aboutsummaryrefslogtreecommitdiffstats
path: root/xen/arch/arm/traps.c
blob: 4c0fc323ac4570b2aca2109e467417f16ed105a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
/*
 * xen/arch/arm/traps.c
 *
 * ARM Trap handlers
 *
 * Copyright (c) 2011 Citrix Systems.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <xen/config.h>
#include <xen/init.h>
#include <xen/string.h>
#include <xen/version.h>
#include <xen/smp.h>
#include <xen/symbols.h>
#include <xen/irq.h>
#include <xen/lib.h>
#include <xen/mm.h>
#include <xen/errno.h>
#include <xen/hypercall.h>
#include <xen/softirq.h>
#include <xen/domain_page.h>
#include <public/sched.h>
#include <public/xen.h>
#include <asm/event.h>
#include <asm/regs.h>
#include <asm/cpregs.h>
#include <asm/psci.h>

#include "decode.h"
#include "io.h"
#include "vtimer.h"
#include <asm/gic.h>

/* The base of the stack must always be double-word aligned, which means
 * that both the kernel half of struct cpu_user_regs (which is pushed in
 * entry.S) and struct cpu_info (which lives at the bottom of a Xen
 * stack) must be doubleword-aligned in size.  */
static inline void check_stack_alignment_constraints(void) {
#ifdef CONFIG_ARM_64
    BUILD_BUG_ON((sizeof (struct cpu_user_regs)) & 0xf);
    BUILD_BUG_ON((offsetof(struct cpu_user_regs, spsr_el1)) & 0xf);
    BUILD_BUG_ON((offsetof(struct cpu_user_regs, lr)) & 0xf);
    BUILD_BUG_ON((sizeof (struct cpu_info)) & 0xf);
#else
    BUILD_BUG_ON((sizeof (struct cpu_user_regs)) & 0x7);
    BUILD_BUG_ON((offsetof(struct cpu_user_regs, sp_usr)) & 0x7);
    BUILD_BUG_ON((sizeof (struct cpu_info)) & 0x7);
#endif
}

#ifdef CONFIG_ARM_32
static int debug_stack_lines = 20;
#define stack_words_per_line 8
#else
static int debug_stack_lines = 40;
#define stack_words_per_line 4
#endif

integer_param("debug_stack_lines", debug_stack_lines);


void __cpuinit init_traps(void)
{
    /* Setup Hyp vector base */
    WRITE_SYSREG((vaddr_t)hyp_traps_vector, VBAR_EL2);

    /* Setup hypervisor traps */
    WRITE_SYSREG(HCR_PTW|HCR_BSU_OUTER|HCR_AMO|HCR_IMO|HCR_VM|HCR_TWI|HCR_TSC|
                 HCR_TAC, HCR_EL2);
    isb();
}

asmlinkage void __div0(void)
{
    printk("Division by zero in hypervisor.\n");
    BUG();
}

/* XXX could/should be common code */
static void print_xen_info(void)
{
    char taint_str[TAINT_STRING_MAX_LEN];

    printk("----[ Xen-%d.%d%s  %s  debug=%c  %s ]----\n",
           xen_major_version(), xen_minor_version(), xen_extra_version(),
#ifdef CONFIG_ARM_32
           "arm32",
#else
           "arm64",
#endif
           debug_build() ? 'y' : 'n', print_tainted(taint_str));
}

register_t *select_user_reg(struct cpu_user_regs *regs, int reg)
{
    BUG_ON( !guest_mode(regs) );

#ifdef CONFIG_ARM_32
    /*
     * We rely heavily on the layout of cpu_user_regs to avoid having
     * to handle all of the registers individually. Use BUILD_BUG_ON to
     * ensure that things which expect are contiguous actually are.
     */
#define REGOFFS(R) offsetof(struct cpu_user_regs, R)

    switch ( reg ) {
    case 0 ... 7: /* Unbanked registers */
        BUILD_BUG_ON(REGOFFS(r0) + 7*sizeof(register_t) != REGOFFS(r7));
        return &regs->r0 + reg;
    case 8 ... 12: /* Register banked in FIQ mode */
        BUILD_BUG_ON(REGOFFS(r8_fiq) + 4*sizeof(register_t) != REGOFFS(r12_fiq));
        if ( fiq_mode(regs) )
            return &regs->r8_fiq + reg - 8;
        else
            return &regs->r8 + reg - 8;
    case 13 ... 14: /* Banked SP + LR registers */
        BUILD_BUG_ON(REGOFFS(sp_fiq) + 1*sizeof(register_t) != REGOFFS(lr_fiq));
        BUILD_BUG_ON(REGOFFS(sp_irq) + 1*sizeof(register_t) != REGOFFS(lr_irq));
        BUILD_BUG_ON(REGOFFS(sp_svc) + 1*sizeof(register_t) != REGOFFS(lr_svc));
        BUILD_BUG_ON(REGOFFS(sp_abt) + 1*sizeof(register_t) != REGOFFS(lr_abt));
        BUILD_BUG_ON(REGOFFS(sp_und) + 1*sizeof(register_t) != REGOFFS(lr_und));
        switch ( regs->cpsr & PSR_MODE_MASK )
        {
        case PSR_MODE_USR:
        case PSR_MODE_SYS: /* Sys regs are the usr regs */
            if ( reg == 13 )
                return &regs->sp_usr;
            else /* lr_usr == lr in a user frame */
                return &regs->lr;
        case PSR_MODE_FIQ:
            return &regs->sp_fiq + reg - 13;
        case PSR_MODE_IRQ:
            return &regs->sp_irq + reg - 13;
        case PSR_MODE_SVC:
            return &regs->sp_svc + reg - 13;
        case PSR_MODE_ABT:
            return &regs->sp_abt + reg - 13;
        case PSR_MODE_UND:
            return &regs->sp_und + reg - 13;
        case PSR_MODE_MON:
        case PSR_MODE_HYP:
        default:
            BUG();
        }
    case 15: /* PC */
        return &regs->pc;
    default:
        BUG();
    }
#undef REGOFFS
#else
    /* In 64 bit the syndrome register contains the AArch64 register
     * number even if the trap was from AArch32 mode. Except that
     * AArch32 R15 (PC) is encoded as 0b11111.
     */
    if ( reg == 0x1f /* && is aarch32 guest */)
        return &regs->pc;
    return &regs->x0 + reg;
#endif
}

static const char *decode_fsc(uint32_t fsc, int *level)
{
    const char *msg = NULL;

    switch ( fsc & 0x3f )
    {
    case FSC_FLT_TRANS ... FSC_FLT_TRANS + 3:
        msg = "Translation fault";
        *level = fsc & FSC_LL_MASK;
        break;
    case FSC_FLT_ACCESS ... FSC_FLT_ACCESS + 3:
        msg = "Access fault";
        *level = fsc & FSC_LL_MASK;
        break;
    case FSC_FLT_PERM ... FSC_FLT_PERM + 3:
        msg = "Permission fault";
        *level = fsc & FSC_LL_MASK;
        break;

