c
blob: 5749d27d4a4693f209fb30a5b8964a977e1c6ce7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/* -*-  Mode:C; c-basic-offset:4; tab-width:4 -*-
 ****************************************************************************
 * (C) 2002 - Rolf Neugebauer - Intel Research Cambridge
 ****************************************************************************
 *
 *        File: schedule.c
 *      Author: Rolf Neugebauer (neugebar@dcs.gla.ac.uk)
 *     Changes: 
 *              
 *        Date: Nov 2002
 * 
 * Environment: Xen Hypervisor
 * Description: CPU scheduling
 *              implements A Borrowed Virtual Time scheduler.
 *              (see Duda & Cheriton SOSP'99)
 *
 ****************************************************************************
 * $Id: c-insert.c,v 1.7 2002/11/08 16:04:34 rn Exp $
 ****************************************************************************
 */

#include <xeno/config.h>
#include <xeno/init.h>
#include <xeno/lib.h>
#include <xeno/sched.h>
#include <xeno/delay.h>
#include <xeno/event.h>
#include <xeno/time.h>
#include <xeno/ac_timer.h>
#include <xeno/interrupt.h>
#include <xeno/timer.h>
#include <xeno/perfc.h>


#undef SCHEDULER_TRACE
#ifdef SCHEDULER_TRACE
#define TRC(_x) _x
#else
#define TRC(_x)
#endif

#define SCHED_HISTO
#ifdef SCHED_HISTO
#define BUCKETS 31
#endif


#define MCU          (s32)MICROSECS(100)    /* Minimum unit */
#define MCU_ADVANCE  10                     /* default weight */
#define TIME_SLOP    (s32)MICROSECS(50)     /* allow time to slip a bit */
static s32 ctx_allow=(s32)MILLISECS(5);     /* context switch allowance */

/*****************************************************************************
 * per CPU data for the scheduler.
 *****************************************************************************/
typedef struct schedule_data_st
{
    spinlock_t          lock;           /* lock for protecting this */
    struct list_head    runqueue;       /* runqueue */
    struct task_struct *prev, *curr;    /* previous and current task */
    struct task_struct *idle;           /* idle task for this cpu */
    u32                 svt;            /* system virtual time. per CPU??? */
    struct ac_timer     s_timer;        /* scheduling timer  */
#ifdef SCHED_HISTO
    u32                 hist[BUCKETS];  /* for scheduler latency histogram */
#endif

} __cacheline_aligned schedule_data_t;
schedule_data_t schedule_data[NR_CPUS];

struct ac_timer     v_timer;        /* scheduling timer  */
static void virt_timer(unsigned long foo);
static void dump_rqueue(struct list_head *queue, char *name);


/*****************************************************************************
 * Some convenience functions
 *****************************************************************************/
/* add a task to the head of the runqueue */
static inline void __add_to_runqueue_head(struct task_struct * p)
{
    
    list_add(&p->run_list, &schedule_data[p->processor].runqueue);
}
/* add a task to the tail of the runqueue */
static inline void __add_to_runqueue_tail(struct task_struct * p)
{
    list_add_tail(&p->run_list, &schedule_data[p->processor].runqueue);
}

/* remove a task from runqueue  */
static inline void __del_from_runqueue(struct task_struct * p)
{
    list_del(&p->run_list);
    p->run_list.next = NULL;
}
/* is task on run queue?  */
static inline int __task_on_runqueue(struct task_struct *p)
{
    return (p->run_list.next != NULL);
}

#define next_domain(p) \\
        list_entry((p)->run_list.next, struct task_struct, run_list)

/* calculate evt  */
static void __calc_evt(struct task_struct *p)
{
    s_time_t now = NOW();
    if (p->warpback) {
        if (((now - p->warped) < p->warpl) &&
            ((now - p->uwarped) > p->warpu)) {
            /* allowed to warp */
            p->evt = p->avt - p->warp;
        } else {
            /* warped for too long -> unwarp */
            p->evt      = p->avt;
            p->uwarped  = now;
            p->warpback = 0;
        }
    } else {
        p->evt = p->avt;
    }
}


