aboutsummaryrefslogtreecommitdiffstats
path: root/xen/arch/x86/hvm/mtrr.c
blob: ef51a8d5d0fb055f5e9318f870527dfa96f18747 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
/*
 * mtrr.c: MTRR/PAT virtualization
 *
 * Copyright (c) 2007, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 */

#include <public/hvm/e820.h>
#include <xen/types.h>
#include <asm/e820.h>
#include <asm/mm.h>
#include <asm/paging.h>
#include <asm/p2m.h>
#include <xen/domain_page.h>
#include <asm/mtrr.h>
#include <asm/hvm/support.h>
#include <asm/hvm/cacheattr.h>

static uint32_t size_or_mask;

/* Get page attribute fields (PAn) from PAT MSR. */
#define pat_cr_2_paf(pat_cr,n)  ((((uint64_t)pat_cr) >> ((n)<<3)) & 0xff)

/* PAT entry to PTE flags (PAT, PCD, PWT bits). */
static const uint8_t pat_entry_2_pte_flags[8] = {
    0,           _PAGE_PWT,
    _PAGE_PCD,   _PAGE_PCD | _PAGE_PWT,
    _PAGE_PAT,   _PAGE_PAT | _PAGE_PWT,
    _PAGE_PAT | _PAGE_PCD, _PAGE_PAT | _PAGE_PCD | _PAGE_PWT };

/* Effective mm type lookup table, according to MTRR and PAT. */
static const uint8_t mm_type_tbl[MTRR_NUM_TYPES][PAT_TYPE_NUMS] = {
/********PAT(UC,WC,RS,RS,WT,WP,WB,UC-)*/
/* RS means reserved type(2,3), and type is hardcoded here */
 /*MTRR(UC):(UC,WC,RS,RS,UC,UC,UC,UC)*/
            {0, 1, 2, 2, 0, 0, 0, 0},
 /*MTRR(WC):(UC,WC,RS,RS,UC,UC,WC,WC)*/
            {0, 1, 2, 2, 0, 0, 1, 1},
 /*MTRR(RS):(RS,RS,RS,RS,RS,RS,RS,RS)*/
            {2, 2, 2, 2, 2, 2, 2, 2},
 /*MTRR(RS):(RS,RS,RS,RS,RS,RS,RS,RS)*/
            {2, 2, 2, 2, 2, 2, 2, 2},
 /*MTRR(WT):(UC,WC,RS,RS,WT,WP,WT,UC)*/
            {0, 1, 2, 2, 4, 5, 4, 0},
 /*MTRR(WP):(UC,WC,RS,RS,WT,WP,WP,WC)*/
            {0, 1, 2, 2, 4, 5, 5, 1},
 /*MTRR(WB):(UC,WC,RS,RS,WT,WP,WB,UC)*/
            {0, 1, 2, 2, 4, 5, 6, 0}
};

/*
 * Reverse lookup table, to find a pat type according to MTRR and effective
 * memory type. This table is dynamically generated.
 */
static uint8_t mtrr_epat_tbl[MTRR_NUM_TYPES][MEMORY_NUM_TYPES];

/* Lookup table for PAT entry of a given PAT value in host PAT. */
static uint8_t pat_entry_tbl[PAT_TYPE_NUMS];

static void get_mtrr_range(uint64_t base_msr, uint64_t mask_msr,
                           uint64_t *base, uint64_t *end)
{
    uint32_t mask_lo = (uint32_t)mask_msr;
    uint32_t mask_hi = (uint32_t)(mask_msr >> 32);
    uint32_t base_lo = (uint32_t)base_msr;
    uint32_t base_hi = (uint32_t)(base_msr >> 32);
    uint32_t size;

    if ( (mask_lo & 0x800) == 0 )
    {
        /* Invalid (i.e. free) range */
        *base = 0;
        *end = 0;
        return;
    }

    /* Work out the shifted address mask. */
    mask_lo = (size_or_mask | (mask_hi << (32 - PAGE_SHIFT)) |
               (mask_lo >> PAGE_SHIFT));