    case FSC_SEA:
        msg = "Synchronous External Abort";
        break;
    case FSC_SPE:
        msg = "Memory Access Synchronous Parity Error";
        break;
    case FSC_APE:
        msg = "Memory Access Asynchronous Parity Error";
        break;
    case FSC_SEATT ... FSC_SEATT + 3:
        msg = "Sync. Ext. Abort Translation Table";
        *level = fsc & FSC_LL_MASK;
        break;
    case FSC_SPETT ... FSC_SPETT + 3:
        msg = "Sync. Parity. Error Translation Table";
        *level = fsc & FSC_LL_MASK;
        break;
    case FSC_AF:
        msg = "Alignment Fault";
        break;
    case FSC_DE:
        msg = "Debug Event";
        break;

    case FSC_LKD:
        msg = "Implementation Fault: Lockdown Abort";
        break;
    case FSC_CPR:
        msg = "Implementation Fault: Coprocossor Abort";
        break;

    default:
        msg = "Unknown Failure";
        break;
    }
    return msg;
}

static const char *fsc_level_str(int level)
{
    switch ( level )
    {
    case -1: return "";
    case 1:  return " at level 1";
    case 2:  return " at level 2";
    case 3:  return " at level 3";
    default: return " (level invalid)";
    }
}

void panic_PAR(uint64_t par)
{
    const char *msg;
    int level = -1;
    int stage = par & PAR_STAGE2 ? 2 : 1;
    int second_in_first = !!(par & PAR_STAGE21);

    msg = decode_fsc( (par&PAR_FSC_MASK) >> PAR_FSC_SHIFT, &level);

    printk("PAR: %016"PRIx64": %s stage %d%s%s\n",
           par, msg,
           stage,
           second_in_first ? " during second stage lookup" : "",
           fsc_level_str(level));

    panic("Error during Hypervisor-to-physical address translation\n");
}

static void cpsr_switch_mode(struct cpu_user_regs *regs, int mode)
{
    uint32_t sctlr = READ_SYSREG32(SCTLR_EL1);

    regs->cpsr &= ~(PSR_MODE_MASK|PSR_IT_MASK|PSR_JAZELLE|PSR_BIG_ENDIAN|PSR_THUMB);

    regs->cpsr |= mode;
    regs->cpsr |= PSR_IRQ_MASK;
    if (sctlr & SCTLR_TE)
        regs->cpsr |= PSR_THUMB;
    if (sctlr & SCTLR_EE)
        regs->cpsr |= PSR_BIG_ENDIAN;
}

static vaddr_t exception_handler(vaddr_t offset)
{
    uint32_t sctlr = READ_SYSREG32(SCTLR_EL1);

    if (sctlr & SCTLR_V)
        return 0xffff0000 + offset;
    else /* always have security exceptions */
        return READ_SYSREG(VBAR_EL1) + offset;
}

/* Injects an Undefined Instruction exception into the current vcpu,
 * PC is the exact address of the faulting instruction (without
 * pipeline adjustments). See TakeUndefInstrException pseudocode in
 * ARM.
 */
static void inject_undef32_exception(struct cpu_user_regs *regs)
{
    uint32_t spsr = regs->cpsr;
    int is_thumb = (regs->cpsr & PSR_THUMB);
    /* Saved PC points to the instruction past the faulting instruction. */
    uint32_t return_offset = is_thumb ? 2 : 4;

    BUG_ON( !is_pv32_domain(current->domain) );

    /* Update processor mode */
    cpsr_switch_mode(regs, PSR_MODE_UND);

    /* Update banked registers */
    regs->spsr_und = spsr;
    regs->lr_und = regs->pc32 + return_offset;

    /* Branch to exception vector */
    regs->pc32 = exception_handler(VECTOR32_UND);
}

#ifdef CONFIG_ARM_64
/* Inject an undefined exception into a 64 bit guest */
static void inject_undef64_exception(struct cpu_user_regs *regs, int instr_len)
{
    union hsr esr = {
        .iss = 0,
        .len = instr_len,
        .ec = HSR_EC_UNKNOWN,
    };

    BUG_ON( is_pv32_domain(current->domain) );

    regs->spsr_el1 = regs->cpsr;
    regs->elr_el1 = regs->pc;

    regs->cpsr = PSR_MODE_EL1h | PSR_ABT_MASK | PSR_FIQ_MASK | \
        PSR_IRQ_MASK | PSR_DBG_MASK;
    regs->pc = READ_SYSREG(VBAR_EL1) + VECTOR64_CURRENT_SPx_SYNC;

    WRITE_SYSREG32(esr.bits, ESR_EL1);
}
#endif

struct reg_ctxt {
    /* Guest-side state */
    uint32_t sctlr_el1, tcr_el1;
    uint64_t ttbr0_el1, ttbr1_el1;
#ifdef CONFIG_ARM_32
    uint32_t dfsr, ifsr;
    uint32_t dfar, ifar;
#else
    uint32_t esr_el1;
    uint64_t far;
    uint32_t ifsr32_el2;
#endif

    /* Hypervisor-side state */
    uint64_t vttbr_el2;
};

static const char *mode_string(uint32_t cpsr)
{
    uint32_t mode;
    static const char *mode_strings[] = {
       [PSR_MODE_USR] = "32-bit Guest USR",
       [PSR_MODE_FIQ] = "32-bit Guest FIQ",
       [PSR_MODE_IRQ] = "32-bit Guest IRQ",
       [PSR_MODE_SVC] = "32-bit Guest SVC",
       [PSR_MODE_MON] = "32-bit Monitor",
       [PSR_MODE_ABT] = "32-bit Guest ABT",
       [PSR_MODE_HYP] = "Hypervisor",
       [PSR_MODE_UND] = "32-bit Guest UND",
       [PSR_MODE_SYS] = "32-bit Guest SYS",
#ifdef CONFIG_ARM_64
       [PSR_MODE_EL3h] = "64-bit EL3h (Monitor, handler)",
       [PSR_MODE_EL3t] = "64-bit EL3t (Monitor, thread)",
       [PSR_MODE_EL2h] = "64-bit EL2h (Hypervisor, handler)",
       [PSR_MODE_EL2t] = "64-bit EL2t (Hypervisor, thread)",
       [PSR_MODE_EL1h] = "64-bit EL1h (Guest Kernel, handler)",
       [PSR_MODE_EL1t] = "64-bit EL1t (Guest Kernel, thread)",
       [PSR_MODE_EL0t] = "64-bit EL0t (Guest User)",
#endif
    };
    mode = cpsr & PSR_MODE_MASK;

    if ( mode > ARRAY_SIZE(mode_strings) )
        return "Unknown";
    return mode_strings[mode] ? : "Unknown";
}

static void show_registers_32(struct cpu_user_regs *regs,
                              struct reg_ctxt *ctxt,
                              int guest_mode,
                              const struct vcpu *v)
{