/******************************************************************************
* Add and remove a domain
******************************************************************************/
void sched_add_domain(struct task_struct *p) 
{
    p->state       = TASK_SUSPENDED;
    p->mcu_advance = MCU_ADVANCE;

    if (p->domain == IDLE_DOMAIN_ID) {
        p->avt = 0xffffffff;
        p->evt = 0xffffffff;
        schedule_data[p->processor].idle = p;
    } else {
        /* set avt end evt to system virtual time */
        p->avt         = schedule_data[p->processor].svt;
        p->evt         = schedule_data[p->processor].svt;
        /* set some default values here */
        p->warpback    = 0;
        p->warp        = 0;
        p->warpl       = 0;
        p->warpu       = 0;
    }
}

void sched_rem_domain(struct task_struct *p) 
{
    p->state = TASK_DYING;
}


/****************************************************************************
 * wake up a domain which had been sleeping
 ****************************************************************************/
int wake_up(struct task_struct *p)
{
    unsigned long flags;
    int ret = 0;

    spin_lock_irqsave(&schedule_data[p->processor].lock, flags);

    /* XXX RN: should we warp here? Might be a good idea to also boost a 
     * domain which currently is unwarped and on run queue and 
     * the receives an event. */
    if ( __task_on_runqueue(p) ) goto out;

    p->state = TASK_RUNNING;
    __add_to_runqueue_head(p);
    //__add_to_runqueue_tail(p);

    /* set the BVT parameters */
    if (p->avt < schedule_data[p->processor].svt)
        p->avt = schedule_data[p->processor].svt;

    /* deal with warping here */
    p->warpback  = 1;
    p->warped    = NOW();
    __calc_evt(p);

#ifdef SCHED_HISTO
    p->wokenup = NOW();
#endif

    ret = 1;
 out:
    spin_unlock_irqrestore(&schedule_data[p->processor].lock, flags);
    return ret;
}

/****************************************************************************
 * Voluntarily yield the processor to another domain, until an event occurs.
 ****************************************************************************/
long do_yield(void)
{
    current->state = TASK_INTERRUPTIBLE;
    current->warpback = 0; /* XXX should only do this when blocking */
    schedule();
    return 0;
}

/****************************************************************************
 * Control the scheduler
 ****************************************************************************/
long sched_bvtctl(unsigned long c_allow)
{
    printk("sched: bvtctl %lu\n", c_allow);
    ctx_allow = c_allow;
    return 0;
}

/****************************************************************************
 * Adjust scheduling parameter for a given domain
 ****************************************************************************/
long sched_adjdom(int dom, unsigned long mcu_adv, unsigned long warp, 
                 unsigned long warpl, unsigned long warpu)
{
    struct task_struct *p;

    printk("sched: adjdom %02d %lu %lu %lu %lu\n",
           dom, mcu_adv, warp, warpl, warpu);

    p = find_domain_by_id(dom);
    if ( p == NULL ) return -ESRCH;

    spin_lock_irq(&schedule_data[p->processor].lock);   

    p->mcu_advance = mcu_adv;

    spin_unlock_irq(&schedule_data[p->processor].lock); 

    return 0;
}

/****************************************************************************
 * cause a run through the scheduler when appropriate
 * Appropriate is:
 * - current task is idle task
 * - the current task already ran for it's context switch allowance
 * Otherwise we do a run through the scheduler after the current tasks 
 * context switch allowance is over.
 ****************************************************************************/
void reschedule(struct task_struct *p)
{
    int cpu = p->processor;
    struct task_struct *curr;
    unsigned long flags;
    s_time_t now, min_time;

    if (p->has_cpu)
        return;

    spin_lock_irqsave(&schedule_data[cpu].lock, flags);
    
    now = NOW();
    curr = schedule_data[cpu].curr;
    /* domain should run at least for ctx_allow */
    min_time = curr->lastschd + ctx_allow;

    if ( is_idle_task(curr) || (min_time <= now) ) {
        /* reschedule */
        set_bit(_HYP_EVENT_NEED_RESCHED, &curr->hyp_events);

        spin_unlock_irqrestore(&schedule_data[cpu].lock, flags);

        if (cpu != smp_processor_id())
            smp_send_event_check_cpu(cpu);
        return;
    }

