aboutsummaryrefslogtreecommitdiffstats
path: root/xen/common/sched_credit.c
blob: e69d794a22e46d5b96d1dc20119631885f5f0aa5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
/****************************************************************************
 * (C) 2005-2006 - Emmanuel Ackaouy - XenSource Inc.
 ****************************************************************************
 *
 *        File: common/csched_credit.c
 *      Author: Emmanuel Ackaouy
 *
 * Description: Credit-based SMP CPU scheduler
 */

#include <xen/config.h>
#include <xen/init.h>
#include <xen/lib.h>
#include <xen/sched.h>
#include <xen/domain.h>
#include <xen/delay.h>
#include <xen/event.h>
#include <xen/time.h>
#include <xen/sched-if.h>
#include <xen/softirq.h>
#include <asm/atomic.h>
#include <asm/div64.h>
#include <xen/errno.h>
#include <xen/keyhandler.h>
#include <xen/trace.h>


/*
 * Basic constants
 */
#define CSCHED_DEFAULT_WEIGHT       256
#define CSCHED_TICKS_PER_TSLICE     3
/* Default timeslice: 30ms */
#define CSCHED_DEFAULT_TSLICE_MS    30
#define CSCHED_CREDITS_PER_MSEC     10


/*
 * Priorities
 */
#define CSCHED_PRI_TS_BOOST      0      /* time-share waking up */
#define CSCHED_PRI_TS_UNDER     -1      /* time-share w/ credits */
#define CSCHED_PRI_TS_OVER      -2      /* time-share w/o credits */
#define CSCHED_PRI_IDLE         -64     /* idle */


/*
 * Flags
 */
#define CSCHED_FLAG_VCPU_PARKED    0x0  /* VCPU over capped credits */
#define CSCHED_FLAG_VCPU_YIELD     0x1  /* VCPU yielding */


/*
 * Useful macros
 */
#define CSCHED_PRIV(_ops)   \
    ((struct csched_private *)((_ops)->sched_data))
#define CSCHED_PCPU(_c)     \
    ((struct csched_pcpu *)per_cpu(schedule_data, _c).sched_priv)
#define CSCHED_VCPU(_vcpu)  ((struct csched_vcpu *) (_vcpu)->sched_priv)
#define CSCHED_DOM(_dom)    ((struct csched_dom *) (_dom)->sched_priv)
#define RUNQ(_cpu)          (&(CSCHED_PCPU(_cpu)->runq))
/* Is the first element of _cpu's runq its idle vcpu? */
#define IS_RUNQ_IDLE(_cpu)  (list_empty(RUNQ(_cpu)) || \
                             is_idle_vcpu(__runq_elem(RUNQ(_cpu)->next)->vcpu))


/*
 * CSCHED_STATS
 *
 * Manage very basic per-vCPU counters and stats.
 *
 * Useful for debugging live systems. The stats are displayed
 * with runq dumps ('r' on the Xen console).
 */
#ifdef SCHED_STATS

#define CSCHED_STATS

#define SCHED_VCPU_STATS_RESET(_V)                      \
    do                                                  \
    {                                                   \
        memset(&(_V)->stats, 0, sizeof((_V)->stats));   \
    } while ( 0 )

#define SCHED_VCPU_STAT_CRANK(_V, _X)       (((_V)->stats._X)++)

#define SCHED_VCPU_STAT_SET(_V, _X, _Y)     (((_V)->stats._X) = (_Y))

#else /* !SCHED_STATS */

#undef CSCHED_STATS

#define SCHED_VCPU_STATS_RESET(_V)         do {} while ( 0 )
#define SCHED_VCPU_STAT_CRANK(_V, _X)      do {} while ( 0 )
#define SCHED_VCPU_STAT_SET(_V, _X, _Y)    do {} while ( 0 )

#endif /* SCHED_STATS */


/*
 * Credit tracing events ("only" 512 available!). Check
 * include/public/trace.h for more details.
 */
#define TRC_CSCHED_SCHED_TASKLET TRC_SCHED_CLASS_EVT(CSCHED, 1)
#define TRC_CSCHED_ACCOUNT_START TRC_SCHED_CLASS_EVT(CSCHED, 2)
#define TRC_CSCHED_ACCOUNT_STOP  TRC_SCHED_CLASS_EVT(CSCHED, 3)
#define TRC_CSCHED_STOLEN_VCPU   TRC_SCHED_CLASS_EVT(CSCHED, 4)
#define TRC_CSCHED_PICKED_CPU    TRC_SCHED_CLASS_EVT(CSCHED, 5)
#define TRC_CSCHED_TICKLE        TRC_SCHED_CLASS_EVT(CSCHED, 6)


/*
 * Node Balancing
 */
#define CSCHED_BALANCE_NODE_AFFINITY    0
#define CSCHED_BALANCE_CPU_AFFINITY     1

/*
 * Boot parameters
 */
static int __read_mostly sched_credit_tslice_ms = CSCHED_DEFAULT_TSLICE_MS;
integer_param("sched_credit_tslice_ms", sched_credit_tslice_ms);

/*
 * Physical CPU
 */
struct csched_pcpu {
    struct list_head runq;
    uint32_t runq_sort_last;
    struct timer ticker;
    unsigned int tick;
    unsigned int idle_bias;
    /* Store this here to avoid having too many cpumask_var_t-s on stack */
    cpumask_var_t balance_mask;
};

/*
 * Convenience macro for accessing the per-PCPU cpumask we need for
 * implementing the two steps (vcpu and node affinity) balancing logic.
 * It is stored in csched_pcpu so that serialization is not an issue,
 * as there is a csched_pcpu for each PCPU and we always hold the
 * runqueue spin-lock when using this.
 */
#define csched_balance_mask (CSCHED_PCPU(smp_processor_id())->balance_mask)

/*
 * Virtual CPU
 */
struct csched_vcpu {
    struct list_head runq_elem;
    struct list_head active_vcpu_elem;
    struct csched_dom *sdom;
    struct vcpu *vcpu;
    atomic_t credit;
    unsigned int residual;
    s_time_t start_time;   /* When we were scheduled (used for credit) */
    unsigned flags;
    int16_t pri;
#ifdef CSCHED_STATS
    struct {
        int credit_last;
        uint32_t credit_incr;
        uint32_t state_active;
        uint32_t state_idle;
        uint32_t migrate_q;
        uint32_t migrate_r;
        uint32_t kicked_away;
    } stats;
#endif
};

/*
 * Domain
 */
struct csched_dom {
    struct list_head active_vcpu;
    struct list_head active_sdom_elem;
    struct domain *dom;
    /* cpumask translated from the domain's node-affinity.
     * Basically, the CPUs we prefer to be scheduled on. */
    cpumask_var_t node_affinity_cpumask;
    uint16_t active_vcpu_count;
    uint16_t weight;
    uint16_t cap;
};

/*
 * System-wide private data
 */
struct csched_private {
    /* lock for the whole pluggable scheduler, nests inside cpupool_lock */
    spinlock_t lock;
    struct list_head active_sdom;
    uint32_t ncpus;
    struct timer  master_ticker;
    unsigned int master;
    cpumask_var_t idlers;
    cpumask_var_t cpus;
    uint32_t weight;
    uint32_t credit;
    int credit_balance;
    uint32_t runq_sort;
    unsigned ratelimit_us;
    /* Period of master and tick in milliseconds */
    unsigned tslice_ms, tick_period_us, ticks_per_tslice;
    unsigned credits_per_tslice;
};

static void csched_tick(void *_cpu);
static void csched_acct(void *dummy);

static inline int
__vcpu_on_runq(struct csched_vcpu *svc)
{
    return !list_empty(&svc->runq_elem);
}

static inline struct csched_vcpu *
__runq_elem(struct list_head *elem)
{
    return list_entry(elem, struct csched_vcpu, runq_elem);
}

static inline void
__runq_insert(unsigned int cpu, struct csched_vcpu *svc)
{
    const struct list_head * const runq = RUNQ(cpu);
    struct list_head *iter;

    BUG_ON( __vcpu_on_runq(svc) );
    BUG_ON( cpu != svc->vcpu->processor );

    list_for_each( iter, runq )
    {
        const struct csched_vcpu * const iter_svc = __runq_elem(iter);
        if ( svc->pri > iter_svc->pri )
            break;
    }

    /* If the vcpu yielded, try to put it behind one lower-priority
     * runnable vcpu if we can.  The next runq_sort will bring it forward
     * within 30ms if the queue too long. */
    if ( test_bit(CSCHED_FLAG_VCPU_YIELD, &svc->flags)
         && __runq_elem(iter)->pri > CSCHED_PRI_IDLE )
    {
        iter=iter->next;