#ifdef CONFIG_ARM_64
    BUG_ON( ! (regs->cpsr & PSR_MODE_BIT) );
    printk("PC:     %08"PRIx32"\n", regs->pc32);
#else
    printk("PC:     %08"PRIx32, regs->pc);
    if ( !guest_mode )
        print_symbol(" %s", regs->pc);
    printk("\n");
#endif
    printk("CPSR:   %08"PRIx32" MODE:%s\n", regs->cpsr,
           mode_string(regs->cpsr));
    printk("     R0: %08"PRIx32" R1: %08"PRIx32" R2: %08"PRIx32" R3: %08"PRIx32"\n",
           regs->r0, regs->r1, regs->r2, regs->r3);
    printk("     R4: %08"PRIx32" R5: %08"PRIx32" R6: %08"PRIx32" R7: %08"PRIx32"\n",
           regs->r4, regs->r5, regs->r6, regs->r7);
    printk("     R8: %08"PRIx32" R9: %08"PRIx32" R10:%08"PRIx32" R11:%08"PRIx32" R12:%08"PRIx32"\n",
           regs->r8, regs->r9, regs->r10,
#ifdef CONFIG_ARM_64
           regs->r11,
#else
           regs->fp,
#endif
           regs->r12);

    if ( guest_mode )
    {
        printk("USR: SP: %08"PRIx32" LR: %08"PRIregister"\n",
               regs->sp_usr, regs->lr);
        printk("SVC: SP: %08"PRIx32" LR: %08"PRIx32" SPSR:%08"PRIx32"\n",
               regs->sp_svc, regs->lr_svc, regs->spsr_svc);
        printk("ABT: SP: %08"PRIx32" LR: %08"PRIx32" SPSR:%08"PRIx32"\n",
               regs->sp_abt, regs->lr_abt, regs->spsr_abt);
        printk("UND: SP: %08"PRIx32" LR: %08"PRIx32" SPSR:%08"PRIx32"\n",
               regs->sp_und, regs->lr_und, regs->spsr_und);
        printk("IRQ: SP: %08"PRIx32" LR: %08"PRIx32" SPSR:%08"PRIx32"\n",
               regs->sp_irq, regs->lr_irq, regs->spsr_irq);
        printk("FIQ: SP: %08"PRIx32" LR: %08"PRIx32" SPSR:%08"PRIx32"\n",
               regs->sp_fiq, regs->lr_fiq, regs->spsr_fiq);
        printk("FIQ: R8: %08"PRIx32" R9: %08"PRIx32" R10:%08"PRIx32" R11:%08"PRIx32" R12:%08"PRIx32"\n",
               regs->r8_fiq, regs->r9_fiq, regs->r10_fiq, regs->r11_fiq, regs->r11_fiq);
    }
#ifndef CONFIG_ARM_64
    else
    {
        printk("HYP: SP: %08"PRIx32" LR: %08"PRIregister"\n", regs->sp, regs->lr);
    }
#endif
    printk("\n");

    if ( guest_mode )
    {
        printk("     SCTLR: %08"PRIx32"\n", ctxt->sctlr_el1);
        printk("       TCR: %08"PRIx32"\n", ctxt->tcr_el1);
        printk("     TTBR0: %016"PRIx64"\n", ctxt->ttbr0_el1);
        printk("     TTBR1: %016"PRIx64"\n", ctxt->ttbr1_el1);
        printk("      IFAR: %08"PRIx32", IFSR: %08"PRIx32"\n"
               "      DFAR: %08"PRIx32", DFSR: %08"PRIx32"\n",
#ifdef CONFIG_ARM_64
               (uint32_t)(ctxt->far >> 32),
               ctxt->ifsr32_el2,
               (uint32_t)(ctxt->far & 0xffffffff),
               ctxt->esr_el1
#else
               ctxt->ifar, ctxt->ifsr, ctxt->dfar, ctxt->dfsr
#endif
            );
        printk("\n");
    }
}

#ifdef CONFIG_ARM_64
static void show_registers_64(struct cpu_user_regs *regs,
                              struct reg_ctxt *ctxt,
                              int guest_mode,
                              const struct vcpu *v)
{

    BUG_ON( (regs->cpsr & PSR_MODE_BIT) );

    printk("PC:     %016"PRIx64, regs->pc);
    if ( !guest_mode )
        print_symbol(" %s", regs->pc);
    printk("\n");
    printk("LR:     %016"PRIx64"\n", regs->lr);
    if ( guest_mode )
    {
        printk("SP_EL0: %016"PRIx64"\n", regs->sp_el0);
        printk("SP_EL1: %016"PRIx64"\n", regs->sp_el1);
    }
    else
    {
        printk("SP:     %016"PRIx64"\n", regs->sp);
    }
    printk("CPSR:   %08"PRIx32" MODE:%s\n", regs->cpsr,
           mode_string(regs->cpsr));
    printk("     X0: %016"PRIx64"  X1: %016"PRIx64"  X2: %016"PRIx64"\n",
           regs->x0, regs->x1, regs->x2);
    printk("     X3: %016"PRIx64"  X4: %016"PRIx64"  X5: %016"PRIx64"\n",
           regs->x3, regs->x4, regs->x5);
    printk("     X6: %016"PRIx64"  X7: %016"PRIx64"  X8: %016"PRIx64"\n",
           regs->x6, regs->x7, regs->x8);
    printk("     X9: %016"PRIx64" X10: %016"PRIx64" X11: %016"PRIx64"\n",
           regs->x9, regs->x10, regs->x11);
    printk("    X12: %016"PRIx64" X13: %016"PRIx64" X14: %016"PRIx64"\n",
           regs->x12, regs->x13, regs->x14);
    printk("    X15: %016"PRIx64" X16: %016"PRIx64" X17: %016"PRIx64"\n",
           regs->x15, regs->x16, regs->x17);
    printk("    X18: %016"PRIx64" X19: %016"PRIx64" X20: %016"PRIx64"\n",
           regs->x18, regs->x19, regs->x20);
    printk("    X21: %016"PRIx64" X22: %016"PRIx64" X23: %016"PRIx64"\n",
           regs->x21, regs->x22, regs->x23);
    printk("    X24: %016"PRIx64" X25: %016"PRIx64" X26: %016"PRIx64"\n",
           regs->x24, regs->x25, regs->x26);
    printk("    X27: %016"PRIx64" X28: %016"PRIx64"  FP: %016"PRIx64"\n",
           regs->x27, regs->x28, regs->fp);
    printk("\n");

