aboutsummaryrefslogtreecommitdiffstats
path: root/xenolinux-2.4.25-sparse/mm/memory.c
diff options
context:
space:
mode:
Diffstat (limited to 'xenolinux-2.4.25-sparse/mm/memory.c')
-rw-r--r--xenolinux-2.4.25-sparse/mm/memory.c1549
1 files changed, 1549 insertions, 0 deletions
diff --git a/xenolinux-2.4.25-sparse/mm/memory.c b/xenolinux-2.4.25-sparse/mm/memory.c
new file mode 100644
index 0000000000..dc09253985
--- /dev/null
+++ b/xenolinux-2.4.25-sparse/mm/memory.c
@@ -0,0 +1,1549 @@
+/*
+ * linux/mm/memory.c
+ *
+ * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
+ */
+
+/*
+ * demand-loading started 01.12.91 - seems it is high on the list of
+ * things wanted, and it should be easy to implement. - Linus
+ */
+
+/*
+ * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
+ * pages started 02.12.91, seems to work. - Linus.
+ *
+ * Tested sharing by executing about 30 /bin/sh: under the old kernel it
+ * would have taken more than the 6M I have free, but it worked well as
+ * far as I could see.
+ *
+ * Also corrected some "invalidate()"s - I wasn't doing enough of them.
+ */
+
+/*
+ * Real VM (paging to/from disk) started 18.12.91. Much more work and
+ * thought has to go into this. Oh, well..
+ * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
+ * Found it. Everything seems to work now.
+ * 20.12.91 - Ok, making the swap-device changeable like the root.
+ */
+
+/*
+ * 05.04.94 - Multi-page memory management added for v1.1.
+ * Idea by Alex Bligh (alex@cconcepts.co.uk)
+ *
+ * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
+ * (Gerhard.Wichert@pdb.siemens.de)
+ */
+
+#include <linux/mm.h>
+#include <linux/mman.h>
+#include <linux/swap.h>
+#include <linux/smp_lock.h>
+#include <linux/swapctl.h>
+#include <linux/iobuf.h>
+#include <linux/highmem.h>
+#include <linux/pagemap.h>
+#include <linux/module.h>
+
+#include <asm/pgalloc.h>
+#include <asm/uaccess.h>
+#include <asm/tlb.h>
+
+unsigned long max_mapnr;
+unsigned long num_physpages;
+unsigned long num_mappedpages;
+void * high_memory;
+struct page *highmem_start_page;
+
+/*
+ * We special-case the C-O-W ZERO_PAGE, because it's such
+ * a common occurrence (no need to read the page to know
+ * that it's zero - better for the cache and memory subsystem).
+ */
+static inline void copy_cow_page(struct page * from, struct page * to, unsigned long address)
+{
+ if (from == ZERO_PAGE(address)) {
+ clear_user_highpage(to, address);
+ return;
+ }
+ copy_user_highpage(to, from, address);
+}
+
+mem_map_t * mem_map;
+
+/*
+ * Called by TLB shootdown
+ */
+void __free_pte(pte_t pte)
+{
+ struct page *page = pte_page(pte);
+ if ((!VALID_PAGE(page)) || PageReserved(page))
+ return;
+ if (pte_dirty(pte))
+ set_page_dirty(page);
+ free_page_and_swap_cache(page);
+}
+
+
+/*
+ * Note: this doesn't free the actual pages themselves. That
+ * has been handled earlier when unmapping all the memory regions.
+ */
+static inline void free_one_pmd(pmd_t * dir)
+{
+ pte_t * pte;
+
+ if (pmd_none(*dir))
+ return;
+ if (pmd_bad(*dir)) {
+ pmd_ERROR(*dir);
+ pmd_clear(dir);
+ return;
+ }
+ pte = pte_offset(dir, 0);
+ pmd_clear(dir);
+ pte_free(pte);
+}
+
+static inline void free_one_pgd(pgd_t * dir)
+{
+ int j;
+ pmd_t * pmd;
+
+ if (pgd_none(*dir))
+ return;
+ if (pgd_bad(*dir)) {
+ pgd_ERROR(*dir);
+ pgd_clear(dir);
+ return;
+ }
+ pmd = pmd_offset(dir, 0);
+ pgd_clear(dir);
+ for (j = 0; j < PTRS_PER_PMD ; j++) {
+ prefetchw(pmd+j+(PREFETCH_STRIDE/16));
+ free_one_pmd(pmd+j);
+ }
+ pmd_free(pmd);
+}
+
+/* Low and high watermarks for page table cache.
+ The system should try to have pgt_water[0] <= cache elements <= pgt_water[1]
+ */
+int pgt_cache_water[2] = { 25, 50 };
+
+/* Returns the number of pages freed */
+int check_pgt_cache(void)
+{
+ return do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]);
+}
+
+
+/*
+ * This function clears all user-level page tables of a process - this
+ * is needed by execve(), so that old pages aren't in the way.
+ */
+void clear_page_tables(struct mm_struct *mm, unsigned long first, int nr)
+{
+ pgd_t * page_dir = mm->pgd;
+
+ spin_lock(&mm->page_table_lock);
+ page_dir += first;
+ do {
+ free_one_pgd(page_dir);
+ page_dir++;
+ } while (--nr);
+ XENO_flush_page_update_queue();
+ spin_unlock(&mm->page_table_lock);
+
+ /* keep the page table cache within bounds */
+ check_pgt_cache();
+}
+
+#define PTE_TABLE_MASK ((PTRS_PER_PTE-1) * sizeof(pte_t))
+#define PMD_TABLE_MASK ((PTRS_PER_PMD-1) * sizeof(pmd_t))
+
+/*
+ * copy one vm_area from one task to the other. Assumes the page tables
+ * already present in the new task to be cleared in the whole range
+ * covered by this vma.