    /* This works correctly if size is a power of two (a contiguous range). */
    size = -mask_lo;
    *base = base_hi << (32 - PAGE_SHIFT) | base_lo >> PAGE_SHIFT;
    *end = *base + size - 1;
}

bool_t is_var_mtrr_overlapped(struct mtrr_state *m)
{
    int32_t seg, i;
    uint64_t phys_base, phys_mask, phys_base_pre, phys_mask_pre;
    uint64_t base_pre, end_pre, base, end;
    uint8_t num_var_ranges = (uint8_t)m->mtrr_cap;

    for ( i = 0; i < num_var_ranges; i++ )
    {
        phys_base_pre = ((uint64_t*)m->var_ranges)[i*2];
        phys_mask_pre = ((uint64_t*)m->var_ranges)[i*2 + 1];

        get_mtrr_range(phys_base_pre, phys_mask_pre,
                        &base_pre, &end_pre);

        for ( seg = i + 1; seg < num_var_ranges; seg ++ )
        {
            phys_base = ((uint64_t*)m->var_ranges)[seg*2];
            phys_mask = ((uint64_t*)m->var_ranges)[seg*2 + 1];

            get_mtrr_range(phys_base, phys_mask,
                            &base, &end);

            if ( ((base_pre != end_pre) && (base != end))
                 || ((base >= base_pre) && (base <= end_pre))
                 || ((end >= base_pre) && (end <= end_pre))
                 || ((base_pre >= base) && (base_pre <= end))
                 || ((end_pre >= base) && (end_pre <= end)) )
            {
                /* MTRR is overlapped. */
                return 1;
            }
        }
    }
    return 0;
}

#define MTRR_PHYSMASK_VALID_BIT  11
#define MTRR_PHYSMASK_SHIFT      12

#define MTRR_PHYSBASE_TYPE_MASK  0xff   /* lowest 8 bits */
#define MTRR_PHYSBASE_SHIFT      12
#define MTRR_VCNT                8

#define MTRRphysBase_MSR(reg) (0x200 + 2 * (reg))
#define MTRRphysMask_MSR(reg) (0x200 + 2 * (reg) + 1)

static int hvm_mtrr_pat_init(void)
{
    unsigned int i, j, phys_addr;

    memset(&mtrr_epat_tbl, INVALID_MEM_TYPE, sizeof(mtrr_epat_tbl));
    for ( i = 0; i < MTRR_NUM_TYPES; i++ )
    {
        for ( j = 0; j < PAT_TYPE_NUMS; j++ )
        {
            int32_t tmp = mm_type_tbl[i][j];
            if ( (tmp >= 0) && (tmp < MEMORY_NUM_TYPES) )
                mtrr_epat_tbl[i][tmp] = j;
        }
    }

    memset(&pat_entry_tbl, INVALID_MEM_TYPE,
           PAT_TYPE_NUMS * sizeof(pat_entry_tbl[0]));
    for ( i = 0; i < PAT_TYPE_NUMS; i++ )
    {
        for ( j = 0; j < PAT_TYPE_NUMS; j++ )
        {
            if ( pat_cr_2_paf(host_pat, j) == i )
            {
                pat_entry_tbl[i] = j;
                break;
            }
        }
    }

    phys_addr = 36;
    if ( cpuid_eax(0x80000000) >= 0x80000008 )
        phys_addr = (uint8_t)cpuid_eax(0x80000008);

    size_or_mask = ~((1 << (phys_addr - PAGE_SHIFT)) - 1);

    return 0;
}
__initcall(hvm_mtrr_pat_init);

uint8_t pat_type_2_pte_flags(uint8_t pat_type)
{
    int32_t pat_entry = pat_entry_tbl[pat_type];