    if ( guest_mode )
    {
        printk("   ELR_EL1: %016"PRIx64"\n", regs->elr_el1);
        printk("   ESR_EL1: %08"PRIx32"\n", ctxt->esr_el1);
        printk("   FAR_EL1: %016"PRIx64"\n", ctxt->far);
        printk("\n");
        printk(" SCTLR_EL1: %08"PRIx32"\n", ctxt->sctlr_el1);
        printk("   TCR_EL1: %08"PRIx32"\n", ctxt->tcr_el1);
        printk(" TTBR0_EL1: %016"PRIx64"\n", ctxt->ttbr0_el1);
        printk(" TTBR1_EL1: %016"PRIx64"\n", ctxt->ttbr1_el1);
        printk("\n");
    }
}
#endif

static void _show_registers(struct cpu_user_regs *regs,
                            struct reg_ctxt *ctxt,
                            int guest_mode,
                            const struct vcpu *v)
{
    print_xen_info();

    printk("CPU:    %d\n", smp_processor_id());

    if ( guest_mode )
    {
        if ( is_pv32_domain(v->domain) )
            show_registers_32(regs, ctxt, guest_mode, v);
#ifdef CONFIG_ARM_64
        else if ( is_pv64_domain(v->domain) )
            show_registers_64(regs, ctxt, guest_mode, v);
#endif
    }
    else
    {
#ifdef CONFIG_ARM_64
        show_registers_64(regs, ctxt, guest_mode, v);
#else
        show_registers_32(regs, ctxt, guest_mode, v);
#endif
    }
    printk("  VTCR_EL2: %08"PRIx32"\n", READ_SYSREG32(VTCR_EL2));
    printk(" VTTBR_EL2: %016"PRIx64"\n", ctxt->vttbr_el2);
    printk("\n");

    printk(" SCTLR_EL2: %08"PRIx32"\n", READ_SYSREG32(SCTLR_EL2));
    printk("   HCR_EL2: %016"PRIregister"\n", READ_SYSREG(HCR_EL2));
    printk(" TTBR0_EL2: %016"PRIx64"\n", READ_SYSREG64(TTBR0_EL2));
    printk("\n");
    printk("   ESR_EL2: %08"PRIx32"\n", READ_SYSREG32(ESR_EL2));
    printk(" HPFAR_EL2: %016"PRIregister"\n", READ_SYSREG(HPFAR_EL2));

#ifdef CONFIG_ARM_32
    printk("     HDFAR: %08"PRIx32"\n", READ_CP32(HDFAR));
    printk("     HIFAR: %08"PRIx32"\n", READ_CP32(HIFAR));
#else
    printk("   FAR_EL2: %016"PRIx64"\n", READ_SYSREG64(FAR_EL2));
#endif
    printk("\n");
}

void show_registers(struct cpu_user_regs *regs)
{
    struct reg_ctxt ctxt;
    ctxt.sctlr_el1 = READ_SYSREG(SCTLR_EL1);
    ctxt.tcr_el1 = READ_SYSREG(TCR_EL1);
    ctxt.ttbr0_el1 = READ_SYSREG64(TTBR0_EL1);
    ctxt.ttbr1_el1 = READ_SYSREG64(TTBR1_EL1);
#ifdef CONFIG_ARM_32
    ctxt.dfar = READ_CP32(DFAR);
    ctxt.ifar = READ_CP32(IFAR);
    ctxt.dfsr = READ_CP32(DFSR);
    ctxt.ifsr = READ_CP32(IFSR);
#else
    ctxt.far = READ_SYSREG(FAR_EL1);
    ctxt.esr_el1 = READ_SYSREG(ESR_EL1);
    ctxt.ifsr32_el2 = READ_SYSREG(IFSR32_EL2);
#endif
    ctxt.vttbr_el2 = READ_SYSREG64(VTTBR_EL2);

    _show_registers(regs, &ctxt, guest_mode(regs), current);
}

void vcpu_show_registers(const struct vcpu *v)
{
    struct reg_ctxt ctxt;
    ctxt.sctlr_el1 = v->arch.sctlr;
    ctxt.tcr_el1 = v->arch.ttbcr;
    ctxt.ttbr0_el1 = v->arch.ttbr0;
    ctxt.ttbr1_el1 = v->arch.ttbr1;
#ifdef CONFIG_ARM_32
    ctxt.dfar = v->arch.dfar;
    ctxt.ifar = v->arch.ifar;
    ctxt.dfsr = v->arch.dfsr;
    ctxt.ifsr = v->arch.ifsr;
#else
    ctxt.far = v->arch.far;
    ctxt.esr_el1 = v->arch.esr;
    ctxt.ifsr32_el2 = v->arch.ifsr;
#endif

    ctxt.vttbr_el2 = v->domain->arch.vttbr;

    _show_registers(&v->arch.cpu_info->guest_cpu_user_regs, &ctxt, 1, v);
}

static void show_guest_stack(struct vcpu *v, struct cpu_user_regs *regs)
{
    int i;
    vaddr_t sp;
    paddr_t stack_phys;
    void *mapped;
    unsigned long *stack, addr;

    if ( test_bit(_VPF_down, &v->pause_flags) )
    {
        printk("No stack trace, VCPU offline\n");
        return;
    }

    switch ( regs->cpsr & PSR_MODE_MASK )
    {
    case PSR_MODE_USR:
    case PSR_MODE_SYS:
#ifdef CONFIG_ARM_64
    case PSR_MODE_EL0t:
#endif
        printk("No stack trace for guest user-mode\n");
        return;

    case PSR_MODE_FIQ:
    case PSR_MODE_IRQ:
    case PSR_MODE_SVC:
    case PSR_MODE_ABT:
    case PSR_MODE_UND:
        printk("No stack trace for 32-bit guest kernel-mode\n");
        return;

#ifdef CONFIG_ARM_64
    case PSR_MODE_EL1t:
        sp = regs->sp_el0;
        break;
    case PSR_MODE_EL1h:
        sp = regs->sp_el1;
        break;
#endif

    case PSR_MODE_HYP:
    case PSR_MODE_MON:
#ifdef CONFIG_ARM_64
    case PSR_MODE_EL3h:
    case PSR_MODE_EL3t:
    case PSR_MODE_EL2h:
    case PSR_MODE_EL2t:
#endif
    default:
        BUG();
        return;
    }

    printk("Guest stack trace from sp=%"PRIvaddr":\n  ", sp);

    if ( gvirt_to_maddr(sp, &stack_phys) )
    {
        printk("Failed to convert stack to physical address\n");
        return;
    }

    mapped = map_domain_page(stack_phys >> PAGE_SHIFT);

    stack = mapped + (sp & ~PAGE_MASK);

    for ( i = 0; i < (debug_stack_lines*stack_words_per_line); i++ )
    {
        if ( (((long)stack - 1) ^ ((long)(stack + 1) - 1)) & PAGE_SIZE )
            break;
        addr = *stack;
        if ( (i != 0) && ((i % stack_words_per_line) == 0) )
            printk("\n  ");
        printk(" %p", _p(addr));
        stack++;
    }
    if ( i == 0 )
        printk("Stack empty.");
    printk("\n");
    unmap_domain_page(mapped);