+ *
+ * 08Jan98 Merged into one routine from several inline routines to reduce
+ * variable count and make things faster. -jj
+ *
+ * dst->page_table_lock is held on entry and exit,
+ * but may be dropped within pmd_alloc() and pte_alloc().
+ */
+int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
+ struct vm_area_struct *vma)
+{
+ pgd_t * src_pgd, * dst_pgd;
+ unsigned long address = vma->vm_start;
+ unsigned long end = vma->vm_end;
+ unsigned long cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
+
+ src_pgd = pgd_offset(src, address)-1;
+ dst_pgd = pgd_offset(dst, address)-1;
+
+ for (;;) {
+ pmd_t * src_pmd, * dst_pmd;
+
+ src_pgd++; dst_pgd++;
+
+ /* copy_pmd_range */
+
+ if (pgd_none(*src_pgd))
+ goto skip_copy_pmd_range;
+ if (pgd_bad(*src_pgd)) {
+ pgd_ERROR(*src_pgd);
+ pgd_clear(src_pgd);
+skip_copy_pmd_range: address = (address + PGDIR_SIZE) & PGDIR_MASK;
+ if (!address || (address >= end))
+ goto out;
+ continue;
+ }
+
+ src_pmd = pmd_offset(src_pgd, address);
+ dst_pmd = pmd_alloc(dst, dst_pgd, address);
+ if (!dst_pmd)
+ goto nomem;
+
+ do {
+ pte_t * src_pte, * dst_pte;
+
+ /* copy_pte_range */
+
+ if (pmd_none(*src_pmd))
+ goto skip_copy_pte_range;
+ if (pmd_bad(*src_pmd)) {
+ pmd_ERROR(*src_pmd);
+ pmd_clear(src_pmd);
+skip_copy_pte_range: address = (address + PMD_SIZE) & PMD_MASK;
+ if (address >= end)
+ goto out;
+ goto cont_copy_pmd_range;
+ }
+
+ src_pte = pte_offset(src_pmd, address);
+ dst_pte = pte_alloc(dst, dst_pmd, address);
+ if (!dst_pte)
+ goto nomem;
+
+ spin_lock(&src->page_table_lock);
+ do {
+ pte_t pte = *src_pte;
+ struct page *ptepage;
+
+ /* copy_one_pte */
+
+ if (pte_none(pte))
+ goto cont_copy_pte_range_noset;
+ if (!pte_present(pte)) {
+ swap_duplicate(pte_to_swp_entry(pte));
+ goto cont_copy_pte_range;
+ }
+ ptepage = pte_page(pte);
+ if ((!VALID_PAGE(ptepage)) ||
+ PageReserved(ptepage))
+ goto cont_copy_pte_range;
+
+ /* If it's a COW mapping, write protect it both in the parent and the child */
+ if (cow && pte_write(pte)) {
+ /* XENO modification: modified ordering here to avoid RaW hazard. */
+ pte = *src_pte;
+ pte = pte_wrprotect(pte);
+ ptep_set_wrprotect(src_pte);
+ }
+
+ /* If it's a shared mapping, mark it clean in the child */
+ if (vma->vm_flags & VM_SHARED)
+ pte = pte_mkclean(pte);
+ pte = pte_mkold(pte);
+ get_page(ptepage);
+ dst->rss++;
+
+cont_copy_pte_range: set_pte(dst_pte, pte);
+cont_copy_pte_range_noset: address += PAGE_SIZE;
+ if (address >= end)
+ goto out_unlock;
+ src_pte++;
+ dst_pte++;
+ } while ((unsigned long)src_pte & PTE_TABLE_MASK);
+ spin_unlock(&src->page_table_lock);
+
+cont_copy_pmd_range: src_pmd++;
+ dst_pmd++;
+ } while ((unsigned long)src_pmd & PMD_TABLE_MASK);
+ }
+out_unlock:
+ spin_unlock(&src->page_table_lock);
+out:
+ return 0;
+nomem:
+ return -ENOMEM;
+}
+
+/*
+ * Return indicates whether a page was freed so caller can adjust rss
+ */
+static inline void forget_pte(pte_t page)
+{
+ if (!pte_none(page)) {
+ printk("forget_pte: old mapping existed!\n");
+ BUG();
+ }
+}
+
+static inline int zap_pte_range(mmu_gather_t *tlb, pmd_t * pmd, unsigned long address, unsigned long size)
+{
+ unsigned long offset;
+ pte_t * ptep;
+ int freed = 0;
+
+ if (pmd_none(*pmd))
+ return 0;
+ if (pmd_bad(*pmd)) {
+ pmd_ERROR(*pmd);
+ pmd_clear(pmd);
+ return 0;
+ }
+ ptep = pte_offset(pmd, address);
+ offset = address & ~PMD_MASK;
+ if (offset + size > PMD_SIZE)
+ size = PMD_SIZE - offset;
+ size &= PAGE_MASK;
+ for (offset=0; offset < size; ptep++, offset += PAGE_SIZE) {
+ pte_t pte = *ptep;
+ if (pte_none(pte))
+ continue;
+ if (pte_present(pte)) {
+ struct page *page = pte_page(pte);
+#if defined(CONFIG_XENO_PRIV)
+ if (pte_io(pte)) {
+ queue_unchecked_mmu_update(ptep, 0);
+ continue;
+ }
+#endif
+ if (VALID_PAGE(page) && !PageReserved(page))
+ freed ++;
+ /* This will eventually call __free_pte on the pte. */
+ tlb_remove_page(tlb, ptep, address + offset);
+ } else {
+ free_swap_and_cache(pte_to_swp_entry(pte));
+ pte_clear(ptep);
+ }
+ }
+
+ return freed;
+}
+
+static inline int zap_pmd_range(mmu_gather_t *tlb, pgd_t * dir, unsigned long address, unsigned long size)
+{
+ pmd_t * pmd;
+ unsigned long end;
+ int freed;
+
+ if (pgd_none(*dir))
+ return 0;
+ if (pgd_bad(*dir)) {
+ pgd_ERROR(*dir);
+ pgd_clear(dir);
+ return 0;
+ }
+ pmd = pmd_offset(dir, address);
+ end = address + size;
+ if (end > ((address + PGDIR_SIZE) & PGDIR_MASK))
+ end = ((address + PGDIR_SIZE) & PGDIR_MASK);
+ freed = 0;
+ do {
+ freed += zap_pte_range(tlb, pmd, address, end - address);
+ address = (address + PMD_SIZE) & PMD_MASK;
+ pmd++;
+ } while (address < end);
+ return freed;
+}
+
+/*
+ * remove user pages in a given range.