    /* INVALID_MEM_TYPE, means doesn't find the pat_entry in host pat for
     * a given pat_type. If host pat covers all the pat types,
     * it can't happen.
     */
    if ( likely(pat_entry != INVALID_MEM_TYPE) )
        return pat_entry_2_pte_flags[pat_entry];

    return pat_entry_2_pte_flags[pat_entry_tbl[PAT_TYPE_UNCACHABLE]];
}

int hvm_vcpu_cacheattr_init(struct vcpu *v)
{
    struct mtrr_state *m = &v->arch.hvm_vcpu.mtrr;

    memset(m, 0, sizeof(*m));

    m->var_ranges = xzalloc_array(struct mtrr_var_range, MTRR_VCNT);
    if ( m->var_ranges == NULL )
        return -ENOMEM;

    m->mtrr_cap = (1u << 10) | (1u << 8) | MTRR_VCNT;

    v->arch.hvm_vcpu.pat_cr =
        ((uint64_t)PAT_TYPE_WRBACK) |               /* PAT0: WB */
        ((uint64_t)PAT_TYPE_WRTHROUGH << 8) |       /* PAT1: WT */
        ((uint64_t)PAT_TYPE_UC_MINUS << 16) |       /* PAT2: UC- */
        ((uint64_t)PAT_TYPE_UNCACHABLE << 24) |     /* PAT3: UC */
        ((uint64_t)PAT_TYPE_WRBACK << 32) |         /* PAT4: WB */
        ((uint64_t)PAT_TYPE_WRTHROUGH << 40) |      /* PAT5: WT */
        ((uint64_t)PAT_TYPE_UC_MINUS << 48) |       /* PAT6: UC- */
        ((uint64_t)PAT_TYPE_UNCACHABLE << 56);      /* PAT7: UC */

    return 0;
}

void hvm_vcpu_cacheattr_destroy(struct vcpu *v)
{
    xfree(v->arch.hvm_vcpu.mtrr.var_ranges);
}

/*
 * Get MTRR memory type for physical address pa.
 */
static uint8_t get_mtrr_type(struct mtrr_state *m, paddr_t pa)
{
   int32_t     addr, seg, index;
   uint8_t     overlap_mtrr = 0;
   uint8_t     overlap_mtrr_pos = 0;
   uint64_t    phys_base;
   uint64_t    phys_mask;
   uint8_t     num_var_ranges = m->mtrr_cap & 0xff;

   if ( unlikely(!(m->enabled & 0x2)) )
       return MTRR_TYPE_UNCACHABLE;

   if ( (pa < 0x100000) && (m->enabled & 1) )
   {
       /* Fixed range MTRR takes effective */
       addr = (uint32_t) pa;
       if ( addr < 0x80000 )
       {
           seg = (addr >> 16);
           return m->fixed_ranges[seg];
       }
       else if ( addr < 0xc0000 )
       {
           seg = (addr - 0x80000) >> 14;
           index = (seg >> 3) + 1;
           seg &= 7;            /* select 0-7 segments */
           return m->fixed_ranges[index*8 + seg];
       }
       else
       {
           /* 0xC0000 --- 0x100000 */
           seg = (addr - 0xc0000) >> 12;
           index = (seg >> 3) + 3;
           seg &= 7;            /* select 0-7 segments */
           return m->fixed_ranges[index*8 + seg];
       }
   }

   /* Match with variable MTRRs. */
   for ( seg = 0; seg < num_var_ranges; seg++ )
   {
       phys_base = ((uint64_t*)m->var_ranges)[seg*2];
       phys_mask = ((uint64_t*)m->var_ranges)[seg*2 + 1];
       if ( phys_mask & (1 << MTRR_PHYSMASK_VALID_BIT) )
       {
           if ( ((uint64_t) pa & phys_mask) >> MTRR_PHYSMASK_SHIFT ==
                (phys_base & phys_mask) >> MTRR_PHYSMASK_SHIFT )
           {
               if ( unlikely(m->overlapped) )
               {
                    overlap_mtrr |= 1 << (phys_base & MTRR_PHYSBASE_TYPE_MASK);
                    overlap_mtrr_pos = phys_base & MTRR_PHYSBASE_TYPE_MASK;
               }
               else
               {
                   /* If no overlap, return the found one */
                   return (phys_base & MTRR_PHYSBASE_TYPE_MASK);
               }
           }
       }
   }