        /* Some sanity checks */
        BUG_ON(iter == runq);
    }

    list_add_tail(&svc->runq_elem, iter);
}

static inline void
__runq_remove(struct csched_vcpu *svc)
{
    BUG_ON( !__vcpu_on_runq(svc) );
    list_del_init(&svc->runq_elem);
}

/*
 * Translates node-affinity mask into a cpumask, so that we can use it during
 * actual scheduling. That of course will contain all the cpus from all the
 * set nodes in the original node-affinity mask.
 *
 * Note that any serialization needed to access mask safely is complete
 * responsibility of the caller of this function/hook.
 */
static void csched_set_node_affinity(
    const struct scheduler *ops,
    struct domain *d,
    nodemask_t *mask)
{
    struct csched_dom *sdom;
    int node;

    /* Skip idle domain since it doesn't even have a node_affinity_cpumask */
    if ( unlikely(is_idle_domain(d)) )
        return;

    sdom = CSCHED_DOM(d);
    cpumask_clear(sdom->node_affinity_cpumask);
    for_each_node_mask( node, *mask )
        cpumask_or(sdom->node_affinity_cpumask, sdom->node_affinity_cpumask,
                   &node_to_cpumask(node));
}

#define for_each_csched_balance_step(step) \
    for ( (step) = 0; (step) <= CSCHED_BALANCE_CPU_AFFINITY; (step)++ )


/*
 * vcpu-affinity balancing is always necessary and must never be skipped.
 * OTOH, if a domain's node-affinity is said to be automatically computed
 * (or if it just spans all the nodes), we can safely avoid dealing with
 * node-affinity entirely.
 *
 * Node-affinity is also deemed meaningless in case it has empty
 * intersection with mask, to cover the cases where using the node-affinity
 * mask seems legit, but would instead led to trying to schedule the vcpu
 * on _no_ pcpu! Typical use cases are for mask to be equal to the vcpu's
 * vcpu-affinity, or to the && of vcpu-affinity and the set of online cpus
 * in the domain's cpupool.
 */
static inline int __vcpu_has_node_affinity(const struct vcpu *vc,
                                           const cpumask_t *mask)
{
    const struct domain *d = vc->domain;
    const struct csched_dom *sdom = CSCHED_DOM(d);

    if ( d->auto_node_affinity
         || cpumask_full(sdom->node_affinity_cpumask)
         || !cpumask_intersects(sdom->node_affinity_cpumask, mask) )
        return 0;

    return 1;
}

/*
 * Each csched-balance step uses its own cpumask. This function determines
 * which one (given the step) and copies it in mask. For the node-affinity
 * balancing step, the pcpus that are not part of vc's vcpu-affinity are
 * filtered out from the result, to avoid running a vcpu where it would
 * like, but is not allowed to!
 */
static void
csched_balance_cpumask(const struct vcpu *vc, int step, cpumask_t *mask)
{
    if ( step == CSCHED_BALANCE_NODE_AFFINITY )
    {
        cpumask_and(mask, CSCHED_DOM(vc->domain)->node_affinity_cpumask,
                    vc->cpu_affinity);

        if ( unlikely(cpumask_empty(mask)) )
            cpumask_copy(mask, vc->cpu_affinity);
    }
    else /* step == CSCHED_BALANCE_CPU_AFFINITY */
        cpumask_copy(mask, vc->cpu_affinity);
}

static void burn_credits(struct csched_vcpu *svc, s_time_t now)
{
    s_time_t delta;
    uint64_t val;
    unsigned int credits;

    /* Assert svc is current */
    ASSERT( svc == CSCHED_VCPU(curr_on_cpu(svc->vcpu->processor)) );

    if ( (delta = now - svc->start_time) <= 0 )
        return;

    val = delta * CSCHED_CREDITS_PER_MSEC + svc->residual;
    svc->residual = do_div(val, MILLISECS(1));
    credits = val;
    ASSERT(credits == val); /* make sure we haven't truncated val */
    atomic_sub(credits, &svc->credit);
    svc->start_time += (credits * MILLISECS(1)) / CSCHED_CREDITS_PER_MSEC;
}

static bool_t __read_mostly opt_tickle_one_idle = 1;
boolean_param("tickle_one_idle_cpu", opt_tickle_one_idle);

DEFINE_PER_CPU(unsigned int, last_tickle_cpu);

static inline void
__runq_tickle(unsigned int cpu, struct csched_vcpu *new)
{
    struct csched_vcpu * const cur = CSCHED_VCPU(curr_on_cpu(cpu));
    struct csched_private *prv = CSCHED_PRIV(per_cpu(scheduler, cpu));
    cpumask_t mask, idle_mask;
    int balance_step, idlers_empty;

    ASSERT(cur);
    cpumask_clear(&mask);
    idlers_empty = cpumask_empty(prv->idlers);


    /*
     * If the pcpu is idle, or there are no idlers and the new
     * vcpu is a higher priority than the old vcpu, run it here.
     *
     * If there are idle cpus, first try to find one suitable to run
     * new, so we can avoid preempting cur.  If we cannot find a
     * suitable idler on which to run new, run it here, but try to
     * find a suitable idler on which to run cur instead.
     */
    if ( cur->pri == CSCHED_PRI_IDLE
         || (idlers_empty && new->pri > cur->pri) )
    {
        if ( cur->pri != CSCHED_PRI_IDLE )
            SCHED_STAT_CRANK(tickle_idlers_none);
        cpumask_set_cpu(cpu, &mask);
    }
    else if ( !idlers_empty )
    {
        /*
         * Node and vcpu-affinity balancing loop. For vcpus without
         * a useful node-affinity, consider vcpu-affinity only.
         */
        for_each_csched_balance_step( balance_step )
        {
            int new_idlers_empty;

            if ( balance_step == CSCHED_BALANCE_NODE_AFFINITY
                 && !__vcpu_has_node_affinity(new->vcpu,
                                              new->vcpu->cpu_affinity) )
                continue;

            /* Are there idlers suitable for new (for this balance step)? */
            csched_balance_cpumask(new->vcpu, balance_step,
                                   csched_balance_mask);
            cpumask_and(&idle_mask, prv->idlers, csched_balance_mask);
            new_idlers_empty = cpumask_empty(&idle_mask);

            /*
             * Let's not be too harsh! If there aren't idlers suitable
             * for new in its node-affinity mask, make sure we check its
             * vcpu-affinity as well, before taking final decisions.
             */
            if ( new_idlers_empty
                 && balance_step == CSCHED_BALANCE_NODE_AFFINITY )
                continue;

            /*
             * If there are no suitable idlers for new, and it's higher
             * priority than cur, ask the scheduler to migrate cur away.
             * We have to act like this (instead of just waking some of
             * the idlers suitable for cur) because cur is running.
             *
             * If there are suitable idlers for new, no matter priorities,
             * leave cur alone (as it is running and is, likely, cache-hot)
             * and wake some of them (which is waking up and so is, likely,
             * cache cold anyway).
             */
            if ( new_idlers_empty && new->pri > cur->pri )
            {
                SCHED_STAT_CRANK(tickle_idlers_none);
                SCHED_VCPU_STAT_CRANK(cur, kicked_away);
                SCHED_VCPU_STAT_CRANK(cur, migrate_r);
                SCHED_STAT_CRANK(migrate_kicked_away);
                set_bit(_VPF_migrating, &cur->vcpu->pause_flags);
                cpumask_set_cpu(cpu, &mask);
            }
            else if ( !new_idlers_empty )
            {
                /* Which of the idlers suitable for new shall we wake up? */
                SCHED_STAT_CRANK(tickle_idlers_some);
                if ( opt_tickle_one_idle )
                {
                    this_cpu(last_tickle_cpu) =
                        cpumask_cycle(this_cpu(last_tickle_cpu), &idle_mask);
                    cpumask_set_cpu(this_cpu(last_tickle_cpu), &mask);
                }
                else
                    cpumask_or(&mask, &mask, &idle_mask);
            }

            /* Did we find anyone? */
            if ( !cpumask_empty(&mask) )
                break;
        }
    }

    if ( !cpumask_empty(&mask) )
    {
        if ( unlikely(tb_init_done) )
        {
            /* Avoid TRACE_*: saves checking !tb_init_done each step */
            for_each_cpu(cpu, &mask)
                __trace_var(TRC_CSCHED_TICKLE, 0, sizeof(cpu), &cpu);
        }