    /* current hasn't been running for long enough -> reprogram timer.
     * but don't bother if timer would go off soon anyway */
    if (schedule_data[cpu].s_timer.expires > min_time + TIME_SLOP) {
        mod_ac_timer(&schedule_data[cpu].s_timer, min_time);
    }
    
    spin_unlock_irqrestore(&schedule_data[cpu].lock, flags);
    return;
}


/**************************************************************************** 
 * The main function
 * - deschedule the current domain.
 * - pick a new domain.
 *   i.e., the domain with lowest EVT.
 *   The runqueue should be ordered by EVT so that is easy.
 ****************************************************************************/
asmlinkage void schedule(void)
{
    struct task_struct *prev, *next, *next_prime, *p;
    struct list_head   *tmp;
    int                 this_cpu;
    s_time_t            now;
    s32                 r_time;     /* time for new dom to run */
    s32                 ranfor;     /* assume we never run longer than 2.1s! */
    s32                 mcus;
    u32                 next_evt, next_prime_evt, min_avt;

    perfc_incrc(sched_run1);
 need_resched_back:
    perfc_incrc(sched_run2);

    prev = current;
    next = NULL;

    this_cpu = prev->processor;

    spin_lock_irq(&schedule_data[this_cpu].lock);

    now = NOW();

    /* remove timer, if till on list  */
    rem_ac_timer(&schedule_data[this_cpu].s_timer);

    /* deschedule the current domain */

    ASSERT(!in_interrupt());
    ASSERT(__task_on_runqueue(prev));

    if (is_idle_task(prev)) 
        goto deschedule_done;

    /* do some accounting */
    ranfor = (s32)(now - prev->lastschd);
    ASSERT((ranfor>0));
    prev->cpu_time += ranfor;
    
    /* calculate mcu and update avt */
    mcus = ranfor/MCU;
    if (ranfor % MCU) mcus ++;  /* always round up */
    prev->avt += mcus * prev->mcu_advance;

    /* recalculate evt */
    __calc_evt(prev);

    /* dequeue */
    __del_from_runqueue(prev);
    switch (prev->state) {
    case TASK_INTERRUPTIBLE:
        if (signal_pending(prev)) {
            prev->state = TASK_RUNNING; /* but has events pending */
            break;
        }
    case TASK_UNINTERRUPTIBLE:
    case TASK_WAIT:
    case TASK_DYING:
    default:
        /* done if not running. Else, continue */
        goto deschedule_done;
    case TASK_RUNNING:;
    }

    /* requeue */
    __add_to_runqueue_tail(prev);
    

 deschedule_done:
    clear_bit(_HYP_EVENT_NEED_RESCHED, &prev->hyp_events);

    /*
     * Pick a new domain
     */

    /* we should at least have the idle task */
    ASSERT(!list_empty(&schedule_data[this_cpu].runqueue));

    /*
     * scan through the run queue and pick the task with the lowest evt
     * *and* the task the second lowest evt.
     * this code is O(n) but we expect n to be small.
     */
    next       = schedule_data[this_cpu].idle;
    next_prime = NULL;

    next_evt       = 0xffffffff;
    next_prime_evt = 0xffffffff;
    min_avt        = 0xffffffff;    /* to calculate svt */


    list_for_each(tmp, &schedule_data[this_cpu].runqueue) {
        p = list_entry(tmp, struct task_struct, run_list);
        if (p->evt < next_evt) {
            next_prime     = next;
            next_prime_evt = next_evt;
            next = p;
            next_evt = p->evt;
        } else if (next_prime_evt == 0xffffffff) {
            next_prime_evt = p->evt;
            next_prime     = p;
        } else if (p->evt < next_prime_evt) {
            next_prime_evt = p->evt;
            next_prime     = p;
        }
        /* determine system virtual time */
        if (p->avt < min_avt)
            min_avt = p->avt;
    }
    ASSERT(next != NULL);   /* we should have at least the idle task */

    /* update system virtual time  */
    if (min_avt != 0xffffffff) schedule_data[this_cpu].svt = min_avt;

    if (is_idle_task(next)) {
        r_time = ctx_allow;
        goto sched_done;
    }

    if (next_prime == NULL || is_idle_task(next_prime)) {
        /* we have only one runable task besides the idle task */
        r_time = 10 * ctx_allow;     /* RN: random constant */
        goto sched_done;
    }

    /*
     * if we are here we have two runable tasks.
     * work out how long 'next' can run till its evt is greater than
     * 'next_prime's evt. Taking context switch allowance into account.
     */
    ASSERT(next_prime->evt >= next->evt);
    r_time = ((next_prime->evt - next->evt)/next->mcu_advance) + ctx_allow;

 sched_done:
    ASSERT(r_time >= ctx_allow);

#ifndef NDEBUG
    if (r_time < ctx_allow) {
        printk("[%02d]: %lx\n", this_cpu, (unsigned long)r_time);
        dump_rqueue(&schedule_data[this_cpu].runqueue, "foo");
    }
#endif

    prev->has_cpu = 0;
    next->has_cpu = 1;

    schedule_data[this_cpu].prev = prev;
    schedule_data[this_cpu].curr = next;

    next->lastschd = now;