   /* Overlapped or not found. */
   if ( unlikely(overlap_mtrr == 0) )
       return m->def_type;

   if ( likely(!(overlap_mtrr & ~( ((uint8_t)1) << overlap_mtrr_pos ))) )
       /* Covers both one variable memory range matches and
        * two or more identical match.
        */
       return overlap_mtrr_pos;

   if ( overlap_mtrr & 0x1 )
       /* Two or more match, one is UC. */
       return MTRR_TYPE_UNCACHABLE;

   if ( !(overlap_mtrr & 0xaf) )
       /* Two or more match, WT and WB. */
       return MTRR_TYPE_WRTHROUGH;

   /* Behaviour is undefined, but return the last overlapped type. */
   return overlap_mtrr_pos;
}

/*
 * return the memory type from PAT.
 * NOTE: valid only when paging is enabled.
 *       Only 4K page PTE is supported now.
 */
static uint8_t page_pat_type(uint64_t pat_cr, uint32_t pte_flags)
{
    int32_t pat_entry;

    /* PCD/PWT -> bit 1/0 of PAT entry */
    pat_entry = ( pte_flags >> 3 ) & 0x3;
    /* PAT bits as bit 2 of PAT entry */
    if ( pte_flags & _PAGE_PAT )
        pat_entry |= 4;

    return (uint8_t)pat_cr_2_paf(pat_cr, pat_entry);
}

/*
 * Effective memory type for leaf page.
 */
static uint8_t effective_mm_type(struct mtrr_state *m,
                                 uint64_t pat,
                                 paddr_t gpa,
                                 uint32_t pte_flags,
                                 uint8_t gmtrr_mtype)
{
    uint8_t mtrr_mtype, pat_value, effective;
   
    /* if get_pat_flags() gives a dedicated MTRR type,
     * just use it
     */ 
    if ( gmtrr_mtype == NO_HARDCODE_MEM_TYPE )
        mtrr_mtype = get_mtrr_type(m, gpa);
    else
        mtrr_mtype = gmtrr_mtype;

    pat_value = page_pat_type(pat, pte_flags);

    effective = mm_type_tbl[mtrr_mtype][pat_value];

    return effective;
}

uint32_t get_pat_flags(struct vcpu *v,
                       uint32_t gl1e_flags,
                       paddr_t gpaddr,
                       paddr_t spaddr,
                       uint8_t gmtrr_mtype)
{
    uint8_t guest_eff_mm_type;
    uint8_t shadow_mtrr_type;
    uint8_t pat_entry_value;
    uint64_t pat = v->arch.hvm_vcpu.pat_cr;
    struct mtrr_state *g = &v->arch.hvm_vcpu.mtrr;

    /* 1. Get the effective memory type of guest physical address,
     * with the pair of guest MTRR and PAT
     */
    guest_eff_mm_type = effective_mm_type(g, pat, gpaddr, 
                                          gl1e_flags, gmtrr_mtype);
    /* 2. Get the memory type of host physical address, with MTRR */
    shadow_mtrr_type = get_mtrr_type(&mtrr_state, spaddr);

    /* 3. Find the memory type in PAT, with host MTRR memory type
     * and guest effective memory type.
     */
    pat_entry_value = mtrr_epat_tbl[shadow_mtrr_type][guest_eff_mm_type];
    /* If conflit occurs(e.g host MTRR is UC, guest memory type is
     * WB),set UC as effective memory. Here, returning PAT_TYPE_UNCACHABLE will
     * always set effective memory as UC.
     */
    if ( pat_entry_value == INVALID_MEM_TYPE )
    {
        struct domain *d = v->domain;
        p2m_type_t p2mt;
        get_gfn_query_unlocked(d, paddr_to_pfn(gpaddr), &p2mt);
        if (p2m_is_ram(p2mt))
            gdprintk(XENLOG_WARNING,
                    "Conflict occurs for a given guest l1e flags:%x "
                    "at %"PRIx64" (the effective mm type:%d), "
                    "because the host mtrr type is:%d\n",
                    gl1e_flags, (uint64_t)gpaddr, guest_eff_mm_type,
                    shadow_mtrr_type);
        pat_entry_value = PAT_TYPE_UNCACHABLE;
    }
    /* 4. Get the pte flags */
    return pat_type_2_pte_flags(pat_entry_value);
}