        /* Send scheduler interrupts to designated CPUs */
        cpumask_raise_softirq(&mask, SCHEDULE_SOFTIRQ);
    }
}

static void
csched_free_pdata(const struct scheduler *ops, void *pcpu, int cpu)
{
    struct csched_private *prv = CSCHED_PRIV(ops);
    struct csched_pcpu *spc = pcpu;
    unsigned long flags;

    if ( spc == NULL )
        return;

    spin_lock_irqsave(&prv->lock, flags);

    prv->credit -= prv->credits_per_tslice;
    prv->ncpus--;
    cpumask_clear_cpu(cpu, prv->idlers);
    cpumask_clear_cpu(cpu, prv->cpus);
    if ( (prv->master == cpu) && (prv->ncpus > 0) )
    {
        prv->master = cpumask_first(prv->cpus);
        migrate_timer(&prv->master_ticker, prv->master);
    }
    kill_timer(&spc->ticker);
    if ( prv->ncpus == 0 )
        kill_timer(&prv->master_ticker);

    spin_unlock_irqrestore(&prv->lock, flags);

    free_cpumask_var(spc->balance_mask);
    xfree(spc);
}

static void *
csched_alloc_pdata(const struct scheduler *ops, int cpu)
{
    struct csched_pcpu *spc;
    struct csched_private *prv = CSCHED_PRIV(ops);
    unsigned long flags;

    /* Allocate per-PCPU info */
    spc = xzalloc(struct csched_pcpu);
    if ( spc == NULL )
        return NULL;

    if ( !alloc_cpumask_var(&spc->balance_mask) )
    {
        xfree(spc);
        return NULL;
    }

    spin_lock_irqsave(&prv->lock, flags);

    /* Initialize/update system-wide config */
    prv->credit += prv->credits_per_tslice;
    prv->ncpus++;
    cpumask_set_cpu(cpu, prv->cpus);
    if ( prv->ncpus == 1 )
    {
        prv->master = cpu;
        init_timer(&prv->master_ticker, csched_acct, prv, cpu);
        set_timer(&prv->master_ticker,
                  NOW() + MILLISECS(prv->tslice_ms));
    }

    init_timer(&spc->ticker, csched_tick, (void *)(unsigned long)cpu, cpu);
    set_timer(&spc->ticker, NOW() + MICROSECS(prv->tick_period_us) );

    INIT_LIST_HEAD(&spc->runq);
    spc->runq_sort_last = prv->runq_sort;
    spc->idle_bias = nr_cpu_ids - 1;
    if ( per_cpu(schedule_data, cpu).sched_priv == NULL )
        per_cpu(schedule_data, cpu).sched_priv = spc;

    /* Start off idling... */
    BUG_ON(!is_idle_vcpu(curr_on_cpu(cpu)));
    cpumask_set_cpu(cpu, prv->idlers);

    spin_unlock_irqrestore(&prv->lock, flags);

    return spc;
}

#ifndef NDEBUG
static inline void
__csched_vcpu_check(struct vcpu *vc)
{
    struct csched_vcpu * const svc = CSCHED_VCPU(vc);
    struct csched_dom * const sdom = svc->sdom;

    BUG_ON( svc->vcpu != vc );
    BUG_ON( sdom != CSCHED_DOM(vc->domain) );
    if ( sdom )
    {
        BUG_ON( is_idle_vcpu(vc) );
        BUG_ON( sdom->dom != vc->domain );
    }
    else
    {
        BUG_ON( !is_idle_vcpu(vc) );
    }

    SCHED_STAT_CRANK(vcpu_check);
}
#define CSCHED_VCPU_CHECK(_vc)  (__csched_vcpu_check(_vc))
#else
#define CSCHED_VCPU_CHECK(_vc)
#endif

/*
 * Delay, in microseconds, between migrations of a VCPU between PCPUs.
 * This prevents rapid fluttering of a VCPU between CPUs, and reduces the
 * implicit overheads such as cache-warming. 1ms (1000) has been measured
 * as a good value.
 */
static unsigned int vcpu_migration_delay;
integer_param("vcpu_migration_delay", vcpu_migration_delay);

void set_vcpu_migration_delay(unsigned int delay)
{
    vcpu_migration_delay = delay;
}

unsigned int get_vcpu_migration_delay(void)
{
    return vcpu_migration_delay;
}

static inline int
__csched_vcpu_is_cache_hot(struct vcpu *v)
{
    int hot = ((NOW() - v->last_run_time) <
               ((uint64_t)vcpu_migration_delay * 1000u));

    if ( hot )
        SCHED_STAT_CRANK(vcpu_hot);

    return hot;
}

static inline int
__csched_vcpu_is_migrateable(struct vcpu *vc, int dest_cpu, cpumask_t *mask)
{
    /*
     * Don't pick up work that's in the peer's scheduling tail or hot on
     * peer PCPU. Only pick up work that prefers and/or is allowed to run
     * on our CPU.
     */
    return !vc->is_running &&
           !__csched_vcpu_is_cache_hot(vc) &&
           cpumask_test_cpu(dest_cpu, mask);
}

static int
_csched_cpu_pick(const struct scheduler *ops, struct vcpu *vc, bool_t commit)
{
    cpumask_t cpus;
    cpumask_t idlers;
    cpumask_t *online;
    struct csched_pcpu *spc = NULL;
    int cpu = vc->processor;
    int balance_step;

    /* Store in cpus the mask of online cpus on which the domain can run */
    online = cpupool_scheduler_cpumask(vc->domain->cpupool);
    cpumask_and(&cpus, vc->cpu_affinity, online);

    for_each_csched_balance_step( balance_step )
    {
        /*
         * We want to pick up a pcpu among the ones that are online and
         * can accommodate vc, which is basically what we computed above
         * and stored in cpus. As far as vcpu-affinity is concerned,
         * there always will be at least one of these pcpus, hence cpus
         * is never empty and the calls to cpumask_cycle() and
         * cpumask_test_cpu() below are ok.
         *
         * On the other hand, when considering node-affinity too, it
         * is possible for the mask to become empty (for instance, if the
         * domain has been put in a cpupool that does not contain any of the
         * nodes in its node-affinity), which would result in the ASSERT()-s
         * inside cpumask_*() operations triggering (in debug builds).
         *
         * Therefore, in this case, we filter the node-affinity mask against
         * cpus and, if the result is empty, we just skip the node-affinity
         * balancing step all together.
         */
        if ( balance_step == CSCHED_BALANCE_NODE_AFFINITY
             && !__vcpu_has_node_affinity(vc, &cpus) )
            continue;

        /* Pick an online CPU from the proper affinity mask */
        csched_balance_cpumask(vc, balance_step, &cpus);
        cpumask_and(&cpus, &cpus, online);

        /* If present, prefer vc's current processor */
        cpu = cpumask_test_cpu(vc->processor, &cpus)
                ? vc->processor
                : cpumask_cycle(vc->processor, &cpus);
        ASSERT(cpumask_test_cpu(cpu, &cpus));

        /*
         * Try to find an idle processor within the above constraints.
         *
         * In multi-core and multi-threaded CPUs, not all idle execution
         * vehicles are equal!
         *
         * We give preference to the idle execution vehicle with the most
         * idling neighbours in its grouping. This distributes work across
         * distinct cores first and guarantees we don't do something stupid
         * like run two VCPUs on co-hyperthreads while there are idle cores
         * or sockets.
         *
         * Notice that, when computing the "idleness" of cpu, we may want to
         * discount vc. That is, iff vc is the currently running and the only
         * runnable vcpu on cpu, we add cpu to the idlers.
         */
        cpumask_and(&idlers, &cpu_online_map, CSCHED_PRIV(ops)->idlers);
        if ( vc->processor == cpu && IS_RUNQ_IDLE(cpu) )
            cpumask_set_cpu(cpu, &idlers);
        cpumask_and(&cpus, &cpus, &idlers);