}

#define STACK_BEFORE_EXCEPTION(regs) ((register_t*)(regs)->sp)
#ifdef CONFIG_ARM_32
/* Frame pointer points to the return address:
 * (largest address)
 * | cpu_info
 * | [...]                                   |
 * | return addr      <-----------------,    |
 * | fp --------------------------------+----'
 * | [...]                              |
 * | return addr      <------------,    |
 * | fp ---------------------------+----'
 * | [...]                         |
 * | return addr      <- regs->fp  |
 * | fp ---------------------------'
 * |
 * v (smallest address, sp)
 */
#define STACK_FRAME_BASE(fp)       ((register_t*)(fp) - 1)
#else
/* Frame pointer points to the next frame:
 * (largest address)
 * | cpu_info
 * | [...]                                   |
 * | return addr                             |
 * | fp <-------------------------------, >--'
 * | [...]                              |
 * | return addr                        |
 * | fp <--------------------------, >--'
 * | [...]                         |
 * | return addr      <- regs->fp  |
 * | fp ---------------------------'
 * |
 * v (smallest address, sp)
 */
#define STACK_FRAME_BASE(fp)       ((register_t*)(fp))
#endif
static void show_trace(struct cpu_user_regs *regs)
{
    register_t *frame, next, addr, low, high;

    printk("Xen call trace:\n   ");

    printk("[<%p>]", _p(regs->pc));
    print_symbol(" %s (PC)\n   ", regs->pc);
    printk("[<%p>]", _p(regs->lr));
    print_symbol(" %s (LR)\n   ", regs->lr);

    /* Bounds for range of valid frame pointer. */
    low  = (register_t)(STACK_BEFORE_EXCEPTION(regs));
    high = (low & ~(STACK_SIZE - 1)) +
        (STACK_SIZE - sizeof(struct cpu_info));

    /* The initial frame pointer. */
    next = regs->fp;

    for ( ; ; )
    {
        if ( (next < low) || (next >= high) )
            break;

        /* Ordinary stack frame. */
        frame = STACK_FRAME_BASE(next);
        next  = frame[0];
        addr  = frame[1];

        printk("[<%p>]", _p(addr));
        print_symbol(" %s\n   ", addr);

        low = (register_t)&frame[1];
    }

    printk("\n");
}

void show_stack(struct cpu_user_regs *regs)
{
    register_t *stack = STACK_BEFORE_EXCEPTION(regs), addr;
    int i;

    if ( guest_mode(regs) )
        return show_guest_stack(current, regs);

    printk("Xen stack trace from sp=%p:\n  ", stack);

    for ( i = 0; i < (debug_stack_lines*stack_words_per_line); i++ )
    {
        if ( ((long)stack & (STACK_SIZE-BYTES_PER_LONG)) == 0 )
            break;
        if ( (i != 0) && ((i % stack_words_per_line) == 0) )
            printk("\n  ");

        addr = *stack++;
        printk(" %p", _p(addr));
    }
    if ( i == 0 )
        printk("Stack empty.");
    printk("\n");

    show_trace(regs);
}

void show_execution_state(struct cpu_user_regs *regs)
{
    show_registers(regs);
    show_stack(regs);
}

void vcpu_show_execution_state(struct vcpu *v)
{
    printk("*** Dumping Dom%d vcpu#%d state: ***\n",
           v->domain->domain_id, v->vcpu_id);

    if ( v == current )
    {
        show_execution_state(guest_cpu_user_regs());
        return;
    }

    vcpu_pause(v); /* acceptably dangerous */

    vcpu_show_registers(v);
    if ( !usr_mode(&v->arch.cpu_info->guest_cpu_user_regs) )
        show_guest_stack(v, &v->arch.cpu_info->guest_cpu_user_regs);

    vcpu_unpause(v);
}

void do_unexpected_trap(const char *msg, struct cpu_user_regs *regs)
{
    printk("CPU%d: Unexpected Trap: %s\n", smp_processor_id(), msg);
    show_execution_state(regs);
    while(1);
}

typedef register_t (*arm_hypercall_fn_t)(
    register_t, register_t, register_t, register_t, register_t);

typedef struct {
    arm_hypercall_fn_t fn;
    int nr_args;
} arm_hypercall_t;

#define HYPERCALL(_name, _nr_args)                                   \
    [ __HYPERVISOR_ ## _name ] =  {                                  \
        .fn = (arm_hypercall_fn_t) &do_ ## _name,                    \
        .nr_args = _nr_args,                                         \
    }

#define HYPERCALL_ARM(_name, _nr_args)                        \
    [ __HYPERVISOR_ ## _name ] =  {                                  \
        .fn = (arm_hypercall_fn_t) &do_arm_ ## _name,                \
        .nr_args = _nr_args,                                         \
    }
static arm_hypercall_t arm_hypercall_table[] = {
    HYPERCALL(memory_op, 2),
    HYPERCALL(domctl, 1),
    HYPERCALL(sched_op, 2),
    HYPERCALL(console_io, 3),
    HYPERCALL(xen_version, 2),
    HYPERCALL(event_channel_op, 2),
    HYPERCALL(physdev_op, 2),
    HYPERCALL(sysctl, 2),
    HYPERCALL(hvm_op, 2),
    HYPERCALL(grant_table_op, 3),
    HYPERCALL_ARM(vcpu_op, 3),
};

typedef int (*arm_psci_fn_t)(uint32_t, register_t);

typedef struct {
    arm_psci_fn_t fn;
    int nr_args;
} arm_psci_t;

#define PSCI(_name, _nr_args)                                  \
    [ __PSCI_ ## _name ] =  {                                  \
        .fn = (arm_psci_fn_t) &do_psci_ ## _name,              \
        .nr_args = _nr_args,                                   \
    }

static arm_psci_t arm_psci_table[] = {
    PSCI(cpu_off, 1),
    PSCI(cpu_on, 2),
};

