aboutsummaryrefslogtreecommitdiffstats
path: root/linux-2.6.11-xen-sparse/arch/xen/x86_64/kernel/pci-dma.c
blob: 70a2a38b7e1e3b0527a1003223f7aa33a49e1e27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*
 * Dynamic DMA mapping support.
 */

#include <linux/types.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <asm/io.h>
#include <asm-xen/balloon.h>

/* Map a set of buffers described by scatterlist in streaming
 * mode for DMA.  This is the scatter-gather version of the
 * above pci_map_single interface.  Here the scatter gather list
 * elements are each tagged with the appropriate dma address
 * and length.  They are obtained via sg_dma_{address,length}(SG).
 *
 * NOTE: An implementation may be able to use a smaller number of
 *       DMA address/length pairs than there are SG table elements.
 *       (for example via virtual mapping capabilities)
 *       The routine returns the number of addr/length pairs actually
 *       used, at most nents.
 *
 * Device ownership issues as mentioned above for pci_map_single are
 * the same here.
 */
int dma_map_sg(struct device *hwdev, struct scatterlist *sg,
	       int nents, int direction)
{
	int i;

	BUG_ON(direction == DMA_NONE);
 	for (i = 0; i < nents; i++ ) {
		struct scatterlist *s = &sg[i];
		BUG_ON(!s->page); 
		s->dma_address = virt_to_bus(page_address(s->page) +s->offset);
		s->dma_length = s->length;
	}
	return nents;
}

EXPORT_SYMBOL(dma_map_sg);

/* Unmap a set of streaming mode DMA translations.
 * Again, cpu read rules concerning calls here are the same as for
 * pci_unmap_single() above.
 */
void dma_unmap_sg(struct device *dev, struct scatterlist *sg,
		  int nents, int dir)
{
	int i;
	for (i = 0; i < nents; i++) { 
		struct scatterlist *s = &sg[i];
		BUG_ON(s->page == NULL); 
		BUG_ON(s->dma_address == 0); 
		dma_unmap_single(dev, s->dma_address, s->dma_length, dir);
	} 
}

struct dma_coherent_mem {
	void		*virt_base;
	u32		device_base;
	int		size;
	int		flags;
	unsigned long	*bitmap;
};

static void
xen_contig_memory(unsigned long vstart, unsigned int order)
{
	/*
	 * Ensure multi-page extents are contiguous in machine memory.
	 * This code could be cleaned up some, and the number of
	 * hypercalls reduced.
	 */
	pgd_t         *pgd; 
	pud_t         *pud; 
	pmd_t         *pmd;
	pte_t         *pte;
	unsigned long  pfn, i, flags;

	scrub_pages(vstart, 1 << order);

        balloon_lock(flags);

	/* 1. Zap current PTEs, giving away the underlying pages. */
	for (i = 0; i < (1<<order); i++) {
                pgd = pgd_offset_k(   (vstart + (i*PAGE_SIZE)));
		pud = pud_offset(pgd, (vstart + (i*PAGE_SIZE)));
		pmd = pmd_offset(pud, (vstart + (i*PAGE_SIZE)));
		pte = pte_offset_kernel(pmd, (vstart + (i*PAGE_SIZE)));
		pfn = pte->pte >> PAGE_SHIFT;
		xen_l1_entry_update(pte, 0);
		phys_to_machine_mapping[(__pa(vstart)>>PAGE_SHIFT)+i] =
			(u32)INVALID_P2M_ENTRY;
		if (HYPERVISOR_dom_mem_op(MEMOP_decrease_reservation, 
					  &pfn, 1, 0) != 1) BUG();
	}
	/* 2. Get a new contiguous memory extent. */
	if (HYPERVISOR_dom_mem_op(MEMOP_increase_reservation,
				  &pfn, 1, order) != 1) BUG();
	/* 3. Map the new extent in place of old pages. */
	for (i = 0; i < (1<<order); i++) {
		pgd = pgd_offset_k(   (vstart + (i*PAGE_SIZE)));
		pud = pud_offset(pgd, (vstart + (i*PAGE_SIZE)));
		pmd = pmd_offset(pud, (vstart + (i*PAGE_SIZE)));
		pte = pte_offset_kernel(pmd, (vstart + (i*PAGE_SIZE)));
		xen_l1_entry_update(
			pte, ((pfn+i)<<PAGE_SHIFT)|__PAGE_KERNEL);
		xen_machphys_update(
			pfn+i, (__pa(vstart)>>PAGE_SHIFT)+i);
		phys_to_machine_mapping[(__pa(vstart)>>PAGE_SHIFT)+i] =
			pfn+i;
	}
	/* Flush updates through and flush the TLB. */
	xen_tlb_flush();