        /*
         * It is important that cpu points to an idle processor, if a suitable
         * one exists (and we can use cpus to check and, possibly, choose a new
         * CPU, as we just &&-ed it with idlers). In fact, if we are on SMT, and
         * cpu points to a busy thread with an idle sibling, both the threads
         * will be considered the same, from the "idleness" calculation point
         * of view", preventing vcpu from being moved to the thread that is
         * actually idle.
         *
         * Notice that cpumask_test_cpu() is quicker than cpumask_empty(), so
         * we check for it first.
         */
        if ( !cpumask_test_cpu(cpu, &cpus) && !cpumask_empty(&cpus) )
            cpu = cpumask_cycle(cpu, &cpus);
        cpumask_clear_cpu(cpu, &cpus);

        while ( !cpumask_empty(&cpus) )
        {
            cpumask_t cpu_idlers;
            cpumask_t nxt_idlers;
            int nxt, weight_cpu, weight_nxt;
            int migrate_factor;

            nxt = cpumask_cycle(cpu, &cpus);

            if ( cpumask_test_cpu(cpu, per_cpu(cpu_core_mask, nxt)) )
            {
                /* We're on the same socket, so check the busy-ness of threads.
                 * Migrate if # of idlers is less at all */
                ASSERT( cpumask_test_cpu(nxt, per_cpu(cpu_core_mask, cpu)) );
                migrate_factor = 1;
                cpumask_and(&cpu_idlers, &idlers, per_cpu(cpu_sibling_mask,
                            cpu));
                cpumask_and(&nxt_idlers, &idlers, per_cpu(cpu_sibling_mask,
                            nxt));
            }
            else
            {
                /* We're on different sockets, so check the busy-ness of cores.
                 * Migrate only if the other core is twice as idle */
                ASSERT( !cpumask_test_cpu(nxt, per_cpu(cpu_core_mask, cpu)) );
                migrate_factor = 2;
                cpumask_and(&cpu_idlers, &idlers, per_cpu(cpu_core_mask, cpu));
                cpumask_and(&nxt_idlers, &idlers, per_cpu(cpu_core_mask, nxt));
            }

            weight_cpu = cpumask_weight(&cpu_idlers);
            weight_nxt = cpumask_weight(&nxt_idlers);
            /* smt_power_savings: consolidate work rather than spreading it */
            if ( sched_smt_power_savings ?
                 weight_cpu > weight_nxt :
                 weight_cpu * migrate_factor < weight_nxt )
            {
                cpumask_and(&nxt_idlers, &cpus, &nxt_idlers);
                spc = CSCHED_PCPU(nxt);
                cpu = cpumask_cycle(spc->idle_bias, &nxt_idlers);
                cpumask_andnot(&cpus, &cpus, per_cpu(cpu_sibling_mask, cpu));
            }
            else
            {
                cpumask_andnot(&cpus, &cpus, &nxt_idlers);
            }
        }

        /* Stop if cpu is idle */
        if ( cpumask_test_cpu(cpu, &idlers) )
            break;
    }

    if ( commit && spc )
       spc->idle_bias = cpu;

    TRACE_3D(TRC_CSCHED_PICKED_CPU, vc->domain->domain_id, vc->vcpu_id, cpu);

    return cpu;
}

static int
csched_cpu_pick(const struct scheduler *ops, struct vcpu *vc)
{
    return _csched_cpu_pick(ops, vc, 1);
}

static inline void
__csched_vcpu_acct_start(struct csched_private *prv, struct csched_vcpu *svc)
{
    struct csched_dom * const sdom = svc->sdom;
    unsigned long flags;

    spin_lock_irqsave(&prv->lock, flags);

    if ( list_empty(&svc->active_vcpu_elem) )
    {
        SCHED_VCPU_STAT_CRANK(svc, state_active);
        SCHED_STAT_CRANK(acct_vcpu_active);

        sdom->active_vcpu_count++;
        list_add(&svc->active_vcpu_elem, &sdom->active_vcpu);
        /* Make weight per-vcpu */
        prv->weight += sdom->weight;
        if ( list_empty(&sdom->active_sdom_elem) )
        {
            list_add(&sdom->active_sdom_elem, &prv->active_sdom);
        }
    }

    TRACE_3D(TRC_CSCHED_ACCOUNT_START, sdom->dom->domain_id,
             svc->vcpu->vcpu_id, sdom->active_vcpu_count);

    spin_unlock_irqrestore(&prv->lock, flags);
}

static inline void
__csched_vcpu_acct_stop_locked(struct csched_private *prv,
    struct csched_vcpu *svc)
{
    struct csched_dom * const sdom = svc->sdom;

    BUG_ON( list_empty(&svc->active_vcpu_elem) );

    SCHED_VCPU_STAT_CRANK(svc, state_idle);
    SCHED_STAT_CRANK(acct_vcpu_idle);

    BUG_ON( prv->weight < sdom->weight );
    sdom->active_vcpu_count--;
    list_del_init(&svc->active_vcpu_elem);
    prv->weight -= sdom->weight;
    if ( list_empty(&sdom->active_vcpu) )
    {
        list_del_init(&sdom->active_sdom_elem);
    }

    TRACE_3D(TRC_CSCHED_ACCOUNT_STOP, sdom->dom->domain_id,
             svc->vcpu->vcpu_id, sdom->active_vcpu_count);
}

static void
csched_vcpu_acct(struct csched_private *prv, unsigned int cpu)
{
    struct csched_vcpu * const svc = CSCHED_VCPU(current);
    const struct scheduler *ops = per_cpu(scheduler, cpu);

    ASSERT( current->processor == cpu );
    ASSERT( svc->sdom != NULL );

    /*
     * If this VCPU's priority was boosted when it last awoke, reset it.
     * If the VCPU is found here, then it's consuming a non-negligeable
     * amount of CPU resources and should no longer be boosted.
     */
    if ( svc->pri == CSCHED_PRI_TS_BOOST )
        svc->pri = CSCHED_PRI_TS_UNDER;

    /*
     * Update credits
     */
    if ( !is_idle_vcpu(svc->vcpu) )
        burn_credits(svc, NOW());

    /*
     * Put this VCPU and domain back on the active list if it was
     * idling.
     *
     * If it's been active a while, check if we'd be better off
     * migrating it to run elsewhere (see multi-core and multi-thread
     * support in csched_cpu_pick()).
     */
    if ( list_empty(&svc->active_vcpu_elem) )
    {
        __csched_vcpu_acct_start(prv, svc);
    }
    else if ( _csched_cpu_pick(ops, current, 0) != cpu )
    {
        SCHED_VCPU_STAT_CRANK(svc, migrate_r);
        SCHED_STAT_CRANK(migrate_running);
        set_bit(_VPF_migrating, &current->pause_flags);
        cpu_raise_softirq(cpu, SCHEDULE_SOFTIRQ);
    }
}

static void *
csched_alloc_vdata(const struct scheduler *ops, struct vcpu *vc, void *dd)
{
    struct csched_vcpu *svc;

    /* Allocate per-VCPU info */
    svc = xzalloc(struct csched_vcpu);
    if ( svc == NULL )
        return NULL;

    INIT_LIST_HEAD(&svc->runq_elem);
    INIT_LIST_HEAD(&svc->active_vcpu_elem);
    svc->sdom = dd;
    svc->vcpu = vc;
    svc->pri = is_idle_domain(vc->domain) ?
        CSCHED_PRI_IDLE : CSCHED_PRI_TS_UNDER;
    SCHED_VCPU_STATS_RESET(svc);
    SCHED_STAT_CRANK(vcpu_init);
    return svc;
}

static void
csched_vcpu_insert(const struct scheduler *ops, struct vcpu *vc)
{
    struct csched_vcpu *svc = vc->sched_priv;

    if ( !__vcpu_on_runq(svc) && vcpu_runnable(vc) && !vc->is_running )
        __runq_insert(vc->processor, svc);
}

static void
csched_free_vdata(const struct scheduler *ops, void *priv)
{
    struct csched_vcpu *svc = priv;

    BUG_ON( !list_empty(&svc->runq_elem) );

    xfree(svc);
}

static void
csched_vcpu_remove(const struct scheduler *ops, struct vcpu *vc)
{
    struct csched_private *prv = CSCHED_PRIV(ops);
    struct csched_vcpu * const svc = CSCHED_VCPU(vc);
    struct csched_dom * const sdom = svc->sdom;
    unsigned long flags;

    SCHED_STAT_CRANK(vcpu_destroy);

    if ( test_and_clear_bit(CSCHED_FLAG_VCPU_PARKED, &svc->flags) )
    {
        SCHED_STAT_CRANK(vcpu_unpark);
        vcpu_unpause(svc->vcpu);
    }

    if ( __vcpu_on_runq(svc) )
        __runq_remove(svc);

    spin_lock_irqsave(&(prv->lock), flags);

    if ( !list_empty(&svc->active_vcpu_elem) )
        __csched_vcpu_acct_stop_locked(prv, svc);

    spin_unlock_irqrestore(&(prv->lock), flags);