#ifndef NDEBUG
static void do_debug_trap(struct cpu_user_regs *regs, unsigned int code)
{
    register_t *r;
    uint32_t reg;
    uint32_t domid = current->domain->domain_id;
    switch ( code ) {
    case 0xe0 ... 0xef:
        reg = code - 0xe0;
        r = select_user_reg(regs, reg);
        printk("DOM%d: R%d = 0x%"PRIregister" at 0x%"PRIvaddr"\n",
               domid, reg, *r, regs->pc);
        break;
    case 0xfd:
        printk("DOM%d: Reached %"PRIvaddr"\n", domid, regs->pc);
        break;
    case 0xfe:
        r = select_user_reg(regs, 0);
        printk("%c", (char)(*r & 0xff));
        break;
    case 0xff:
        printk("DOM%d: DEBUG\n", domid);
        show_execution_state(regs);
        break;
    default:
        panic("DOM%d: Unhandled debug trap %#x\n", domid, code);
        break;
    }
}
#endif

static void do_trap_psci(struct cpu_user_regs *regs)
{
    arm_psci_fn_t psci_call = NULL;

    if ( regs->r0 >= ARRAY_SIZE(arm_psci_table) )
    {
        domain_crash_synchronous();
        return;
    }

    psci_call = arm_psci_table[regs->r0].fn;
    if ( psci_call == NULL )
    {
        domain_crash_synchronous();
        return;
    }
    regs->r0 = psci_call(regs->r1, regs->r2);
}

#ifdef CONFIG_ARM_64
#define HYPERCALL_RESULT_REG(r) (r)->x0
#define HYPERCALL_ARG1(r) (r)->x0
#define HYPERCALL_ARG2(r) (r)->x1
#define HYPERCALL_ARG3(r) (r)->x2
#define HYPERCALL_ARG4(r) (r)->x3
#define HYPERCALL_ARG5(r) (r)->x4
#define HYPERCALL_ARGS(r) (r)->x0, (r)->x1, (r)->x2, (r)->x3, (r)->x4
#else
#define HYPERCALL_RESULT_REG(r) (r)->r0
#define HYPERCALL_ARG1(r) (r)->r0
#define HYPERCALL_ARG2(r) (r)->r1
#define HYPERCALL_ARG3(r) (r)->r2
#define HYPERCALL_ARG4(r) (r)->r3
#define HYPERCALL_ARG5(r) (r)->r4
#define HYPERCALL_ARGS(r) (r)->r0, (r)->r1, (r)->r2, (r)->r3, (r)->r4
#endif

static void do_trap_hypercall(struct cpu_user_regs *regs, register_t *nr,
                              unsigned long iss)
{
    arm_hypercall_fn_t call = NULL;
#ifndef NDEBUG
    register_t orig_pc = regs->pc;
#endif

    if ( iss != XEN_HYPERCALL_TAG )
        domain_crash_synchronous();

    if ( *nr >= ARRAY_SIZE(arm_hypercall_table) )
    {
        HYPERCALL_RESULT_REG(regs) = -ENOSYS;
        return;
    }

    call = arm_hypercall_table[*nr].fn;
    if ( call == NULL )
    {
        HYPERCALL_RESULT_REG(regs) = -ENOSYS;
        return;
    }

    HYPERCALL_RESULT_REG(regs) = call(HYPERCALL_ARGS(regs));

#ifndef NDEBUG
    /*
     * Clobber argument registers only if pc is unchanged, otherwise
     * this is a hypercall continuation.
     */
    if ( orig_pc == regs->pc )
    {
        switch ( arm_hypercall_table[*nr].nr_args ) {
        case 5: HYPERCALL_ARG5(regs) = 0xDEADBEEF;
        case 4: HYPERCALL_ARG4(regs) = 0xDEADBEEF;
        case 3: HYPERCALL_ARG3(regs) = 0xDEADBEEF;
        case 2: HYPERCALL_ARG2(regs) = 0xDEADBEEF;
        case 1: /* Don't clobber x0/r0 -- it's the return value */
            break;
        default: BUG();
        }
        *nr = 0xDEADBEEF;
    }
#endif
}

void do_multicall_call(struct multicall_entry *multi)
{
    arm_hypercall_fn_t call = NULL;

    if ( multi->op >= ARRAY_SIZE(arm_hypercall_table) )
    {
        multi->result = -ENOSYS;
        return;
    }

    call = arm_hypercall_table[multi->op].fn;
    if ( call == NULL )
    {
        multi->result = -ENOSYS;
        return;
    }

    multi->result = call(multi->args[0], multi->args[1],
                        multi->args[2], multi->args[3],
                        multi->args[4]);
}

/*
 * stolen from arch/arm/kernel/opcodes.c
 *
 * condition code lookup table
 * index into the table is test code: EQ, NE, ... LT, GT, AL, NV
 *
 * bit position in short is condition code: NZCV
 */
static const unsigned short cc_map[16] = {
        0xF0F0,                 /* EQ == Z set            */
        0x0F0F,                 /* NE                     */
        0xCCCC,                 /* CS == C set            */
        0x3333,                 /* CC                     */
        0xFF00,                 /* MI == N set            */
        0x00FF,                 /* PL                     */
        0xAAAA,                 /* VS == V set            */
        0x5555,                 /* VC                     */
        0x0C0C,                 /* HI == C set && Z clear */
        0xF3F3,                 /* LS == C clear || Z set */
        0xAA55,                 /* GE == (N==V)           */
        0x55AA,                 /* LT == (N!=V)           */
        0x0A05,                 /* GT == (!Z && (N==V))   */
        0xF5FA,                 /* LE == (Z || (N!=V))    */
        0xFFFF,                 /* AL always              */
        0                       /* NV                     */
};

static int check_conditional_instr(struct cpu_user_regs *regs, union hsr hsr)
{
    unsigned long cpsr, cpsr_cond;
    int cond;

    /* Unconditional Exception classes */
    if ( hsr.ec >= 0x10 )
        return 1;

    /* Check for valid condition in hsr */
    cond = hsr.cond.ccvalid ? hsr.cond.cc : -1;

    /* Unconditional instruction */
    if ( cond == 0xe )
        return 1;

    cpsr = regs->cpsr;

    /* If cc is not valid then we need to examine the IT state */
    if ( cond < 0 )
    {
        unsigned long it;

        BUG_ON( !is_pv32_domain(current->domain) || !(cpsr&PSR_THUMB) );

        it = ( (cpsr >> (10-2)) & 0xfc) | ((cpsr >> 25) & 0x3 );

        /* it == 0 => unconditional. */
        if ( it == 0 )
            return 1;

        /* The cond for this instruction works out as the top 4 bits. */
        cond =  ( it >> 4 );
    }

    cpsr_cond = cpsr >> 28;

    if ( !((cc_map[cond] >> cpsr_cond) & 1) )
        return 0;

    return 1;
}

static void advance_pc(struct cpu_user_regs *regs, union hsr hsr)
{
    unsigned long itbits, cond, cpsr = regs->cpsr;