bool_t mtrr_def_type_msr_set(struct mtrr_state *m, uint64_t msr_content)
{
    uint8_t def_type = msr_content & 0xff;
    uint8_t enabled = (msr_content >> 10) & 0x3;

    if ( unlikely(!(def_type == 0 || def_type == 1 || def_type == 4 ||
                    def_type == 5 || def_type == 6)) )
    {
         HVM_DBG_LOG(DBG_LEVEL_MSR, "invalid MTRR def type:%x\n", def_type);
         return 0;
    }

    if ( unlikely(msr_content && (msr_content & ~0xcffUL)) )
    {
         HVM_DBG_LOG(DBG_LEVEL_MSR, "invalid msr content:%"PRIx64"\n",
                     msr_content);
         return 0;
    }

    m->enabled = enabled;
    m->def_type = def_type;

    return 1;
}

bool_t mtrr_fix_range_msr_set(struct mtrr_state *m, uint32_t row,
                              uint64_t msr_content)
{
    uint64_t *fixed_range_base = (uint64_t *)m->fixed_ranges;

    if ( fixed_range_base[row] != msr_content )
    {
        uint8_t *range = (uint8_t*)&msr_content;
        int32_t i, type;

        for ( i = 0; i < 8; i++ )
        {
            type = range[i];
            if ( unlikely(!(type == 0 || type == 1 ||
                            type == 4 || type == 5 || type == 6)) )
                return 0;
        }

        fixed_range_base[row] = msr_content;
    }

    return 1;
}

bool_t mtrr_var_range_msr_set(
    struct domain *d, struct mtrr_state *m, uint32_t msr, uint64_t msr_content)
{
    uint32_t index, type, phys_addr, eax, ebx, ecx, edx;
    uint64_t msr_mask;
    uint64_t *var_range_base = (uint64_t*)m->var_ranges;

    index = msr - MSR_IA32_MTRR_PHYSBASE0;
    if ( var_range_base[index] == msr_content )
        return 1;

    type = (uint8_t)msr_content;
    if ( unlikely(!(type == 0 || type == 1 ||
                    type == 4 || type == 5 || type == 6)) )
        return 0;

    phys_addr = 36;
    domain_cpuid(d, 0x80000000, 0, &eax, &ebx, &ecx, &edx);
    if ( eax >= 0x80000008 )
    {
        domain_cpuid(d, 0x80000008, 0, &eax, &ebx, &ecx, &edx);
        phys_addr = (uint8_t)eax;
    }
    msr_mask = ~((((uint64_t)1) << phys_addr) - 1);
    msr_mask |= (index & 1) ? 0x7ffUL : 0xf00UL;
    if ( unlikely(msr_content && (msr_content & msr_mask)) )
    {
        HVM_DBG_LOG(DBG_LEVEL_MSR, "invalid msr content:%"PRIx64"\n",
                    msr_content);
        return 0;
    }

    var_range_base[index] = msr_content;

    m->overlapped = is_var_mtrr_overlapped(m);

    return 1;
}

bool_t mtrr_pat_not_equal(struct vcpu *vd, struct vcpu *vs)
{
    struct mtrr_state *md = &vd->arch.hvm_vcpu.mtrr;
    struct mtrr_state *ms = &vs->arch.hvm_vcpu.mtrr;
    int32_t res;
    uint8_t num_var_ranges = (uint8_t)md->mtrr_cap;