+ */
+void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size)
+{
+ mmu_gather_t *tlb;
+ pgd_t * dir;
+ unsigned long start = address, end = address + size;
+ int freed = 0;
+
+ dir = pgd_offset(mm, address);
+
+ /*
+ * This is a long-lived spinlock. That's fine.
+ * There's no contention, because the page table
+ * lock only protects against kswapd anyway, and
+ * even if kswapd happened to be looking at this
+ * process we _want_ it to get stuck.
+ */
+ if (address >= end)
+ BUG();
+ spin_lock(&mm->page_table_lock);
+ flush_cache_range(mm, address, end);
+ tlb = tlb_gather_mmu(mm);
+
+ do {
+ freed += zap_pmd_range(tlb, dir, address, end - address);
+ address = (address + PGDIR_SIZE) & PGDIR_MASK;
+ dir++;
+ } while (address && (address < end));
+
+ /* this will flush any remaining tlb entries */
+ tlb_finish_mmu(tlb, start, end);
+
+ /*
+ * Update rss for the mm_struct (not necessarily current->mm)
+ * Notice that rss is an unsigned long.
+ */
+ if (mm->rss > freed)
+ mm->rss -= freed;
+ else
+ mm->rss = 0;
+ spin_unlock(&mm->page_table_lock);
+}
+
+/*
+ * Do a quick page-table lookup for a single page.
+ */
+static struct page * follow_page(struct mm_struct *mm, unsigned long address, int write)
+{
+ pgd_t *pgd;
+ pmd_t *pmd;
+ pte_t *ptep, pte;
+
+ pgd = pgd_offset(mm, address);
+ if (pgd_none(*pgd) || pgd_bad(*pgd))
+ goto out;
+
+ pmd = pmd_offset(pgd, address);
+ if (pmd_none(*pmd) || pmd_bad(*pmd))
+ goto out;
+
+ ptep = pte_offset(pmd, address);
+ if (!ptep)
+ goto out;
+
+ pte = *ptep;
+ if (pte_present(pte)) {
+ if (!write ||
+ (pte_write(pte) && pte_dirty(pte)))
+ return pte_page(pte);
+ }
+
+out:
+ return 0;
+}
+
+/*
+ * Given a physical address, is there a useful struct page pointing to
+ * it? This may become more complex in the future if we start dealing
+ * with IO-aperture pages in kiobufs.
+ */
+
+static inline struct page * get_page_map(struct page *page)
+{
+ if (!VALID_PAGE(page))
+ return 0;
+ return page;
+}
+
+/*
+ * Please read Documentation/cachetlb.txt before using this function,
+ * accessing foreign memory spaces can cause cache coherency problems.
+ *
+ * Accessing a VM_IO area is even more dangerous, therefore the function
+ * fails if pages is != NULL and a VM_IO area is found.
+ */
+int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
+ int len, int write, int force, struct page **pages, struct vm_area_struct **vmas)
+{
+ int i;
+ unsigned int flags;
+
+ /*
+ * Require read or write permissions.
+ * If 'force' is set, we only require the "MAY" flags.
+ */
+ flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
+ flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
+ i = 0;
+
+ do {
+ struct vm_area_struct * vma;
+
+ vma = find_extend_vma(mm, start);
+
+ if ( !vma || (pages && vma->vm_flags & VM_IO) || !(flags & vma->vm_flags) )
+ return i ? : -EFAULT;
+
+ spin_lock(&mm->page_table_lock);
+ do {
+ struct page *map;
+ while (!(map = follow_page(mm, start, write))) {
+ spin_unlock(&mm->page_table_lock);
+ switch (handle_mm_fault(mm, vma, start, write)) {
+ case 1:
+ tsk->min_flt++;
+ break;
+ case 2:
+ tsk->maj_flt++;
+ break;
+ case 0:
+ if (i) return i;
+ return -EFAULT;
+ default:
+ if (i) return i;
+ return -ENOMEM;
+ }
+ spin_lock(&mm->page_table_lock);
+ }
+ if (pages) {
+ pages[i] = get_page_map(map);
+ /* FIXME: call the correct function,
+ * depending on the type of the found page
+ */
+ if (!pages[i])
+ goto bad_page;
+ page_cache_get(pages[i]);
+ }
+ if (vmas)
+ vmas[i] = vma;
+ i++;
+ start += PAGE_SIZE;
+ len--;
+ } while(len && start < vma->vm_end);
+ spin_unlock(&mm->page_table_lock);
+ } while(len);
+out:
+ return i;
+
+ /*
+ * We found an invalid page in the VMA. Release all we have
+ * so far and fail.
+ */
+bad_page:
+ spin_unlock(&mm->page_table_lock);
+ while (i--)
+ page_cache_release(pages[i]);
+ i = -EFAULT;
+ goto out;
+}
+
+EXPORT_SYMBOL(get_user_pages);
+
+/*
+ * Force in an entire range of pages from the current process's user VA,
+ * and pin them in physical memory.
+ */
+#define dprintk(x...)