        balloon_unlock(flags);
}

void *dma_alloc_coherent(struct device *dev, size_t size,
			   dma_addr_t *dma_handle, unsigned gfp)
{
	void *ret;
	unsigned int order = get_order(size);
	unsigned long vstart;

	struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;

	/* ignore region specifiers */
	gfp &= ~(__GFP_DMA | __GFP_HIGHMEM);

	if (mem) {
		int page = bitmap_find_free_region(mem->bitmap, mem->size,
						     order);
		if (page >= 0) {
			*dma_handle = mem->device_base + (page << PAGE_SHIFT);
			ret = mem->virt_base + (page << PAGE_SHIFT);
			memset(ret, 0, size);
			return ret;
		}
		if (mem->flags & DMA_MEMORY_EXCLUSIVE)
			return NULL;
	}

	if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff))
		gfp |= GFP_DMA;

	vstart = __get_free_pages(gfp, order);
	ret = (void *)vstart;
	if (ret == NULL)
		return ret;

	xen_contig_memory(vstart, order);

	memset(ret, 0, size);
	*dma_handle = virt_to_bus(ret);

	return ret;
}
EXPORT_SYMBOL(dma_alloc_coherent);

void dma_free_coherent(struct device *dev, size_t size,
			 void *vaddr, dma_addr_t dma_handle)
{
	struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
	int order = get_order(size);
	
	if (mem && vaddr >= mem->virt_base && vaddr < (mem->virt_base + (mem->size << PAGE_SHIFT))) {
		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;

		bitmap_release_region(mem->bitmap, page, order);
	} else
		free_pages((unsigned long)vaddr, order);
}
EXPORT_SYMBOL(dma_free_coherent);

#if 0
int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
				dma_addr_t device_addr, size_t size, int flags)
{
	void __iomem *mem_base;
	int pages = size >> PAGE_SHIFT;
	int bitmap_size = (pages + 31)/32;

	if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
		goto out;
	if (!size)
		goto out;
	if (dev->dma_mem)
		goto out;

	/* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */

	mem_base = ioremap(bus_addr, size);
	if (!mem_base)
		goto out;

	dev->dma_mem = kmalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
	if (!dev->dma_mem)
		goto out;
	memset(dev->dma_mem, 0, sizeof(struct dma_coherent_mem));
	dev->dma_mem->bitmap = kmalloc(bitmap_size, GFP_KERNEL);
	if (!dev->dma_mem->bitmap)
		goto free1_out;
	memset(dev->dma_mem->bitmap, 0, bitmap_size);

	dev->dma_mem->virt_base = mem_base;
	dev->dma_mem->device_base = device_addr;
	dev->dma_mem->size = pages;
	dev->dma_mem->flags = flags;

	if (flags & DMA_MEMORY_MAP)
		return DMA_MEMORY_MAP;

	return DMA_MEMORY_IO;

 free1_out:
	kfree(dev->dma_mem->bitmap);
 out:
	return 0;
}
EXPORT_SYMBOL(dma_declare_coherent_memory);

void dma_release_declared_memory(struct device *dev)
{
	struct dma_coherent_mem *mem = dev->dma_mem;
	
	if(!mem)
		return;
	dev->dma_mem = NULL;
	iounmap(mem->virt_base);
	kfree(mem->bitmap);
	kfree(mem);
}
EXPORT_SYMBOL(dma_release_declared_memory);

void *dma_mark_declared_memory_occupied(struct device *dev,
					dma_addr_t device_addr, size_t size)
{
	struct dma_coherent_mem *mem = dev->dma_mem;
	int pages = (size + (device_addr & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	int pos, err;

	if (!mem)
		return ERR_PTR(-EINVAL);

	pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
	err = bitmap_allocate_region(mem->bitmap, pos, get_order(pages));
	if (err != 0)
		return ERR_PTR(err);
	return mem->virt_base + (pos << PAGE_SHIFT);
}
EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
#endif