    /* Test fixed ranges. */
    res = memcmp(md->fixed_ranges, ms->fixed_ranges,
            NUM_FIXED_RANGES*sizeof(mtrr_type));
    if ( res )
        return 1;

    /* Test var ranges. */
    res = memcmp(md->var_ranges, ms->var_ranges,
            num_var_ranges*sizeof(struct mtrr_var_range));
    if ( res )
        return 1;

    /* Test default type MSR. */
    if ( (md->def_type != ms->def_type)
            && (md->enabled != ms->enabled) )
        return 1;

    /* Test PAT. */
    if ( vd->arch.hvm_vcpu.pat_cr != vs->arch.hvm_vcpu.pat_cr )
        return 1;

    return 0;
}

void hvm_init_cacheattr_region_list(
    struct domain *d)
{
    INIT_LIST_HEAD(&d->arch.hvm_domain.pinned_cacheattr_ranges);
}

void hvm_destroy_cacheattr_region_list(
    struct domain *d)
{
    struct list_head *head = &d->arch.hvm_domain.pinned_cacheattr_ranges;
    struct hvm_mem_pinned_cacheattr_range *range;

    while ( !list_empty(head) )
    {
        range = list_entry(head->next,
                           struct hvm_mem_pinned_cacheattr_range,
                           list);
        list_del(&range->list);
        xfree(range);
    }
}

int32_t hvm_get_mem_pinned_cacheattr(
    struct domain *d,
    uint64_t guest_fn,
    uint32_t *type)
{
    struct hvm_mem_pinned_cacheattr_range *range;

    *type = 0;

    if ( !is_hvm_domain(d) )
        return 0;

    list_for_each_entry_rcu ( range,
                              &d->arch.hvm_domain.pinned_cacheattr_ranges,
                              list )
    {
        if ( (guest_fn >= range->start) && (guest_fn <= range->end) )
        {
            *type = range->type;
            return 1;
        }
    }

    return 0;
}

int32_t hvm_set_mem_pinned_cacheattr(
    struct domain *d,
    uint64_t gfn_start,
    uint64_t gfn_end,
    uint32_t  type)
{
    struct hvm_mem_pinned_cacheattr_range *range;

    if ( !((type == PAT_TYPE_UNCACHABLE) ||
           (type == PAT_TYPE_WRCOMB) ||
           (type == PAT_TYPE_WRTHROUGH) ||
           (type == PAT_TYPE_WRPROT) ||
           (type == PAT_TYPE_WRBACK) ||
           (type == PAT_TYPE_UC_MINUS)) ||
         !is_hvm_domain(d) )
        return -EINVAL;

    range = xzalloc(struct hvm_mem_pinned_cacheattr_range);
    if ( range == NULL )
        return -ENOMEM;

    range->start = gfn_start;
    range->end = gfn_end;
    range->type = type;

    list_add_rcu(&range->list, &d->arch.hvm_domain.pinned_cacheattr_ranges);

    return 0;
}

static int hvm_save_mtrr_msr(struct domain *d, hvm_domain_context_t *h)
{
    int i;
    struct vcpu *v;
    struct hvm_hw_mtrr hw_mtrr;
    struct mtrr_state *mtrr_state;
    /* save mtrr&pat */
    for_each_vcpu(d, v)
    {
        mtrr_state = &v->arch.hvm_vcpu.mtrr;

        hvm_get_guest_pat(v, &hw_mtrr.msr_pat_cr);

        hw_mtrr.msr_mtrr_def_type = mtrr_state->def_type
                                | (mtrr_state->enabled << 10);
        hw_mtrr.msr_mtrr_cap = mtrr_state->mtrr_cap;

        for ( i = 0; i < MTRR_VCNT; i++ )
        {
            /* save physbase */
            hw_mtrr.msr_mtrr_var[i*2] =
                ((uint64_t*)mtrr_state->var_ranges)[i*2];
            /* save physmask */
            hw_mtrr.msr_mtrr_var[i*2+1] =
                ((uint64_t*)mtrr_state->var_ranges)[i*2+1];
        }