+
+int map_user_kiobuf(int rw, struct kiobuf *iobuf, unsigned long va, size_t len)
+{
+ int pgcount, err;
+ struct mm_struct * mm;
+
+ /* Make sure the iobuf is not already mapped somewhere. */
+ if (iobuf->nr_pages)
+ return -EINVAL;
+
+ mm = current->mm;
+ dprintk ("map_user_kiobuf: begin\n");
+
+ pgcount = (va + len + PAGE_SIZE - 1)/PAGE_SIZE - va/PAGE_SIZE;
+ /* mapping 0 bytes is not permitted */
+ if (!pgcount) BUG();
+ err = expand_kiobuf(iobuf, pgcount);
+ if (err)
+ return err;
+
+ iobuf->locked = 0;
+ iobuf->offset = va & (PAGE_SIZE-1);
+ iobuf->length = len;
+
+ /* Try to fault in all of the necessary pages */
+ down_read(&mm->mmap_sem);
+ /* rw==READ means read from disk, write into memory area */
+ err = get_user_pages(current, mm, va, pgcount,
+ (rw==READ), 0, iobuf->maplist, NULL);
+ up_read(&mm->mmap_sem);
+ if (err < 0) {
+ unmap_kiobuf(iobuf);
+ dprintk ("map_user_kiobuf: end %d\n", err);
+ return err;
+ }
+ iobuf->nr_pages = err;
+ while (pgcount--) {
+ /* FIXME: flush superflous for rw==READ,
+ * probably wrong function for rw==WRITE
+ */
+ flush_dcache_page(iobuf->maplist[pgcount]);
+ }
+ dprintk ("map_user_kiobuf: end OK\n");
+ return 0;
+}
+
+/*
+ * Mark all of the pages in a kiobuf as dirty
+ *
+ * We need to be able to deal with short reads from disk: if an IO error
+ * occurs, the number of bytes read into memory may be less than the
+ * size of the kiobuf, so we have to stop marking pages dirty once the
+ * requested byte count has been reached.
+ *
+ * Must be called from process context - set_page_dirty() takes VFS locks.
+ */
+
+void mark_dirty_kiobuf(struct kiobuf *iobuf, int bytes)
+{
+ int index, offset, remaining;
+ struct page *page;
+
+ index = iobuf->offset >> PAGE_SHIFT;
+ offset = iobuf->offset & ~PAGE_MASK;
+ remaining = bytes;
+ if (remaining > iobuf->length)
+ remaining = iobuf->length;
+
+ while (remaining > 0 && index < iobuf->nr_pages) {
+ page = iobuf->maplist[index];
+
+ if (!PageReserved(page))
+ set_page_dirty(page);
+
+ remaining -= (PAGE_SIZE - offset);
+ offset = 0;
+ index++;
+ }
+}
+
+/*
+ * Unmap all of the pages referenced by a kiobuf. We release the pages,
+ * and unlock them if they were locked.
+ */
+
+void unmap_kiobuf (struct kiobuf *iobuf)
+{
+ int i;
+ struct page *map;
+
+ for (i = 0; i < iobuf->nr_pages; i++) {
+ map = iobuf->maplist[i];
+ if (map) {
+ if (iobuf->locked)
+ UnlockPage(map);
+ /* FIXME: cache flush missing for rw==READ
+ * FIXME: call the correct reference counting function
+ */
+ page_cache_release(map);
+ }
+ }
+
+ iobuf->nr_pages = 0;
+ iobuf->locked = 0;
+}
+
+
+/*
+ * Lock down all of the pages of a kiovec for IO.
+ *
+ * If any page is mapped twice in the kiovec, we return the error -EINVAL.
+ *
+ * The optional wait parameter causes the lock call to block until all
+ * pages can be locked if set. If wait==0, the lock operation is
+ * aborted if any locked pages are found and -EAGAIN is returned.
+ */
+
+int lock_kiovec(int nr, struct kiobuf *iovec[], int wait)
+{
+ struct kiobuf *iobuf;
+ int i, j;
+ struct page *page, **ppage;
+ int doublepage = 0;
+ int repeat = 0;
+
+ repeat:
+
+ for (i = 0; i < nr; i++) {
+ iobuf = iovec[i];
+
+ if (iobuf->locked)
+ continue;
+
+ ppage = iobuf->maplist;
+ for (j = 0; j < iobuf->nr_pages; ppage++, j++) {
+ page = *ppage;
+ if (!page)
+ continue;
+
+ if (TryLockPage(page)) {
+ while (j--) {
+ struct page *tmp = *--ppage;
+ if (tmp)
+ UnlockPage(tmp);
+ }
+ goto retry;
+ }
+ }
+ iobuf->locked = 1;
+ }
+
+ return 0;
+
+ retry:
+
+ /*
+ * We couldn't lock one of the pages. Undo the locking so far,
+ * wait on the page we got to, and try again.
+ */
+
+ unlock_kiovec(nr, iovec);
+ if (!wait)
+ return -EAGAIN;
+
+ /*
+ * Did the release also unlock the page we got stuck on?
+ */
+ if (!PageLocked(page)) {
+ /*
+ * If so, we may well have the page mapped twice
+ * in the IO address range. Bad news. Of
+ * course, it _might_ just be a coincidence,
+ * but if it happens more than once, chances
+ * are we have a double-mapped page.
+ */
+ if (++doublepage >= 3)
+ return -EINVAL;
+
+ /* Try again... */
+ wait_on_page(page);
+ }
+
+ if (++repeat < 16)
+ goto repeat;
+ return -EAGAIN;
+}
+
+/*
+ * Unlock all of the pages of a kiovec after IO.
