aboutsummaryrefslogtreecommitdiffstats
path: root/extras/mini-os/lib/math.c
blob: c941b4c420b15f9f9ef8bb3a83b29fe7aee69554 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/* -*-  Mode:C; c-basic-offset:4; tab-width:4 -*-
 ****************************************************************************
 * (C) 2003 - Rolf Neugebauer - Intel Research Cambridge
 ****************************************************************************
 *
 *        File: math.c
 *      Author: Rolf Neugebauer (neugebar@dcs.gla.ac.uk)
 *     Changes: 
 *              
 *        Date: Aug 2003
 * 
 * Environment: Xen Minimal OS
 * Description:  Library functions for 64bit arith and other
 *               from freebsd, files in sys/libkern/ (qdivrem.c, etc)
 *
 * Copyright (c) 1992, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * This software was developed by the Computer Systems Engineering group
 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
 * contributed to Berkeley.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
*/

#include <mini-os/types.h>
#include <mini-os/lib.h>
#include <mini-os/time.h>

/* XXX RN: Yuck hardcoded endianess :) */
#define _QUAD_HIGHWORD 1
#define _QUAD_LOWWORD 0

/*
 * From
 *	@(#)quad.h	8.1 (Berkeley) 6/4/93
 */

/*
 * Depending on the desired operation, we view a `long long' (aka quad_t) in
 * one or more of the following formats.
 */
union uu {
	quad_t	q;		/* as a (signed) quad */
	quad_t	uq;		/* as an unsigned quad */
	int32_t	sl[2];		/* as two signed longs */
	uint32_t	ul[2];		/* as two unsigned longs */
};

/*
 * Define high and low longwords.
 */
#define	H		_QUAD_HIGHWORD
#define	L		_QUAD_LOWWORD

/*
 * Total number of bits in an quad_t and in the pieces that make it up.
 * These are used for shifting, and also below for halfword extraction
 * and assembly.
 */
#ifndef HAVE_LIBC
#define CHAR_BIT        8               /* number of bits in a char */
#endif
#define	QUAD_BITS	(sizeof(quad_t) * CHAR_BIT)
#define	LONG_BITS	(sizeof(int32_t) * CHAR_BIT)
#define	HALF_BITS	(sizeof(int32_t) * CHAR_BIT / 2)

/*
 * Extract high and low shortwords from longword, and move low shortword of
 * longword to upper half of int32_t, i.e., produce the upper longword of
 * ((quad_t)(x) << (number_of_bits_in_long/2)).  (`x' must actually be uint32_t.)
 *
 * These are used in the multiply code, to split a longword into upper
 * and lower halves, and to reassemble a product as a quad_t, shifted left
 * (sizeof(int32_t)*CHAR_BIT/2).
 */
#define	HHALF(x)	((x) >> HALF_BITS)
#define	LHALF(x)	((x) & ((1UL << HALF_BITS) - 1))
#define	LHUP(x)		((x) << HALF_BITS)


/*
 * From
 * qdivrem.c
 */

/*
 * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
 * section 4.3.1, pp. 257--259.
 */
#define	B	(1UL << HALF_BITS)	/* digit base */

/* Combine two `digits' to make a single two-digit number. */
#define	COMBINE(a, b) (((uint32_t)(a) << HALF_BITS) | (b))

/* select a type for digits in base B: */
typedef uint16_t digit;

/*
 * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
 * `fall out' the left (there never will be any such anyway).
 * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
 */
static void
shl(register digit *p, register int len, register int sh)
{
	register int i;

	for (i = 0; i < len; i++)
		p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
	p[i] = LHALF(p[i] << sh);
}

/*
 * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
 *
 * We do this in base 2-sup-HALF_BITS, so that all intermediate products
 * fit within uint32_t.  As a consequence, the maximum length dividend and
 * divisor are 4 `digits' in this base (they are shorter if they have
 * leading zeros).
 */
u_quad_t
__qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
{
	union uu tmp;
	digit *u, *v, *q;
	register digit v1, v2;
	uint32_t qhat, rhat, t;
	int m, n, d, j, i;
	digit uspace[5], vspace[5], qspace[5];