    BUG_ON( sdom == NULL );
    BUG_ON( !list_empty(&svc->runq_elem) );
}

static void
csched_vcpu_sleep(const struct scheduler *ops, struct vcpu *vc)
{
    struct csched_vcpu * const svc = CSCHED_VCPU(vc);

    SCHED_STAT_CRANK(vcpu_sleep);

    BUG_ON( is_idle_vcpu(vc) );

    if ( curr_on_cpu(vc->processor) == vc )
        cpu_raise_softirq(vc->processor, SCHEDULE_SOFTIRQ);
    else if ( __vcpu_on_runq(svc) )
        __runq_remove(svc);
}

static void
csched_vcpu_wake(const struct scheduler *ops, struct vcpu *vc)
{
    struct csched_vcpu * const svc = CSCHED_VCPU(vc);
    const unsigned int cpu = vc->processor;

    BUG_ON( is_idle_vcpu(vc) );

    if ( unlikely(curr_on_cpu(cpu) == vc) )
    {
        SCHED_STAT_CRANK(vcpu_wake_running);
        return;
    }
    if ( unlikely(__vcpu_on_runq(svc)) )
    {
        SCHED_STAT_CRANK(vcpu_wake_onrunq);
        return;
    }

    if ( likely(vcpu_runnable(vc)) )
        SCHED_STAT_CRANK(vcpu_wake_runnable);
    else
        SCHED_STAT_CRANK(vcpu_wake_not_runnable);

    /*
     * We temporarly boost the priority of awaking VCPUs!
     *
     * If this VCPU consumes a non negligeable amount of CPU, it
     * will eventually find itself in the credit accounting code
     * path where its priority will be reset to normal.
     *
     * If on the other hand the VCPU consumes little CPU and is
     * blocking and awoken a lot (doing I/O for example), its
     * priority will remain boosted, optimizing it's wake-to-run
     * latencies.
     *
     * This allows wake-to-run latency sensitive VCPUs to preempt
     * more CPU resource intensive VCPUs without impacting overall 
     * system fairness.
     *
     * The one exception is for VCPUs of capped domains unpausing
     * after earning credits they had overspent. We don't boost
     * those.
     */
    if ( svc->pri == CSCHED_PRI_TS_UNDER &&
         !test_bit(CSCHED_FLAG_VCPU_PARKED, &svc->flags) )
    {
        svc->pri = CSCHED_PRI_TS_BOOST;
    }

    /* Put the VCPU on the runq and tickle CPUs */
    __runq_insert(cpu, svc);
    __runq_tickle(cpu, svc);
}

static void
csched_vcpu_yield(const struct scheduler *ops, struct vcpu *vc)
{
    struct csched_vcpu * const svc = CSCHED_VCPU(vc);

    /* Let the scheduler know that this vcpu is trying to yield */
    set_bit(CSCHED_FLAG_VCPU_YIELD, &svc->flags);
}

static int
csched_dom_cntl(
    const struct scheduler *ops,
    struct domain *d,
    struct xen_domctl_scheduler_op *op)
{
    struct csched_dom * const sdom = CSCHED_DOM(d);
    struct csched_private *prv = CSCHED_PRIV(ops);
    unsigned long flags;

    /* Protect both get and put branches with the pluggable scheduler
     * lock. Runq lock not needed anywhere in here. */
    spin_lock_irqsave(&prv->lock, flags);

    if ( op->cmd == XEN_DOMCTL_SCHEDOP_getinfo )
    {
        op->u.credit.weight = sdom->weight;
        op->u.credit.cap = sdom->cap;
    }
    else
    {
        ASSERT(op->cmd == XEN_DOMCTL_SCHEDOP_putinfo);

        if ( op->u.credit.weight != 0 )
        {
            if ( !list_empty(&sdom->active_sdom_elem) )
            {
                prv->weight -= sdom->weight * sdom->active_vcpu_count;
                prv->weight += op->u.credit.weight * sdom->active_vcpu_count;
            }
            sdom->weight = op->u.credit.weight;
        }

        if ( op->u.credit.cap != (uint16_t)~0U )
            sdom->cap = op->u.credit.cap;

    }

    spin_unlock_irqrestore(&prv->lock, flags);

    return 0;
}

static int
csched_sys_cntl(const struct scheduler *ops,
                        struct xen_sysctl_scheduler_op *sc)
{
    int rc = -EINVAL;
    xen_sysctl_credit_schedule_t *params = &sc->u.sched_credit;
    struct csched_private *prv = CSCHED_PRIV(ops);

    switch ( sc->cmd )
    {
    case XEN_SYSCTL_SCHEDOP_putinfo:
        if (params->tslice_ms > XEN_SYSCTL_CSCHED_TSLICE_MAX
            || params->tslice_ms < XEN_SYSCTL_CSCHED_TSLICE_MIN 
            || (params->ratelimit_us
                && (params->ratelimit_us > XEN_SYSCTL_SCHED_RATELIMIT_MAX
                    || params->ratelimit_us < XEN_SYSCTL_SCHED_RATELIMIT_MIN))
            || MICROSECS(params->ratelimit_us) > MILLISECS(params->tslice_ms) )
                goto out;
        prv->tslice_ms = params->tslice_ms;
        prv->ratelimit_us = params->ratelimit_us;
        /* FALLTHRU */
    case XEN_SYSCTL_SCHEDOP_getinfo:
        params->tslice_ms = prv->tslice_ms;
        params->ratelimit_us = prv->ratelimit_us;
        rc = 0;
        break;
    }
    out:
    return rc;
}

static void *
csched_alloc_domdata(const struct scheduler *ops, struct domain *dom)
{
    struct csched_dom *sdom;

    sdom = xzalloc(struct csched_dom);
    if ( sdom == NULL )
        return NULL;

    if ( !alloc_cpumask_var(&sdom->node_affinity_cpumask) )
    {
        xfree(sdom);
        return NULL;
    }
    cpumask_setall(sdom->node_affinity_cpumask);

    /* Initialize credit and weight */
    INIT_LIST_HEAD(&sdom->active_vcpu);
    INIT_LIST_HEAD(&sdom->active_sdom_elem);
    sdom->dom = dom;
    sdom->weight = CSCHED_DEFAULT_WEIGHT;

    return (void *)sdom;
}

static int
csched_dom_init(const struct scheduler *ops, struct domain *dom)
{
    struct csched_dom *sdom;

    if ( is_idle_domain(dom) )
        return 0;

    sdom = csched_alloc_domdata(ops, dom);
    if ( sdom == NULL )
        return -ENOMEM;

    dom->sched_priv = sdom;

    return 0;
}

static void
csched_free_domdata(const struct scheduler *ops, void *data)
{
    struct csched_dom *sdom = data;

    free_cpumask_var(sdom->node_affinity_cpumask);
    xfree(data);
}

static void
csched_dom_destroy(const struct scheduler *ops, struct domain *dom)
{
    csched_free_domdata(ops, CSCHED_DOM(dom));
}

/*
 * This is a O(n) optimized sort of the runq.
 *
 * Time-share VCPUs can only be one of two priorities, UNDER or OVER. We walk
 * through the runq and move up any UNDERs that are preceded by OVERS. We
 * remember the last UNDER to make the move up operation O(1).
 */
static void
csched_runq_sort(struct csched_private *prv, unsigned int cpu)
{
    struct csched_pcpu * const spc = CSCHED_PCPU(cpu);
    struct list_head *runq, *elem, *next, *last_under;
    struct csched_vcpu *svc_elem;
    spinlock_t *lock;
    unsigned long flags;
    int sort_epoch;

    sort_epoch = prv->runq_sort;
    if ( sort_epoch == spc->runq_sort_last )
        return;

    spc->runq_sort_last = sort_epoch;

    lock = pcpu_schedule_lock_irqsave(cpu, &flags);

    runq = &spc->runq;
    elem = runq->next;
    last_under = runq;

    while ( elem != runq )
    {
        next = elem->next;
        svc_elem = __runq_elem(elem);

        if ( svc_elem->pri >= CSCHED_PRI_TS_UNDER )
        {
            /* does elem need to move up the runq? */
            if ( elem->prev != last_under )
            {
                list_del(elem);
                list_add(elem, last_under);
            }
            last_under = elem;
        }

        elem = next;
    }

    pcpu_schedule_unlock_irqrestore(lock, flags, cpu);
}

static void
csched_acct(void* dummy)
{
    struct csched_private *prv = dummy;
    unsigned long flags;
    struct list_head *iter_vcpu, *next_vcpu;
    struct list_head *iter_sdom, *next_sdom;
    struct csched_vcpu *svc;
    struct csched_dom *sdom;
    uint32_t credit_total;
    uint32_t weight_total;
    uint32_t weight_left;
    uint32_t credit_fair;
    uint32_t credit_peak;
    uint32_t credit_cap;
    int credit_balance;
    int credit_xtra;
    int credit;


    spin_lock_irqsave(&prv->lock, flags);

    weight_total = prv->weight;
    credit_total = prv->credit;