    /* reprogramm the timer */
    schedule_data[this_cpu].s_timer.expires  = now + r_time;
    add_ac_timer(&schedule_data[this_cpu].s_timer);

    spin_unlock_irq(&schedule_data[this_cpu].lock);

    if ( unlikely(prev == next) )
    {
        /* We won't go through the normal tail, so do this by hand */
        prev->policy &= ~SCHED_YIELD;
        goto same_process;
    }

    perfc_incrc(sched_ctx);
#ifdef SCHED_HISTO
    {
        ulong diff; /* should fit in 32bits */
        if (!is_idle_task(next) && next->wokenup) {
            diff = (ulong)(now - next->wokenup);
            diff /= (ulong)MILLISECS(1);
            if (diff <= BUCKETS-2)  schedule_data[this_cpu].hist[diff]++;
            else                    schedule_data[this_cpu].hist[BUCKETS-1]++;
        }
        next->wokenup = (s_time_t)0;
    }
#endif


    prepare_to_switch();
    switch_to(prev, next);
    prev = schedule_data[this_cpu].prev;
    
    prev->policy &= ~SCHED_YIELD;
    if ( prev->state == TASK_DYING ) 
        free_task_struct(prev);

 same_process:
    /* update the domains notion of time  */
    update_dom_time(current->shared_info);

    if ( test_bit(_HYP_EVENT_NEED_RESCHED, &current->hyp_events) ) {
        goto need_resched_back;
    }
    return;
}

/* No locking needed -- pointer comparison is safe :-) */
int idle_cpu(int cpu)
{
    struct task_struct *p = schedule_data[cpu].curr;
    return p == idle_task[cpu];
}


/*
 * The scheduler timer.
 */
static void sched_timer(unsigned long foo)
{
    int                 cpu  = smp_processor_id();
    struct task_struct *curr = schedule_data[cpu].curr;
    /* cause a reschedule */
    set_bit(_HYP_EVENT_NEED_RESCHED, &curr->hyp_events);
    perfc_incrc(sched_irq);
}

/*
 * The Domain virtual time timer
 */
static void virt_timer(unsigned long foo)
{
    unsigned long cpu_mask = 0;
    struct task_struct *p;
    s_time_t now;

    /* send virtual timer interrupt */
    read_lock(&tasklist_lock);
    p = &idle0_task;
    do {
        if ( is_idle_task(p) ) continue;
        cpu_mask |= mark_guest_event(p, _EVENT_TIMER);
    }
    while ( (p = p->next_task) != &idle0_task );
    read_unlock(&tasklist_lock);
    guest_event_notify(cpu_mask);

    now = NOW();
    v_timer.expires  = now + MILLISECS(20);
    add_ac_timer(&v_timer);
}

/*
 * Initialise the data structures
 */
void __init scheduler_init(void)
{
    int i;

    printk("Initialising schedulers\n");

    for ( i = 0; i < NR_CPUS; i++ )
    {
        INIT_LIST_HEAD(&schedule_data[i].runqueue);
        spin_lock_init(&schedule_data[i].lock);
        schedule_data[i].prev = &idle0_task;
        schedule_data[i].curr = &idle0_task;
        
        /* a timer for each CPU  */
        init_ac_timer(&schedule_data[i].s_timer, i);
        schedule_data[i].s_timer.data = 2;
        schedule_data[i].s_timer.function = &sched_timer;

    }
    schedule_data[0].idle = &idle0_task; /* idle on CPU 0 is special */
    init_ac_timer(&v_timer, 0);
    v_timer.data = 3;
    v_timer.function = &virt_timer;
}

/*
 * Start a scheduler for each CPU
 * This has to be done *after* the timers, e.g., APICs, have been initialised
 */
void schedulers_start(void) 
{   
    printk("Start schedulers\n");
    __cli();
    sched_timer(0);
    virt_timer(0);
    smp_call_function((void *)sched_timer, NULL, 1, 1);
    __sti();
}