        for ( i = 0; i < NUM_FIXED_MSR; i++ )
            hw_mtrr.msr_mtrr_fixed[i] =
                ((uint64_t*)mtrr_state->fixed_ranges)[i];

        if ( hvm_save_entry(MTRR, v->vcpu_id, h, &hw_mtrr) != 0 )
            return 1;
    }
    return 0;
}

static int hvm_load_mtrr_msr(struct domain *d, hvm_domain_context_t *h)
{
    int vcpuid, i;
    struct vcpu *v;
    struct mtrr_state *mtrr_state;
    struct hvm_hw_mtrr hw_mtrr;

    vcpuid = hvm_load_instance(h);
    if ( vcpuid >= d->max_vcpus || (v = d->vcpu[vcpuid]) == NULL )
    {
        dprintk(XENLOG_G_ERR, "HVM restore: dom%d has no vcpu%u\n",
                d->domain_id, vcpuid);
        return -EINVAL;
    }

    if ( hvm_load_entry(MTRR, h, &hw_mtrr) != 0 )
        return -EINVAL;

    mtrr_state = &v->arch.hvm_vcpu.mtrr;

    hvm_set_guest_pat(v, hw_mtrr.msr_pat_cr);

    mtrr_state->mtrr_cap = hw_mtrr.msr_mtrr_cap;

    for ( i = 0; i < NUM_FIXED_MSR; i++ )
        mtrr_fix_range_msr_set(mtrr_state, i, hw_mtrr.msr_mtrr_fixed[i]);

    for ( i = 0; i < MTRR_VCNT; i++ )
    {
        mtrr_var_range_msr_set(d, mtrr_state,
                MTRRphysBase_MSR(i), hw_mtrr.msr_mtrr_var[i*2]);
        mtrr_var_range_msr_set(d, mtrr_state,
                MTRRphysMask_MSR(i), hw_mtrr.msr_mtrr_var[i*2+1]);
    }

    mtrr_def_type_msr_set(mtrr_state, hw_mtrr.msr_mtrr_def_type);

    return 0;
}

HVM_REGISTER_SAVE_RESTORE(MTRR, hvm_save_mtrr_msr, hvm_load_mtrr_msr,
                          1, HVMSR_PER_VCPU);

uint8_t epte_get_entry_emt(struct domain *d, unsigned long gfn, mfn_t mfn,
                           uint8_t *ipat, bool_t direct_mmio)
{
    uint8_t gmtrr_mtype, hmtrr_mtype;
    uint32_t type;
    struct vcpu *v = current;

    *ipat = 0;

    if ( (current->domain != d) &&
         ((d->vcpu == NULL) || ((v = d->vcpu[0]) == NULL)) )
        return MTRR_TYPE_WRBACK;

    if ( !v->domain->arch.hvm_domain.params[HVM_PARAM_IDENT_PT] )
        return MTRR_TYPE_WRBACK;

    if ( (v == current) && v->domain->arch.hvm_domain.is_in_uc_mode )
        return MTRR_TYPE_UNCACHABLE;

    if ( !mfn_valid(mfn_x(mfn)) )
        return MTRR_TYPE_UNCACHABLE;

    if ( hvm_get_mem_pinned_cacheattr(d, gfn, &type) )
        return type;

    if ( !iommu_enabled )
    {
        *ipat = 1;
        return MTRR_TYPE_WRBACK;
    }

    if ( direct_mmio )
        return MTRR_TYPE_UNCACHABLE;

    if ( iommu_snoop )
    {
        *ipat = 1;
        return MTRR_TYPE_WRBACK;
    }

    gmtrr_mtype = get_mtrr_type(&v->arch.hvm_vcpu.mtrr, (gfn << PAGE_SHIFT));
    hmtrr_mtype = get_mtrr_type(&mtrr_state, (mfn_x(mfn) << PAGE_SHIFT));
    return ((gmtrr_mtype <= hmtrr_mtype) ? gmtrr_mtype : hmtrr_mtype);
}