    /* PSR_IT_MASK bits can only be set for 32-bit processors in Thumb mode. */
    BUG_ON( (!is_pv32_domain(current->domain)||!(cpsr&PSR_THUMB))
            && (cpsr&PSR_IT_MASK) );

    if ( is_pv32_domain(current->domain) && (cpsr&PSR_IT_MASK) )
    {
        /* The ITSTATE[7:0] block is contained in CPSR[15:10],CPSR[26:25]
         *
         * ITSTATE[7:5] are the condition code
         * ITSTATE[4:0] are the IT bits
         *
         * If the condition is non-zero then the IT state machine is
         * advanced by shifting the IT bits left.
         *
         * See A2-51 and B1-1148 of DDI 0406C.b.
         */
        cond = (cpsr & 0xe000) >> 13;
        itbits = (cpsr & 0x1c00) >> (10 - 2);
        itbits |= (cpsr & (0x3 << 25)) >> 25;

        if ( (itbits & 0x7) == 0 )
            itbits = cond = 0;
        else
            itbits = (itbits << 1) & 0x1f;

        cpsr &= ~PSR_IT_MASK;
        cpsr |= cond << 13;
        cpsr |= (itbits & 0x1c) << (10 - 2);
        cpsr |= (itbits & 0x3) << 25;

        regs->cpsr = cpsr;
    }

    regs->pc += hsr.len ? 4 : 2;
}

static void do_cp15_32(struct cpu_user_regs *regs,
                       union hsr hsr)
{
    struct hsr_cp32 cp32 = hsr.cp32;
    uint32_t *r = (uint32_t*)select_user_reg(regs, cp32.reg);
    struct vcpu *v = current;

    if ( !check_conditional_instr(regs, hsr) )
    {
        advance_pc(regs, hsr);
        return;
    }

    switch ( hsr.bits & HSR_CP32_REGS_MASK )
    {
    case HSR_CPREG32(CLIDR):
        if ( !cp32.read )
        {
            dprintk(XENLOG_ERR,
                    "attempt to write to read-only register CLIDR\n");
            domain_crash_synchronous();
        }
        *r = READ_SYSREG32(CLIDR_EL1);
        break;
    case HSR_CPREG32(CCSIDR):
        if ( !cp32.read )
        {
            dprintk(XENLOG_ERR,
                    "attempt to write to read-only register CCSIDR\n");
            domain_crash_synchronous();
        }
        *r = READ_SYSREG32(CCSIDR_EL1);
        break;
    case HSR_CPREG32(DCCISW):
        if ( cp32.read )
        {
            dprintk(XENLOG_ERR,
                    "attempt to read from write-only register DCCISW\n");
            domain_crash_synchronous();
        }
#ifdef CONFIG_ARM_32
        WRITE_CP32(*r, DCCISW);
#else
        asm volatile("dc cisw, %0;" : : "r" (*r) : "memory");
#endif
        break;
    case HSR_CPREG32(CNTP_CTL):
    case HSR_CPREG32(CNTP_TVAL):
        if ( !vtimer_emulate(regs, hsr) )
        {
            dprintk(XENLOG_ERR,
                    "failed emulation of 32-bit vtimer CP register access\n");
            domain_crash_synchronous();
        }
        break;
    case HSR_CPREG32(ACTLR):
        if ( cp32.read )
           *r = v->arch.actlr;
        break;
    default:
        printk("%s p15, %d, r%d, cr%d, cr%d, %d @ 0x%"PRIregister"\n",
               cp32.read ? "mrc" : "mcr",
               cp32.op1, cp32.reg, cp32.crn, cp32.crm, cp32.op2, regs->pc);
        panic("unhandled 32-bit CP15 access %#x\n", hsr.bits & HSR_CP32_REGS_MASK);
    }
    advance_pc(regs, hsr);
}

static void do_cp15_64(struct cpu_user_regs *regs,
                       union hsr hsr)
{
    struct hsr_cp64 cp64 = hsr.cp64;

    if ( !check_conditional_instr(regs, hsr) )
    {
        advance_pc(regs, hsr);
        return;
    }

    switch ( hsr.bits & HSR_CP64_REGS_MASK )
    {
    case HSR_CPREG64(CNTPCT):
        if ( !vtimer_emulate(regs, hsr) )
        {
            dprintk(XENLOG_ERR,
                    "failed emulation of 64-bit vtimer CP register access\n");
            domain_crash_synchronous();
        }
        break;
    default:
        printk("%s p15, %d, r%d, r%d, cr%d @ 0x%"PRIregister"\n",
               cp64.read ? "mrrc" : "mcrr",
               cp64.op1, cp64.reg1, cp64.reg2, cp64.crm, regs->pc);
        panic("unhandled 64-bit CP15 access %#x\n", hsr.bits & HSR_CP64_REGS_MASK);
    }
    advance_pc(regs, hsr);
}

#ifdef CONFIG_ARM_64
static void do_sysreg(struct cpu_user_regs *regs,
                      union hsr hsr)
{
    struct hsr_sysreg sysreg = hsr.sysreg;

    switch ( hsr.bits & HSR_SYSREG_REGS_MASK )
    {
    case CNTP_CTL_EL0:
    case CNTP_TVAL_EL0:
        if ( !vtimer_emulate(regs, hsr) )
        {
            dprintk(XENLOG_ERR,
                    "failed emulation of 64-bit vtimer sysreg access\n");
            domain_crash_synchronous();
        }
        break;
    default:
        printk("%s %d, %d, c%d, c%d, %d %s x%d @ 0x%"PRIregister"\n",
               sysreg.read ? "mrs" : "msr",
               sysreg.op0, sysreg.op1,
               sysreg.crn, sysreg.crm,
               sysreg.op2,
               sysreg.read ? "=>" : "<=",
               sysreg.reg, regs->pc);
        panic("unhandled 64-bit sysreg access %#x\n",
              hsr.bits & HSR_SYSREG_REGS_MASK);
    }

    regs->pc += 4;
}
#endif

void dump_guest_s1_walk(struct domain *d, vaddr_t addr)
{
    uint32_t ttbcr = READ_SYSREG32(TCR_EL1);
    uint64_t ttbr0 = READ_SYSREG64(TTBR0_EL1);
    paddr_t paddr;
    uint32_t offset;
    uint32_t *first = NULL, *second = NULL;

    printk("dom%d VA 0x%08"PRIvaddr"\n", d->domain_id, addr);
    printk("    TTBCR: 0x%08"PRIx32"\n", ttbcr);
    printk("    TTBR0: 0x%016"PRIx64" = 0x%"PRIpaddr"\n",
           ttbr0, p2m_lookup(d, ttbr0 & PAGE_MASK));

    if ( ttbcr & TTBCR_EAE )
    {
        printk("Cannot handle LPAE guest PT walk\n");
        return;
    }
    if ( (ttbcr & TTBCR_N_MASK) != 0 )
    {
        printk("Cannot handle TTBR1 guest walks\n");
        return;
    }

    paddr = p2m_lookup(d, ttbr0 & PAGE_MASK);
    if ( paddr == INVALID_PADDR )
    {
        printk("Failed TTBR0 maddr lookup\n");
        goto done;
    }
    first = map_domain_page(paddr>>PAGE_SHIFT);