    /* Converge balance towards 0 when it drops negative */
    if ( prv->credit_balance < 0 )
    {
        credit_total -= prv->credit_balance;
        SCHED_STAT_CRANK(acct_balance);
    }

    if ( unlikely(weight_total == 0) )
    {
        prv->credit_balance = 0;
        spin_unlock_irqrestore(&prv->lock, flags);
        SCHED_STAT_CRANK(acct_no_work);
        goto out;
    }

    SCHED_STAT_CRANK(acct_run);

    weight_left = weight_total;
    credit_balance = 0;
    credit_xtra = 0;
    credit_cap = 0U;

    list_for_each_safe( iter_sdom, next_sdom, &prv->active_sdom )
    {
        sdom = list_entry(iter_sdom, struct csched_dom, active_sdom_elem);

        BUG_ON( is_idle_domain(sdom->dom) );
        BUG_ON( sdom->active_vcpu_count == 0 );
        BUG_ON( sdom->weight == 0 );
        BUG_ON( (sdom->weight * sdom->active_vcpu_count) > weight_left );

        weight_left -= ( sdom->weight * sdom->active_vcpu_count );

        /*
         * A domain's fair share is computed using its weight in competition
         * with that of all other active domains.
         *
         * At most, a domain can use credits to run all its active VCPUs
         * for one full accounting period. We allow a domain to earn more
         * only when the system-wide credit balance is negative.
         */
        credit_peak = sdom->active_vcpu_count * prv->credits_per_tslice;
        if ( prv->credit_balance < 0 )
        {
            credit_peak += ( ( -prv->credit_balance
                               * sdom->weight
                               * sdom->active_vcpu_count) +
                             (weight_total - 1)
                           ) / weight_total;
        }

        if ( sdom->cap != 0U )
        {
            credit_cap = ((sdom->cap * prv->credits_per_tslice) + 99) / 100;
            if ( credit_cap < credit_peak )
                credit_peak = credit_cap;

            /* FIXME -- set cap per-vcpu as well...? */
            credit_cap = ( credit_cap + ( sdom->active_vcpu_count - 1 )
                         ) / sdom->active_vcpu_count;
        }

        credit_fair = ( ( credit_total
                          * sdom->weight
                          * sdom->active_vcpu_count )
                        + (weight_total - 1)
                      ) / weight_total;

        if ( credit_fair < credit_peak )
        {
            credit_xtra = 1;
        }
        else
        {
            if ( weight_left != 0U )
            {
                /* Give other domains a chance at unused credits */
                credit_total += ( ( ( credit_fair - credit_peak
                                    ) * weight_total
                                  ) + ( weight_left - 1 )
                                ) / weight_left;
            }

            if ( credit_xtra )
            {
                /*
                 * Lazily keep domains with extra credits at the head of
                 * the queue to give others a chance at them in future
                 * accounting periods.
                 */
                SCHED_STAT_CRANK(acct_reorder);
                list_del(&sdom->active_sdom_elem);
                list_add(&sdom->active_sdom_elem, &prv->active_sdom);
            }

            credit_fair = credit_peak;
        }

        /* Compute fair share per VCPU */
        credit_fair = ( credit_fair + ( sdom->active_vcpu_count - 1 )
                      ) / sdom->active_vcpu_count;


        list_for_each_safe( iter_vcpu, next_vcpu, &sdom->active_vcpu )
        {
            svc = list_entry(iter_vcpu, struct csched_vcpu, active_vcpu_elem);
            BUG_ON( sdom != svc->sdom );

            /* Increment credit */
            atomic_add(credit_fair, &svc->credit);
            credit = atomic_read(&svc->credit);

            /*
             * Recompute priority or, if VCPU is idling, remove it from
             * the active list.
             */
            if ( credit < 0 )
            {
                svc->pri = CSCHED_PRI_TS_OVER;

                /* Park running VCPUs of capped-out domains */
                if ( sdom->cap != 0U &&
                     credit < -credit_cap &&
                     !test_and_set_bit(CSCHED_FLAG_VCPU_PARKED, &svc->flags) )
                {
                    SCHED_STAT_CRANK(vcpu_park);
                    vcpu_pause_nosync(svc->vcpu);
                }

                /* Lower bound on credits */
                if ( credit < -prv->credits_per_tslice )
                {
                    SCHED_STAT_CRANK(acct_min_credit);
                    credit = -prv->credits_per_tslice;
                    atomic_set(&svc->credit, credit);
                }
            }
            else
            {
                svc->pri = CSCHED_PRI_TS_UNDER;

                /* Unpark any capped domains whose credits go positive */
                if ( test_and_clear_bit(CSCHED_FLAG_VCPU_PARKED, &svc->flags) )
                {
                    /*
                     * It's important to unset the flag AFTER the unpause()
                     * call to make sure the VCPU's priority is not boosted
                     * if it is woken up here.
                     */
                    SCHED_STAT_CRANK(vcpu_unpark);
                    vcpu_unpause(svc->vcpu);
                }

                /* Upper bound on credits means VCPU stops earning */
                if ( credit > prv->credits_per_tslice )
                {
                    __csched_vcpu_acct_stop_locked(prv, svc);
                    /* Divide credits in half, so that when it starts
                     * accounting again, it starts a little bit "ahead" */
                    credit /= 2;
                    atomic_set(&svc->credit, credit);
                }
            }

            SCHED_VCPU_STAT_SET(svc, credit_last, credit);
            SCHED_VCPU_STAT_SET(svc, credit_incr, credit_fair);
            credit_balance += credit;
        }
    }

    prv->credit_balance = credit_balance;

    spin_unlock_irqrestore(&prv->lock, flags);

    /* Inform each CPU that its runq needs to be sorted */
    prv->runq_sort++;

out:
    set_timer( &prv->master_ticker,
               NOW() + MILLISECS(prv->tslice_ms));
}

static void
csched_tick(void *_cpu)
{
    unsigned int cpu = (unsigned long)_cpu;
    struct csched_pcpu *spc = CSCHED_PCPU(cpu);
    struct csched_private *prv = CSCHED_PRIV(per_cpu(scheduler, cpu));

    spc->tick++;

    /*
     * Accounting for running VCPU
     */
    if ( !is_idle_vcpu(current) )
        csched_vcpu_acct(prv, cpu);

    /*
     * Check if runq needs to be sorted
     *
     * Every physical CPU resorts the runq after the accounting master has
     * modified priorities. This is a special O(n) sort and runs at most
     * once per accounting period (currently 30 milliseconds).
     */
    csched_runq_sort(prv, cpu);

    set_timer(&spc->ticker, NOW() + MICROSECS(prv->tick_period_us) );
}

static struct csched_vcpu *
csched_runq_steal(int peer_cpu, int cpu, int pri, int balance_step)
{
    const struct csched_pcpu * const peer_pcpu = CSCHED_PCPU(peer_cpu);
    const struct vcpu * const peer_vcpu = curr_on_cpu(peer_cpu);
    struct csched_vcpu *speer;
    struct list_head *iter;
    struct vcpu *vc;

    /*
     * Don't steal from an idle CPU's runq because it's about to
     * pick up work from it itself.
     */
    if ( peer_pcpu != NULL && !is_idle_vcpu(peer_vcpu) )
    {
        list_for_each( iter, &peer_pcpu->runq )
        {
            speer = __runq_elem(iter);

            /*
             * If next available VCPU here is not of strictly higher
             * priority than ours, this PCPU is useless to us.
             */
            if ( speer->pri <= pri )
                break;

            /* Is this VCPU runnable on our PCPU? */
            vc = speer->vcpu;
            BUG_ON( is_idle_vcpu(vc) );