	/*
	 * Take care of special cases: divide by zero, and u < v.
	 */
	if (vq == 0) {
		/* divide by zero. */
		static volatile const unsigned int zero = 0;

		tmp.ul[H] = tmp.ul[L] = 1 / zero;
		if (arq)
			*arq = uq;
		return (tmp.q);
	}
	if (uq < vq) {
		if (arq)
			*arq = uq;
		return (0);
	}
	u = &uspace[0];
	v = &vspace[0];
	q = &qspace[0];

	/*
	 * Break dividend and divisor into digits in base B, then
	 * count leading zeros to determine m and n.  When done, we
	 * will have:
	 *	u = (u[1]u[2]...u[m+n]) sub B
	 *	v = (v[1]v[2]...v[n]) sub B
	 *	v[1] != 0
	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
	 *	m >= 0 (otherwise u < v, which we already checked)
	 *	m + n = 4
	 * and thus
	 *	m = 4 - n <= 2
	 */
	tmp.uq = uq;
	u[0] = 0;
	u[1] = HHALF(tmp.ul[H]);
	u[2] = LHALF(tmp.ul[H]);
	u[3] = HHALF(tmp.ul[L]);
	u[4] = LHALF(tmp.ul[L]);
	tmp.uq = vq;
	v[1] = HHALF(tmp.ul[H]);
	v[2] = LHALF(tmp.ul[H]);
	v[3] = HHALF(tmp.ul[L]);
	v[4] = LHALF(tmp.ul[L]);
	for (n = 4; v[1] == 0; v++) {
		if (--n == 1) {
			uint32_t rbj;	/* r*B+u[j] (not root boy jim) */
			digit q1, q2, q3, q4;

			/*
			 * Change of plan, per exercise 16.
			 *	r = 0;
			 *	for j = 1..4:
			 *		q[j] = floor((r*B + u[j]) / v),
			 *		r = (r*B + u[j]) % v;
			 * We unroll this completely here.
			 */
			t = v[2];	/* nonzero, by definition */
			q1 = u[1] / t;
			rbj = COMBINE(u[1] % t, u[2]);
			q2 = rbj / t;
			rbj = COMBINE(rbj % t, u[3]);
			q3 = rbj / t;
			rbj = COMBINE(rbj % t, u[4]);
			q4 = rbj / t;
			if (arq)
				*arq = rbj % t;
			tmp.ul[H] = COMBINE(q1, q2);
			tmp.ul[L] = COMBINE(q3, q4);
			return (tmp.q);
		}
	}

	/*
	 * By adjusting q once we determine m, we can guarantee that
	 * there is a complete four-digit quotient at &qspace[1] when
	 * we finally stop.
	 */
	for (m = 4 - n; u[1] == 0; u++)
		m--;
	for (i = 4 - m; --i >= 0;)
		q[i] = 0;
	q += 4 - m;

	/*
	 * Here we run Program D, translated from MIX to C and acquiring
	 * a few minor changes.
	 *
	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
	 */
	d = 0;
	for (t = v[1]; t < B / 2; t <<= 1)
		d++;
	if (d > 0) {
		shl(&u[0], m + n, d);		/* u <<= d */
		shl(&v[1], n - 1, d);		/* v <<= d */
	}
	/*
	 * D2: j = 0.
	 */
	j = 0;
	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
	v2 = v[2];	/* for D3 */
	do {
		register digit uj0, uj1, uj2;