+ */
+
+int unlock_kiovec(int nr, struct kiobuf *iovec[])
+{
+ struct kiobuf *iobuf;
+ int i, j;
+ struct page *page, **ppage;
+
+ for (i = 0; i < nr; i++) {
+ iobuf = iovec[i];
+
+ if (!iobuf->locked)
+ continue;
+ iobuf->locked = 0;
+
+ ppage = iobuf->maplist;
+ for (j = 0; j < iobuf->nr_pages; ppage++, j++) {
+ page = *ppage;
+ if (!page)
+ continue;
+ UnlockPage(page);
+ }
+ }
+ return 0;
+}
+
+static inline void zeromap_pte_range(pte_t * pte, unsigned long address,
+ unsigned long size, pgprot_t prot)
+{
+ unsigned long end;
+
+ address &= ~PMD_MASK;
+ end = address + size;
+ if (end > PMD_SIZE)
+ end = PMD_SIZE;
+ do {
+ pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot));
+ pte_t oldpage = ptep_get_and_clear(pte);
+ set_pte(pte, zero_pte);
+ forget_pte(oldpage);
+ address += PAGE_SIZE;
+ pte++;
+ } while (address && (address < end));
+}
+
+static inline int zeromap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address,
+ unsigned long size, pgprot_t prot)
+{
+ unsigned long end;
+
+ address &= ~PGDIR_MASK;
+ end = address + size;
+ if (end > PGDIR_SIZE)
+ end = PGDIR_SIZE;
+ do {
+ pte_t * pte = pte_alloc(mm, pmd, address);
+ if (!pte)
+ return -ENOMEM;
+ zeromap_pte_range(pte, address, end - address, prot);
+ address = (address + PMD_SIZE) & PMD_MASK;
+ pmd++;
+ } while (address && (address < end));
+ return 0;
+}
+
+int zeromap_page_range(unsigned long address, unsigned long size, pgprot_t prot)
+{
+ int error = 0;
+ pgd_t * dir;
+ unsigned long beg = address;
+ unsigned long end = address + size;
+ struct mm_struct *mm = current->mm;
+
+ dir = pgd_offset(mm, address);
+ flush_cache_range(mm, beg, end);
+ if (address >= end)
+ BUG();
+
+ spin_lock(&mm->page_table_lock);
+ do {
+ pmd_t *pmd = pmd_alloc(mm, dir, address);
+ error = -ENOMEM;
+ if (!pmd)
+ break;
+ error = zeromap_pmd_range(mm, pmd, address, end - address, prot);
+ if (error)
+ break;
+ address = (address + PGDIR_SIZE) & PGDIR_MASK;
+ dir++;
+ } while (address && (address < end));
+ spin_unlock(&mm->page_table_lock);
+ flush_tlb_range(mm, beg, end);
+ return error;
+}
+
+/*
+ * maps a range of physical memory into the requested pages. the old
+ * mappings are removed. any references to nonexistent pages results
+ * in null mappings (currently treated as "copy-on-access")
+ */
+static inline void remap_pte_range(pte_t * pte, unsigned long address, unsigned long size,
+ unsigned long phys_addr, pgprot_t prot)
+{
+ unsigned long end;
+
+ address &= ~PMD_MASK;
+ end = address + size;
+ if (end > PMD_SIZE)
+ end = PMD_SIZE;
+ do {
+ struct page *page;
+ pte_t oldpage;
+ oldpage = ptep_get_and_clear(pte);
+
+ page = virt_to_page(__va(phys_addr));
+ if ((!VALID_PAGE(page)) || PageReserved(page))
+ set_pte(pte, mk_pte_phys(phys_addr, prot));
+ forget_pte(oldpage);
+ address += PAGE_SIZE;
+ phys_addr += PAGE_SIZE;
+ pte++;
+ } while (address && (address < end));
+}
+
+static inline int remap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size,
+ unsigned long phys_addr, pgprot_t prot)
+{
+ unsigned long end;
+
+ address &= ~PGDIR_MASK;
+ end = address + size;
+ if (end > PGDIR_SIZE)
+ end = PGDIR_SIZE;
+ phys_addr -= address;
+ do {
+ pte_t * pte = pte_alloc(mm, pmd, address);
+ if (!pte)
+ return -ENOMEM;
+ remap_pte_range(pte, address, end - address, address + phys_addr, prot);
+ address = (address + PMD_SIZE) & PMD_MASK;
+ pmd++;
+ } while (address && (address < end));
+ return 0;
+}
+
+/* Note: this is only safe if the mm semaphore is held when called. */
+int remap_page_range(unsigned long from, unsigned long phys_addr, unsigned long size, pgprot_t prot)
+{
+ int error = 0;
+ pgd_t * dir;
+ unsigned long beg = from;
+ unsigned long end = from + size;
+ struct mm_struct *mm = current->mm;
+
+ phys_addr -= from;
+ dir = pgd_offset(mm, from);
+ flush_cache_range(mm, beg, end);
+ if (from >= end)
+ BUG();
+
+ spin_lock(&mm->page_table_lock);
+ do {
+ pmd_t *pmd = pmd_alloc(mm, dir, from);
+ error = -ENOMEM;
+ if (!pmd)
+ break;
+ error = remap_pmd_range(mm, pmd, from, end - from, phys_addr + from, prot);
+ if (error)
+ break;
+ from = (from + PGDIR_SIZE) & PGDIR_MASK;
+ dir++;
+ } while (from && (from < end));
+ spin_unlock(&mm->page_table_lock);
+ flush_tlb_range(mm, beg, end);
+ return error;
+}
+
+/*
+ * Establish a new mapping:
+ * - flush the old one
+ * - update the page tables
+ * - inform the TLB about the new one
+ *
+ * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
+ */
+static inline void establish_pte(struct vm_area_struct * vma, unsigned long address, pte_t *page_table, pte_t entry)
+{
+#ifdef CONFIG_XENO
+ if ( likely(vma->vm_mm == current->mm) ) {
+ XENO_flush_page_update_queue();
+ HYPERVISOR_update_va_mapping(address>>PAGE_SHIFT, entry, UVMF_INVLPG);
+ } else {
+ set_pte(page_table, entry);
+ flush_tlb_page(vma, address);
+ }
+#else
+ set_pte(page_table, entry);
+ flush_tlb_page(vma, address);
+#endif
+ update_mmu_cache(vma, address, entry);
+}
+
+/*
+ * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
+ */
+static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
+ pte_t *page_table)
+{
+ flush_page_to_ram(new_page);
+ flush_cache_page(vma, address);
+ establish_pte(vma, address, page_table, pte_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot))));
+}
+
+/*
+ * This routine handles present pages, when users try to write
+ * to a shared page. It is done by copying the page to a new address
+ * and decrementing the shared-page counter for the old page.