            /*
             * If the vcpu has no useful node-affinity, skip this vcpu.
             * In fact, what we want is to check if we have any node-affine
             * work to steal, before starting to look at vcpu-affine work.
             *
             * Notice that, if not even one vCPU on this runq has a useful
             * node-affinity, we could have avoid considering this runq for
             * a node balancing step in the first place. This, for instance,
             * can be implemented by taking note of on what runq there are
             * vCPUs with useful node-affinities in some sort of bitmap
             * or counter.
             */
            if ( balance_step == CSCHED_BALANCE_NODE_AFFINITY
                 && !__vcpu_has_node_affinity(vc, vc->cpu_affinity) )
                continue;

            csched_balance_cpumask(vc, balance_step, csched_balance_mask);
            if ( __csched_vcpu_is_migrateable(vc, cpu, csched_balance_mask) )
            {
                /* We got a candidate. Grab it! */
                TRACE_3D(TRC_CSCHED_STOLEN_VCPU, peer_cpu,
                         vc->domain->domain_id, vc->vcpu_id);
                SCHED_VCPU_STAT_CRANK(speer, migrate_q);
                SCHED_STAT_CRANK(migrate_queued);
                WARN_ON(vc->is_urgent);
                __runq_remove(speer);
                vc->processor = cpu;
                return speer;
            }
        }
    }

    SCHED_STAT_CRANK(steal_peer_idle);
    return NULL;
}

static struct csched_vcpu *
csched_load_balance(struct csched_private *prv, int cpu,
    struct csched_vcpu *snext, bool_t *stolen)
{
    struct csched_vcpu *speer;
    cpumask_t workers;
    cpumask_t *online;
    int peer_cpu, peer_node, bstep;
    int node = cpu_to_node(cpu);

    BUG_ON( cpu != snext->vcpu->processor );
    online = cpupool_scheduler_cpumask(per_cpu(cpupool, cpu));

    /* If this CPU is going offline we shouldn't steal work. */
    if ( unlikely(!cpumask_test_cpu(cpu, online)) )
        goto out;

    if ( snext->pri == CSCHED_PRI_IDLE )
        SCHED_STAT_CRANK(load_balance_idle);
    else if ( snext->pri == CSCHED_PRI_TS_OVER )
        SCHED_STAT_CRANK(load_balance_over);
    else
        SCHED_STAT_CRANK(load_balance_other);

    /*
     * Let's look around for work to steal, taking both vcpu-affinity
     * and node-affinity into account. More specifically, we check all
     * the non-idle CPUs' runq, looking for:
     *  1. any node-affine work to steal first,
     *  2. if not finding anything, any vcpu-affine work to steal.
     */
    for_each_csched_balance_step( bstep )
    {
        /*
         * We peek at the non-idling CPUs in a node-wise fashion. In fact,
         * it is more likely that we find some node-affine work on our same
         * node, not to mention that migrating vcpus within the same node
         * could well expected to be cheaper than across-nodes (memory
         * stays local, there might be some node-wide cache[s], etc.).
         */
        peer_node = node;
        do
        {
            /* Find out what the !idle are in this node */
            cpumask_andnot(&workers, online, prv->idlers);
            cpumask_and(&workers, &workers, &node_to_cpumask(peer_node));
            cpumask_clear_cpu(cpu, &workers);

            peer_cpu = cpumask_first(&workers);
            if ( peer_cpu >= nr_cpu_ids )
                goto next_node;
            do
            {
                /*
                 * Get ahold of the scheduler lock for this peer CPU.
                 *
                 * Note: We don't spin on this lock but simply try it. Spinning
                 * could cause a deadlock if the peer CPU is also load
                 * balancing and trying to lock this CPU.
                 */
                spinlock_t *lock = pcpu_schedule_trylock(peer_cpu);

                if ( !lock )
                {
                    SCHED_STAT_CRANK(steal_trylock_failed);
                    peer_cpu = cpumask_cycle(peer_cpu, &workers);
                    continue;
                }

                /* Any work over there to steal? */
                speer = cpumask_test_cpu(peer_cpu, online) ?
                    csched_runq_steal(peer_cpu, cpu, snext->pri, bstep) : NULL;
                pcpu_schedule_unlock(lock, peer_cpu);

                /* As soon as one vcpu is found, balancing ends */
                if ( speer != NULL )
                {
                    *stolen = 1;
                    return speer;
                }

                peer_cpu = cpumask_cycle(peer_cpu, &workers);

            } while( peer_cpu != cpumask_first(&workers) );

 next_node:
            peer_node = cycle_node(peer_node, node_online_map);
        } while( peer_node != node );
    }

 out:
    /* Failed to find more important work elsewhere... */
    __runq_remove(snext);
    return snext;
}

/*
 * This function is in the critical path. It is designed to be simple and
 * fast for the common case.
 */
static struct task_slice
csched_schedule(
    const struct scheduler *ops, s_time_t now, bool_t tasklet_work_scheduled)
{
    const int cpu = smp_processor_id();
    struct list_head * const runq = RUNQ(cpu);
    struct csched_vcpu * const scurr = CSCHED_VCPU(current);
    struct csched_private *prv = CSCHED_PRIV(ops);
    struct csched_vcpu *snext;
    struct task_slice ret;
    s_time_t runtime, tslice;

    SCHED_STAT_CRANK(schedule);
    CSCHED_VCPU_CHECK(current);

    runtime = now - current->runstate.state_entry_time;
    if ( runtime < 0 ) /* Does this ever happen? */
        runtime = 0;

    if ( !is_idle_vcpu(scurr->vcpu) )
    {
        /* Update credits of a non-idle VCPU. */
        burn_credits(scurr, now);
        scurr->start_time -= now;
    }
    else
    {
        /* Re-instate a boosted idle VCPU as normal-idle. */
        scurr->pri = CSCHED_PRI_IDLE;
    }

    /* Choices, choices:
     * - If we have a tasklet, we need to run the idle vcpu no matter what.
     * - If sched rate limiting is in effect, and the current vcpu has
     *   run for less than that amount of time, continue the current one,
     *   but with a shorter timeslice and return it immediately
     * - Otherwise, chose the one with the highest priority (which may
     *   be the one currently running)
     * - If the currently running one is TS_OVER, see if there
     *   is a higher priority one waiting on the runqueue of another
     *   cpu and steal it.
     */

    /* If we have schedule rate limiting enabled, check to see
     * how long we've run for. */
    if ( !tasklet_work_scheduled
         && prv->ratelimit_us
         && vcpu_runnable(current)
         && !is_idle_vcpu(current)
         && runtime < MICROSECS(prv->ratelimit_us) )
    {
        snext = scurr;
        snext->start_time += now;
        perfc_incr(delay_ms);
        tslice = MICROSECS(prv->ratelimit_us);
        ret.migrated = 0;
        goto out;
    }
    tslice = MILLISECS(prv->tslice_ms);

    /*
     * Select next runnable local VCPU (ie top of local runq)
     */
    if ( vcpu_runnable(current) )
        __runq_insert(cpu, scurr);
    else
        BUG_ON( is_idle_vcpu(current) || list_empty(runq) );

    snext = __runq_elem(runq->next);
    ret.migrated = 0;

    /* Tasklet work (which runs in idle VCPU context) overrides all else. */
    if ( tasklet_work_scheduled )
    {
        TRACE_0D(TRC_CSCHED_SCHED_TASKLET);
        snext = CSCHED_VCPU(idle_vcpu[cpu]);
        snext->pri = CSCHED_PRI_TS_BOOST;
    }

    /*
     * Clear YIELD flag before scheduling out
     */
    clear_bit(CSCHED_FLAG_VCPU_YIELD, &scurr->flags);

    /*
     * SMP Load balance:
     *
     * If the next highest priority local runnable VCPU has already eaten
     * through its credits, look on other PCPUs to see if we have more
     * urgent work... If not, csched_load_balance() will return snext, but
     * already removed from the runq.
     */
    if ( snext->pri > CSCHED_PRI_TS_OVER )
        __runq_remove(snext);
    else
        snext = csched_load_balance(prv, cpu, snext, &ret.migrated);

    /*
     * Update idlers mask if necessary. When we're idling, other CPUs
     * will tickle us when they get extra work.
     */
    if ( snext->pri == CSCHED_PRI_IDLE )
    {
        if ( !cpumask_test_cpu(cpu, prv->idlers) )
            cpumask_set_cpu(cpu, prv->idlers);
    }
    else if ( cpumask_test_cpu(cpu, prv->idlers) )
    {
        cpumask_clear_cpu(cpu, prv->idlers);
    }

    if ( !is_idle_vcpu(snext->vcpu) )
        snext->start_time += now;

out:
    /*
     * Return task to run next...
     */
    ret.time = (is_idle_vcpu(snext->vcpu) ?
                -1 : tslice);
    ret.task = snext->vcpu;