		/*
		 * D3: Calculate qhat (\^q, in TeX notation).
		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
		 * decrement qhat and increase rhat correspondingly.
		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
		 */
		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
		uj1 = u[j + 1];	/* for D3 only */
		uj2 = u[j + 2];	/* for D3 only */
		if (uj0 == v1) {
			qhat = B;
			rhat = uj1;
			goto qhat_too_big;
		} else {
			uint32_t nn = COMBINE(uj0, uj1);
			qhat = nn / v1;
			rhat = nn % v1;
		}
		while (v2 * qhat > COMBINE(rhat, uj2)) {
	qhat_too_big:
			qhat--;
			if ((rhat += v1) >= B)
				break;
		}
		/*
		 * D4: Multiply and subtract.
		 * The variable `t' holds any borrows across the loop.
		 * We split this up so that we do not require v[0] = 0,
		 * and to eliminate a final special case.
		 */
		for (t = 0, i = n; i > 0; i--) {
			t = u[i + j] - v[i] * qhat - t;
			u[i + j] = LHALF(t);
			t = (B - HHALF(t)) & (B - 1);
		}
		t = u[j] - t;
		u[j] = LHALF(t);
		/*
		 * D5: test remainder.
		 * There is a borrow if and only if HHALF(t) is nonzero;
		 * in that (rare) case, qhat was too large (by exactly 1).
		 * Fix it by adding v[1..n] to u[j..j+n].
		 */
		if (HHALF(t)) {
			qhat--;
			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
				t += u[i + j] + v[i];
				u[i + j] = LHALF(t);
				t = HHALF(t);
			}
			u[j] = LHALF(u[j] + t);
		}
		q[j] = qhat;
	} while (++j <= m);		/* D7: loop on j. */

	/*
	 * If caller wants the remainder, we have to calculate it as
	 * u[m..m+n] >> d (this is at most n digits and thus fits in
	 * u[m+1..m+n], but we may need more source digits).
	 */
	if (arq) {
		if (d) {
			for (i = m + n; i > m; --i)
				u[i] = (u[i] >> d) |
				    LHALF(u[i - 1] << (HALF_BITS - d));
			u[i] = 0;
		}
		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
		*arq = tmp.q;
	}

	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
	return (tmp.q);
}

/*
 * From
 * divdi3.c
 */

/*
 * Divide two signed quads.
 * ??? if -1/2 should produce -1 on this machine, this code is wrong
 */
quad_t
__divdi3(quad_t a, quad_t b)
{
	u_quad_t ua, ub, uq;
	int neg;

	if (a < 0)
		ua = -(u_quad_t)a, neg = 1;
	else
		ua = a, neg = 0;
	if (b < 0)
		ub = -(u_quad_t)b, neg ^= 1;
	else
		ub = b;
	uq = __qdivrem(ua, ub, (u_quad_t *)0);
	return (neg ? -uq : uq);
}

/*
 * From
 * udivdi3.c
 */

/*
 * Divide two unsigned quads.
 */
u_quad_t
__udivdi3(u_quad_t a, u_quad_t b)
{
	return (__qdivrem(a, b, (u_quad_t *)0));
}

/*
 * From
 * umoddi3.c
 */

/*
 * Return remainder after dividing two unsigned quads.
 */
u_quad_t
__umoddi3(u_quad_t a, u_quad_t b)
{
	u_quad_t r;

	(void)__qdivrem(a, b, &r);
	return (r);
}

/*
 * From
 * moddi3.c
 */

/*
 * Return remainder after dividing two signed quads.
 *
 * XXX
 * If -1/2 should produce -1 on this machine, this code is wrong.
 */
quad_t
__moddi3(quad_t a, quad_t b)
{
	u_quad_t ua, ub, ur;
	int neg;

	if (a < 0)
		ua = -(u_quad_t)a, neg = 1;
	else
		ua = a, neg = 0;
	if (b < 0)
		ub = -(u_quad_t)b;
	else
		ub = b;
	(void)__qdivrem(ua, ub, &ur);
	return (neg ? -ur : ur);
}

#ifndef HAVE_LIBC
/* Should be random enough for our uses */
int rand(void)
{
    static unsigned int previous;
    struct timeval tv;
    gettimeofday(&tv, NULL);
    previous += tv.tv_sec + tv.tv_usec;
    previous *= RAND_MIX;
    return previous;
}
#endif