+ *
+ * Goto-purists beware: the only reason for goto's here is that it results
+ * in better assembly code.. The "default" path will see no jumps at all.
+ *
+ * Note that this routine assumes that the protection checks have been
+ * done by the caller (the low-level page fault routine in most cases).
+ * Thus we can safely just mark it writable once we've done any necessary
+ * COW.
+ *
+ * We also mark the page dirty at this point even though the page will
+ * change only once the write actually happens. This avoids a few races,
+ * and potentially makes it more efficient.
+ *
+ * We hold the mm semaphore and the page_table_lock on entry and exit
+ * with the page_table_lock released.
+ */
+static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
+ unsigned long address, pte_t *page_table, pte_t pte)
+{
+ struct page *old_page, *new_page;
+
+ old_page = pte_page(pte);
+ if (!VALID_PAGE(old_page))
+ goto bad_wp_page;
+
+ if (!TryLockPage(old_page)) {
+ int reuse = can_share_swap_page(old_page);
+ unlock_page(old_page);
+ if (reuse) {
+ flush_cache_page(vma, address);
+ establish_pte(vma, address, page_table, pte_mkyoung(pte_mkdirty(pte_mkwrite(pte))));
+ spin_unlock(&mm->page_table_lock);
+ return 1; /* Minor fault */
+ }
+ }
+
+ /*
+ * Ok, we need to copy. Oh, well..
+ */
+ page_cache_get(old_page);
+ spin_unlock(&mm->page_table_lock);
+
+ new_page = alloc_page(GFP_HIGHUSER);
+ if (!new_page)
+ goto no_mem;
+ copy_cow_page(old_page,new_page,address);
+
+ /*
+ * Re-check the pte - we dropped the lock
+ */
+ spin_lock(&mm->page_table_lock);
+ if (pte_same(*page_table, pte)) {
+ if (PageReserved(old_page))
+ ++mm->rss;
+ break_cow(vma, new_page, address, page_table);
+ lru_cache_add(new_page);
+
+ /* Free the old page.. */
+ new_page = old_page;
+ }
+ spin_unlock(&mm->page_table_lock);
+ page_cache_release(new_page);
+ page_cache_release(old_page);
+ return 1; /* Minor fault */
+
+bad_wp_page:
+ spin_unlock(&mm->page_table_lock);
+ printk("do_wp_page: bogus page at address %08lx (page 0x%lx)\n",address,(unsigned long)old_page);
+ return -1;
+no_mem:
+ page_cache_release(old_page);
+ return -1;
+}
+
+static void vmtruncate_list(struct vm_area_struct *mpnt, unsigned long pgoff)
+{
+ do {
+ struct mm_struct *mm = mpnt->vm_mm;
+ unsigned long start = mpnt->vm_start;
+ unsigned long end = mpnt->vm_end;
+ unsigned long len = end - start;
+ unsigned long diff;
+
+ /* mapping wholly truncated? */
+ if (mpnt->vm_pgoff >= pgoff) {
+ zap_page_range(mm, start, len);
+ continue;
+ }
+
+ /* mapping wholly unaffected? */
+ len = len >> PAGE_SHIFT;
+ diff = pgoff - mpnt->vm_pgoff;
+ if (diff >= len)
+ continue;
+
+ /* Ok, partially affected.. */
+ start += diff << PAGE_SHIFT;
+ len = (len - diff) << PAGE_SHIFT;
+ zap_page_range(mm, start, len);
+ } while ((mpnt = mpnt->vm_next_share) != NULL);
+}
+
+/*
+ * Handle all mappings that got truncated by a "truncate()"
+ * system call.
+ *
+ * NOTE! We have to be ready to update the memory sharing
+ * between the file and the memory map for a potential last
+ * incomplete page. Ugly, but necessary.
+ */
+int vmtruncate(struct inode * inode, loff_t offset)
+{
+ unsigned long pgoff;
+ struct address_space *mapping = inode->i_mapping;
+ unsigned long limit;
+
+ if (inode->i_size < offset)
+ goto do_expand;
+ inode->i_size = offset;
+ spin_lock(&mapping->i_shared_lock);
+ if (!mapping->i_mmap && !mapping->i_mmap_shared)
+ goto out_unlock;
+
+ pgoff = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
+ if (mapping->i_mmap != NULL)
+ vmtruncate_list(mapping->i_mmap, pgoff);
+ if (mapping->i_mmap_shared != NULL)
+ vmtruncate_list(mapping->i_mmap_shared, pgoff);
+
+out_unlock:
+ spin_unlock(&mapping->i_shared_lock);
+ truncate_inode_pages(mapping, offset);
+ goto out_truncate;
+
+do_expand:
+ limit = current->rlim[RLIMIT_FSIZE].rlim_cur;
+ if (limit != RLIM_INFINITY && offset > limit)
+ goto out_sig;
+ if (offset > inode->i_sb->s_maxbytes)
+ goto out;
+ inode->i_size = offset;
+
+out_truncate:
+ if (inode->i_op && inode->i_op->truncate) {
+ lock_kernel();
+ inode->i_op->truncate(inode);
+ unlock_kernel();
+ }
+ return 0;
+out_sig:
+ send_sig(SIGXFSZ, current, 0);
+out:
+ return -EFBIG;
+}
+
+/*
+ * Primitive swap readahead code. We simply read an aligned block of
+ * (1 << page_cluster) entries in the swap area. This method is chosen
+ * because it doesn't cost us any seek time. We also make sure to queue
+ * the 'original' request together with the readahead ones...