    CSCHED_VCPU_CHECK(ret.task);
    return ret;
}

static void
csched_dump_vcpu(struct csched_vcpu *svc)
{
    struct csched_dom * const sdom = svc->sdom;

    printk("[%i.%i] pri=%i flags=%x cpu=%i",
            svc->vcpu->domain->domain_id,
            svc->vcpu->vcpu_id,
            svc->pri,
            svc->flags,
            svc->vcpu->processor);

    if ( sdom )
    {
        printk(" credit=%i [w=%u]", atomic_read(&svc->credit), sdom->weight);
#ifdef CSCHED_STATS
        printk(" (%d+%u) {a/i=%u/%u m=%u+%u (k=%u)}",
                svc->stats.credit_last,
                svc->stats.credit_incr,
                svc->stats.state_active,
                svc->stats.state_idle,
                svc->stats.migrate_q,
                svc->stats.migrate_r,
                svc->stats.kicked_away);
#endif
    }

    printk("\n");
}

static void
csched_dump_pcpu(const struct scheduler *ops, int cpu)
{
    struct list_head *runq, *iter;
    struct csched_pcpu *spc;
    struct csched_vcpu *svc;
    int loop;
#define cpustr keyhandler_scratch

    spc = CSCHED_PCPU(cpu);
    runq = &spc->runq;

    cpumask_scnprintf(cpustr, sizeof(cpustr), per_cpu(cpu_sibling_mask, cpu));
    printk(" sort=%d, sibling=%s, ", spc->runq_sort_last, cpustr);
    cpumask_scnprintf(cpustr, sizeof(cpustr), per_cpu(cpu_core_mask, cpu));
    printk("core=%s\n", cpustr);

    /* current VCPU */
    svc = CSCHED_VCPU(curr_on_cpu(cpu));
    if ( svc )
    {
        printk("\trun: ");
        csched_dump_vcpu(svc);
    }

    loop = 0;
    list_for_each( iter, runq )
    {
        svc = __runq_elem(iter);
        if ( svc )
        {
            printk("\t%3d: ", ++loop);
            csched_dump_vcpu(svc);
        }
    }
#undef cpustr
}

static void
csched_dump(const struct scheduler *ops)
{
    struct list_head *iter_sdom, *iter_svc;
    struct csched_private *prv = CSCHED_PRIV(ops);
    int loop;
    unsigned long flags;

    spin_lock_irqsave(&(prv->lock), flags);

#define idlers_buf keyhandler_scratch

    printk("info:\n"
           "\tncpus              = %u\n"
           "\tmaster             = %u\n"
           "\tcredit             = %u\n"
           "\tcredit balance     = %d\n"
           "\tweight             = %u\n"
           "\trunq_sort          = %u\n"
           "\tdefault-weight     = %d\n"
           "\ttslice             = %dms\n"
           "\tratelimit          = %dus\n"
           "\tcredits per msec   = %d\n"
           "\tticks per tslice   = %d\n"
           "\tmigration delay    = %uus\n",
           prv->ncpus,
           prv->master,
           prv->credit,
           prv->credit_balance,
           prv->weight,
           prv->runq_sort,
           CSCHED_DEFAULT_WEIGHT,
           prv->tslice_ms,
           prv->ratelimit_us,
           CSCHED_CREDITS_PER_MSEC,
           prv->ticks_per_tslice,
           vcpu_migration_delay);

    cpumask_scnprintf(idlers_buf, sizeof(idlers_buf), prv->idlers);
    printk("idlers: %s\n", idlers_buf);

    printk("active vcpus:\n");
    loop = 0;
    list_for_each( iter_sdom, &prv->active_sdom )
    {
        struct csched_dom *sdom;
        sdom = list_entry(iter_sdom, struct csched_dom, active_sdom_elem);

        list_for_each( iter_svc, &sdom->active_vcpu )
        {
            struct csched_vcpu *svc;
            svc = list_entry(iter_svc, struct csched_vcpu, active_vcpu_elem);

            printk("\t%3d: ", ++loop);
            csched_dump_vcpu(svc);
        }
    }
#undef idlers_buf

    spin_unlock_irqrestore(&(prv->lock), flags);
}

static int
csched_init(struct scheduler *ops)
{
    struct csched_private *prv;

    prv = xzalloc(struct csched_private);
    if ( prv == NULL )
        return -ENOMEM;
    if ( !zalloc_cpumask_var(&prv->cpus) ||
         !zalloc_cpumask_var(&prv->idlers) )
    {
        free_cpumask_var(prv->cpus);
        xfree(prv);
        return -ENOMEM;
    }

    ops->sched_data = prv;
    spin_lock_init(&prv->lock);
    INIT_LIST_HEAD(&prv->active_sdom);
    prv->master = UINT_MAX;

    if ( sched_credit_tslice_ms > XEN_SYSCTL_CSCHED_TSLICE_MAX
         || sched_credit_tslice_ms < XEN_SYSCTL_CSCHED_TSLICE_MIN )
    {
        printk("WARNING: sched_credit_tslice_ms outside of valid range [%d,%d].\n"
               " Resetting to default %u\n",
               XEN_SYSCTL_CSCHED_TSLICE_MIN,
               XEN_SYSCTL_CSCHED_TSLICE_MAX,
               CSCHED_DEFAULT_TSLICE_MS);
        sched_credit_tslice_ms = CSCHED_DEFAULT_TSLICE_MS;
    }

    prv->tslice_ms = sched_credit_tslice_ms;
    prv->ticks_per_tslice = CSCHED_TICKS_PER_TSLICE;
    if ( prv->tslice_ms < prv->ticks_per_tslice )
        prv->ticks_per_tslice = 1;
    prv->tick_period_us = prv->tslice_ms * 1000 / prv->ticks_per_tslice;
    prv->credits_per_tslice = CSCHED_CREDITS_PER_MSEC * prv->tslice_ms;

    if ( MICROSECS(sched_ratelimit_us) > MILLISECS(sched_credit_tslice_ms) )
    {
        printk("WARNING: sched_ratelimit_us >" 
               "sched_credit_tslice_ms is undefined\n"
               "Setting ratelimit_us to 1000 * tslice_ms\n");
        prv->ratelimit_us = 1000 * prv->tslice_ms;
    }
    else
        prv->ratelimit_us = sched_ratelimit_us;
    return 0;
}

static void
csched_deinit(const struct scheduler *ops)
{
    struct csched_private *prv;

    prv = CSCHED_PRIV(ops);
    if ( prv != NULL )
    {
        free_cpumask_var(prv->cpus);
        free_cpumask_var(prv->idlers);
        xfree(prv);
    }
}

static void csched_tick_suspend(const struct scheduler *ops, unsigned int cpu)
{
    struct csched_pcpu *spc;

    spc = CSCHED_PCPU(cpu);

    stop_timer(&spc->ticker);
}

static void csched_tick_resume(const struct scheduler *ops, unsigned int cpu)
{
    struct csched_private *prv;
    struct csched_pcpu *spc;
    uint64_t now = NOW();

    spc = CSCHED_PCPU(cpu);

    prv = CSCHED_PRIV(ops);

    set_timer(&spc->ticker, now + MICROSECS(prv->tick_period_us)
            - now % MICROSECS(prv->tick_period_us) );
}

static struct csched_private _csched_priv;

const struct scheduler sched_credit_def = {
    .name           = "SMP Credit Scheduler",
    .opt_name       = "credit",
    .sched_id       = XEN_SCHEDULER_CREDIT,
    .sched_data     = &_csched_priv,

    .init_domain    = csched_dom_init,
    .destroy_domain = csched_dom_destroy,

    .insert_vcpu    = csched_vcpu_insert,
    .remove_vcpu    = csched_vcpu_remove,

    .sleep          = csched_vcpu_sleep,
    .wake           = csched_vcpu_wake,
    .yield          = csched_vcpu_yield,

    .adjust         = csched_dom_cntl,
    .adjust_global  = csched_sys_cntl,

    .set_node_affinity  = csched_set_node_affinity,

    .pick_cpu       = csched_cpu_pick,
    .do_schedule    = csched_schedule,

    .dump_cpu_state = csched_dump_pcpu,
    .dump_settings  = csched_dump,
    .init           = csched_init,
    .deinit         = csched_deinit,
    .alloc_vdata    = csched_alloc_vdata,
    .free_vdata     = csched_free_vdata,
    .alloc_pdata    = csched_alloc_pdata,
    .free_pdata     = csched_free_pdata,
    .alloc_domdata  = csched_alloc_domdata,
    .free_domdata   = csched_free_domdata,

    .tick_suspend   = csched_tick_suspend,
    .tick_resume    = csched_tick_resume,
};