/****************************************************************************
 * Functions for legacy support. 
 * Schedule timeout is used at a number of places and is a bit meaningless 
 * in the context of Xen, as Domains are not able to call these and all 
 * there entry points into Xen should be asynchronous. If a domain wishes
 * to block for a while it should use Xen's sched_op/yield entry point.
 ****************************************************************************/

static void process_timeout(unsigned long __data)
{
    struct task_struct * p = (struct task_struct *) __data;
    wake_up(p);
}

long schedule_timeout(long timeout)
{
    struct timer_list timer;
    unsigned long expire;
    
    switch (timeout)
    {
    case MAX_SCHEDULE_TIMEOUT:
        /*
         * These two special cases are useful to be comfortable in the caller.
         * Nothing more. We could take MAX_SCHEDULE_TIMEOUT from one of the
         * negative value but I' d like to return a valid offset (>=0) to allow
         * the caller to do everything it want with the retval.
         */
        schedule();
        goto out;
    default:
        /*
         * Another bit of PARANOID. Note that the retval will be 0 since no
         * piece of kernel is supposed to do a check for a negative retval of
         * schedule_timeout() (since it should never happens anyway). You just
         * have the printk() that will tell you if something is gone wrong and
         * where.
         */
        if (timeout < 0)
        {
            printk(KERN_ERR "schedule_timeout: wrong timeout "
                   "value %lx from %p\n", timeout,
                   __builtin_return_address(0));
            current->state = TASK_RUNNING;
            goto out;
        }
    }
    
    expire = timeout + jiffies;
    
    init_timer(&timer);
    timer.expires = expire;
    timer.data = (unsigned long) current;
    timer.function = process_timeout;
    
    add_timer(&timer);
    schedule();
    del_timer_sync(&timer);
    
    timeout = expire - jiffies;
    
 out:
    return timeout < 0 ? 0 : timeout;
}

/****************************************************************************
 * debug function
 ****************************************************************************/

static void dump_rqueue(struct list_head *queue, char *name)
{
    struct list_head *list;
    int loop = 0;
    struct task_struct  *p;

    printk ("QUEUE %s %lx   n: %lx, p: %lx\n", name,  (unsigned long)queue,
            (unsigned long) queue->next, (unsigned long) queue->prev);
    list_for_each (list, queue) {
        p = list_entry(list, struct task_struct, run_list);
        printk("%3d: %3d has=%c mcua=0x%04lX ev=0x%08X av=0x%08X c=0x%X%08X\n",
               loop++, p->domain,
               p->has_cpu ? 'T':'F',
               p->mcu_advance, p->evt, p->avt,
               (u32)(p->cpu_time>>32), (u32)p->cpu_time);
        printk("         l: %lx n: %lx  p: %lx\n",
               (unsigned long)list, (unsigned long)list->next,
               (unsigned long)list->prev);
    }
    return; 
}

void dump_runq(u_char key, void *dev_id, struct pt_regs *regs)
{
    u_long   flags; 
    s_time_t now = NOW();
    int i;

    printk("BVT: mcu=0x%08Xns ctx_allow=0x%08Xns NOW=0x%08X%08X\n",
           (u32)MCU, (u32)ctx_allow, (u32)(now>>32), (u32)now); 
    for (i = 0; i < smp_num_cpus; i++) {
        spin_lock_irqsave(&schedule_data[i].lock, flags);
        printk("CPU[%02d] svt=0x%08X ", i, (s32)schedule_data[i].svt);
        dump_rqueue(&schedule_data[i].runqueue, "rq"); 
        spin_unlock_irqrestore(&schedule_data[i].lock, flags);
    }
    return; 
}

#ifdef SCHED_HISTO
void print_sched_histo(u_char key, void *dev_id, struct pt_regs *regs)
{
    int loop, i, j;
    for (loop = 0; loop < smp_num_cpus; loop++) {
        j = 0;
        printf ("CPU[%02d]: scheduler latency histogram (ms:[count])\n", loop);
        for (i=0; i<BUCKETS; i++) {
            if (schedule_data[loop].hist[i]) {
                if (i < BUCKETS-1)
                    printk("%2d:[%7u]    ", i, schedule_data[loop].hist[i]);
                else
                    printk(" >:[%7u]    ", schedule_data[loop].hist[i]);
                j++;
                if (!(j % 5)) printk("\n");
            }
        }
        printk("\n");
    }
      
}
void reset_sched_histo(u_char key, void *dev_id, struct pt_regs *regs)
{
    int loop, i;
    for (loop = 0; loop < smp_num_cpus; loop++)
        for (i=0; i<BUCKETS; i++) 
            schedule_data[loop].hist[i]=0;
}
#else
void print_sched_histo(u_char key, void *dev_id, struct pt_regs *regs)
{
}
void reset_sched_histo(u_char key, void *dev_id, struct pt_regs *regs)
{
}
#endif