+ */
+void swapin_readahead(swp_entry_t entry)
+{
+ int i, num;
+ struct page *new_page;
+ unsigned long offset;
+
+ /*
+ * Get the number of handles we should do readahead io to.
+ */
+ num = valid_swaphandles(entry, &offset);
+ for (i = 0; i < num; offset++, i++) {
+ /* Ok, do the async read-ahead now */
+ new_page = read_swap_cache_async(SWP_ENTRY(SWP_TYPE(entry), offset));
+ if (!new_page)
+ break;
+ page_cache_release(new_page);
+ }
+ return;
+}
+
+/*
+ * We hold the mm semaphore and the page_table_lock on entry and
+ * should release the pagetable lock on exit..
+ */
+static int do_swap_page(struct mm_struct * mm,
+ struct vm_area_struct * vma, unsigned long address,
+ pte_t * page_table, pte_t orig_pte, int write_access)
+{
+ struct page *page;
+ swp_entry_t entry = pte_to_swp_entry(orig_pte);
+ pte_t pte;
+ int ret = 1;
+
+ spin_unlock(&mm->page_table_lock);
+ page = lookup_swap_cache(entry);
+ if (!page) {
+ swapin_readahead(entry);
+ page = read_swap_cache_async(entry);
+ if (!page) {
+ /*
+ * Back out if somebody else faulted in this pte while
+ * we released the page table lock.
+ */
+ int retval;
+ spin_lock(&mm->page_table_lock);
+ retval = pte_same(*page_table, orig_pte) ? -1 : 1;
+ spin_unlock(&mm->page_table_lock);
+ return retval;
+ }
+
+ /* Had to read the page from swap area: Major fault */
+ ret = 2;
+ }
+
+ mark_page_accessed(page);
+
+ lock_page(page);
+
+ /*
+ * Back out if somebody else faulted in this pte while we
+ * released the page table lock.
+ */
+ spin_lock(&mm->page_table_lock);
+ if (!pte_same(*page_table, orig_pte)) {
+ spin_unlock(&mm->page_table_lock);
+ unlock_page(page);
+ page_cache_release(page);
+ return 1;
+ }
+
+ /* The page isn't present yet, go ahead with the fault. */
+
+ swap_free(entry);
+ if (vm_swap_full())
+ remove_exclusive_swap_page(page);
+
+ mm->rss++;
+ pte = mk_pte(page, vma->vm_page_prot);
+ if (write_access && can_share_swap_page(page))
+ pte = pte_mkdirty(pte_mkwrite(pte));
+ unlock_page(page);
+
+ flush_page_to_ram(page);
+ flush_icache_page(vma, page);
+#ifdef CONFIG_XENO
+ if ( likely(vma->vm_mm == current->mm) ) {
+ XENO_flush_page_update_queue();
+ HYPERVISOR_update_va_mapping(address>>PAGE_SHIFT, pte, 0);
+ } else {
+ set_pte(page_table, pte);
+ XENO_flush_page_update_queue();
+ }
+#else
+ set_pte(page_table, pte);
+#endif
+
+ /* No need to invalidate - it was non-present before */
+ update_mmu_cache(vma, address, pte);
+ spin_unlock(&mm->page_table_lock);
+ return ret;
+}
+
+/*
+ * We are called with the MM semaphore and page_table_lock
+ * spinlock held to protect against concurrent faults in
+ * multithreaded programs.
+ */
+static int do_anonymous_page(struct mm_struct * mm, struct vm_area_struct * vma, pte_t *page_table, int write_access, unsigned long addr)
+{
+ pte_t entry;
+
+ /* Read-only mapping of ZERO_PAGE. */
+ entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
+
+ /* ..except if it's a write access */
+ if (write_access) {
+ struct page *page;
+
+ /* Allocate our own private page. */
+ spin_unlock(&mm->page_table_lock);
+
+ page = alloc_page(GFP_HIGHUSER);
+ if (!page)
+ goto no_mem;
+ clear_user_highpage(page, addr);
+
+ spin_lock(&mm->page_table_lock);
+ if (!pte_none(*page_table)) {
+ page_cache_release(page);
+ spin_unlock(&mm->page_table_lock);
+ return 1;
+ }
+ mm->rss++;
+ flush_page_to_ram(page);
+ entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
+ lru_cache_add(page);
+ mark_page_accessed(page);
+ }
+
+#ifdef CONFIG_XENO
+ if ( likely(vma->vm_mm == current->mm) ) {
+ XENO_flush_page_update_queue();
+ HYPERVISOR_update_va_mapping(addr>>PAGE_SHIFT, entry, 0);
+ } else {
+ set_pte(page_table, entry);
+ XENO_flush_page_update_queue();
+ }
+#else
+ set_pte(page_table, entry);
+#endif
+
+ /* No need to invalidate - it was non-present before */
+ update_mmu_cache(vma, addr, entry);
+ spin_unlock(&mm->page_table_lock);
+ return 1; /* Minor fault */
+
+no_mem:
+ return -1;
+}
+
+/*
+ * do_no_page() tries to create a new page mapping. It aggressively
+ * tries to share with existing pages, but makes a separate copy if
+ * the "write_access" parameter is true in order to avoid the next
+ * page fault.
+ *
+ * As this is called only for pages that do not currently exist, we
+ * do not need to flush old virtual caches or the TLB.
+ *
+ * This is called with the MM semaphore held and the page table
+ * spinlock held. Exit with the spinlock released.