    offset = addr >> (12+10);
    printk("1ST[0x%"PRIx32"] (0x%"PRIpaddr") = 0x%08"PRIx32"\n",
           offset, paddr, first[offset]);
    if ( !(first[offset] & 0x1) ||
         !(first[offset] & 0x2) )
        goto done;

    paddr = p2m_lookup(d, first[offset] & PAGE_MASK);

    if ( paddr == INVALID_PADDR )
    {
        printk("Failed L1 entry maddr lookup\n");
        goto done;
    }
    second = map_domain_page(paddr>>PAGE_SHIFT);
    offset = (addr >> 12) & 0x3FF;
    printk("2ND[0x%"PRIx32"] (0x%"PRIpaddr") = 0x%08"PRIx32"\n",
           offset, paddr, second[offset]);

done:
    if (second) unmap_domain_page(second);
    if (first) unmap_domain_page(first);
}

static void do_trap_data_abort_guest(struct cpu_user_regs *regs,
                                     union hsr hsr)
{
    struct hsr_dabt dabt = hsr.dabt;
    const char *msg;
    int rc, level = -1;
    mmio_info_t info;

    if ( !check_conditional_instr(regs, hsr) )
    {
        advance_pc(regs, hsr);
        return;
    }

    info.dabt = dabt;
#ifdef CONFIG_ARM_32
    info.gva = READ_CP32(HDFAR);
#else
    info.gva = READ_SYSREG64(FAR_EL2);
#endif

    if (dabt.s1ptw)
        goto bad_data_abort;

    rc = gva_to_ipa(info.gva, &info.gpa);
    if ( rc == -EFAULT )
        goto bad_data_abort;

    /* XXX: Decode the instruction if ISS is not valid */
    if ( !dabt.valid )
        goto bad_data_abort;

    /*
     * Erratum 766422: Thumb store translation fault to Hypervisor may
     * not have correct HSR Rt value.
     */
    if ( cpu_has_erratum_766422() && (regs->cpsr & PSR_THUMB) && dabt.write )
    {
        rc = decode_instruction(regs, &info.dabt);
        if ( rc )
        {
            gdprintk(XENLOG_ERR, "Unable to decode instruction\n");
            goto bad_data_abort;
        }
    }

    if (handle_mmio(&info))
    {
        advance_pc(regs, hsr);
        return;
    }

bad_data_abort:

    msg = decode_fsc( dabt.dfsc, &level);

    /* XXX inject a suitable fault into the guest */
    printk("Guest data abort: %s%s%s\n"
           "    gva=%"PRIvaddr"\n",
           msg, dabt.s1ptw ? " S2 during S1" : "",
           fsc_level_str(level),
           info.gva);
    if ( !dabt.s1ptw )
        printk("    gpa=%"PRIpaddr"\n", info.gpa);
    if ( dabt.valid )
        printk("    size=%d sign=%d write=%d reg=%d\n",
               dabt.size, dabt.sign, dabt.write, dabt.reg);
    else
        printk("    instruction syndrome invalid\n");
    printk("    eat=%d cm=%d s1ptw=%d dfsc=%d\n",
           dabt.eat, dabt.cache, dabt.s1ptw, dabt.dfsc);
    if ( !dabt.s1ptw )
        dump_p2m_lookup(current->domain, info.gpa);
    else
        dump_guest_s1_walk(current->domain, info.gva);
    show_execution_state(regs);
    domain_crash_synchronous();
}

asmlinkage void do_trap_hypervisor(struct cpu_user_regs *regs)
{
    union hsr hsr = { .bits = READ_SYSREG32(ESR_EL2) };

    switch (hsr.ec) {
    case HSR_EC_WFI_WFE:
        if ( !check_conditional_instr(regs, hsr) )
        {
            advance_pc(regs, hsr);
            return;
        }
        /* at the moment we only trap WFI */
        vcpu_block();
        /* The ARM spec declares that even if local irqs are masked in
         * the CPSR register, an irq should wake up a cpu from WFI anyway.
         * For this reason we need to check for irqs that need delivery,
         * ignoring the CPSR register, *after* calling SCHEDOP_block to
         * avoid races with vgic_vcpu_inject_irq.
         */
        if ( local_events_need_delivery_nomask() )
            vcpu_unblock(current);
        advance_pc(regs, hsr);
        break;
    case HSR_EC_CP15_32:
        if ( ! is_pv32_domain(current->domain) )
            goto bad_trap;
        do_cp15_32(regs, hsr);
        break;
    case HSR_EC_CP15_64:
        if ( ! is_pv32_domain(current->domain) )
            goto bad_trap;
        do_cp15_64(regs, hsr);
        break;
    case HSR_EC_SMC32:
        inject_undef32_exception(regs);
        break;
    case HSR_EC_HVC32:
#ifndef NDEBUG
        if ( (hsr.iss & 0xff00) == 0xff00 )
            return do_debug_trap(regs, hsr.iss & 0x00ff);
#endif
        if ( hsr.iss == 0 )
            return do_trap_psci(regs);
        do_trap_hypercall(regs, (register_t *)&regs->r12, hsr.iss);
        break;
#ifdef CONFIG_ARM_64
    case HSR_EC_HVC64:
#ifndef NDEBUG
        if ( (hsr.iss & 0xff00) == 0xff00 )
            return do_debug_trap(regs, hsr.iss & 0x00ff);
#endif
        if ( hsr.iss == 0 )
            return do_trap_psci(regs);
        do_trap_hypercall(regs, &regs->x16, hsr.iss);
        break;
    case HSR_EC_SMC64:
        inject_undef64_exception(regs, hsr.len);
        break;
    case HSR_EC_SYSREG:
        if ( is_pv32_domain(current->domain) )
            goto bad_trap;
        do_sysreg(regs, hsr);
        break;
#endif

    case HSR_EC_DATA_ABORT_GUEST:
        do_trap_data_abort_guest(regs, hsr);
        break;
    default:
 bad_trap:
        printk("Hypervisor Trap. HSR=0x%x EC=0x%x IL=%x Syndrome=%"PRIx32"\n",
               hsr.bits, hsr.ec, hsr.len, hsr.iss);
        do_unexpected_trap("Hypervisor", regs);
    }
}

asmlinkage void do_trap_irq(struct cpu_user_regs *regs)
{
    gic_interrupt(regs, 0);
}

asmlinkage void do_trap_fiq(struct cpu_user_regs *regs)
{
    gic_interrupt(regs, 1);
}

asmlinkage void leave_hypervisor_tail(void)
{
    while (1)
    {
        local_irq_disable();
        if (!softirq_pending(smp_processor_id())) {
            gic_inject();
            return;
        }
        local_irq_enable();
        do_softirq();
    }
}

/*
 * Local variables:
 * mode: C
 * c-file-style: "BSD"
 * c-basic-offset: 4
 * indent-tabs-mode: nil
 * End:
 */