+ */
+static int do_no_page(struct mm_struct * mm, struct vm_area_struct * vma,
+ unsigned long address, int write_access, pte_t *page_table)
+{
+ struct page * new_page;
+ pte_t entry;
+
+ if (!vma->vm_ops || !vma->vm_ops->nopage)
+ return do_anonymous_page(mm, vma, page_table, write_access, address);
+ spin_unlock(&mm->page_table_lock);
+
+ new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, 0);
+
+ if (new_page == NULL) /* no page was available -- SIGBUS */
+ return 0;
+ if (new_page == NOPAGE_OOM)
+ return -1;
+
+ /*
+ * Should we do an early C-O-W break?
+ */
+ if (write_access && !(vma->vm_flags & VM_SHARED)) {
+ struct page * page = alloc_page(GFP_HIGHUSER);
+ if (!page) {
+ page_cache_release(new_page);
+ return -1;
+ }
+ copy_user_highpage(page, new_page, address);
+ page_cache_release(new_page);
+ lru_cache_add(page);
+ new_page = page;
+ }
+
+ spin_lock(&mm->page_table_lock);
+ /*
+ * This silly early PAGE_DIRTY setting removes a race
+ * due to the bad i386 page protection. But it's valid
+ * for other architectures too.
+ *
+ * Note that if write_access is true, we either now have
+ * an exclusive copy of the page, or this is a shared mapping,
+ * so we can make it writable and dirty to avoid having to
+ * handle that later.
+ */
+ /* Only go through if we didn't race with anybody else... */
+ if (pte_none(*page_table)) {
+ if (!PageReserved(new_page))
+ ++mm->rss;
+ flush_page_to_ram(new_page);
+ flush_icache_page(vma, new_page);
+ entry = mk_pte(new_page, vma->vm_page_prot);
+ if (write_access)
+ entry = pte_mkwrite(pte_mkdirty(entry));
+#ifdef CONFIG_XENO
+ if ( likely(vma->vm_mm == current->mm) ) {
+ XENO_flush_page_update_queue();
+ HYPERVISOR_update_va_mapping(address>>PAGE_SHIFT, entry, 0);
+ } else {
+ set_pte(page_table, entry);
+ XENO_flush_page_update_queue();
+ }
+#else
+ set_pte(page_table, entry);
+#endif
+ } else {
+ /* One of our sibling threads was faster, back out. */
+ page_cache_release(new_page);
+ spin_unlock(&mm->page_table_lock);
+ return 1;
+ }
+
+ /* no need to invalidate: a not-present page shouldn't be cached */
+ update_mmu_cache(vma, address, entry);
+ spin_unlock(&mm->page_table_lock);
+ return 2; /* Major fault */
+}
+
+/*
+ * These routines also need to handle stuff like marking pages dirty
+ * and/or accessed for architectures that don't do it in hardware (most
+ * RISC architectures). The early dirtying is also good on the i386.
+ *
+ * There is also a hook called "update_mmu_cache()" that architectures
+ * with external mmu caches can use to update those (ie the Sparc or
+ * PowerPC hashed page tables that act as extended TLBs).
+ *
+ * Note the "page_table_lock". It is to protect against kswapd removing
+ * pages from under us. Note that kswapd only ever _removes_ pages, never
+ * adds them. As such, once we have noticed that the page is not present,
+ * we can drop the lock early.
+ *
+ * The adding of pages is protected by the MM semaphore (which we hold),
+ * so we don't need to worry about a page being suddenly been added into
+ * our VM.
+ *
+ * We enter with the pagetable spinlock held, we are supposed to
+ * release it when done.
+ */
+static inline int handle_pte_fault(struct mm_struct *mm,
+ struct vm_area_struct * vma, unsigned long address,
+ int write_access, pte_t * pte)
+{
+ pte_t entry;
+
+ entry = *pte;
+ if (!pte_present(entry)) {
+ /*
+ * If it truly wasn't present, we know that kswapd
+ * and the PTE updates will not touch it later. So
+ * drop the lock.
+ */
+ if (pte_none(entry))
+ return do_no_page(mm, vma, address, write_access, pte);
+ return do_swap_page(mm, vma, address, pte, entry, write_access);
+ }
+
+ if (write_access) {
+ if (!pte_write(entry))
+ return do_wp_page(mm, vma, address, pte, entry);
+
+ entry = pte_mkdirty(entry);
+ }
+ entry = pte_mkyoung(entry);
+ establish_pte(vma, address, pte, entry);
+ spin_unlock(&mm->page_table_lock);
+ return 1;
+}
+
+/*
+ * By the time we get here, we already hold the mm semaphore
+ */
+int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
+ unsigned long address, int write_access)
+{
+ pgd_t *pgd;
+ pmd_t *pmd;
+
+ current->state = TASK_RUNNING;
+ pgd = pgd_offset(mm, address);
+
+ /*
+ * We need the page table lock to synchronize with kswapd
+ * and the SMP-safe atomic PTE updates.
+ */
+ spin_lock(&mm->page_table_lock);
+ pmd = pmd_alloc(mm, pgd, address);
+
+ if (pmd) {
+ pte_t * pte = pte_alloc(mm, pmd, address);
+ if (pte)
+ return handle_pte_fault(mm, vma, address, write_access, pte);
+ }
+ spin_unlock(&mm->page_table_lock);
+ return -1;
+}
+
+/*
+ * Allocate page middle directory.
+ *
+ * We've already handled the fast-path in-line, and we own the
+ * page table lock.
+ *
+ * On a two-level page table, this ends up actually being entirely
+ * optimized away.
+ */
+pmd_t *__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
+{
+ pmd_t *new;
+
+ /* "fast" allocation can happen without dropping the lock.. */
+ new = pmd_alloc_one_fast(mm, address);
+ if (!new) {
+ spin_unlock(&mm->page_table_lock);
+ new = pmd_alloc_one(mm, address);
+ spin_lock(&mm->page_table_lock);
+ if (!new)
+ return NULL;
+
+ /*
+ * Because we dropped the lock, we should re-check the
+ * entry, as somebody else could have populated it..
+ */
+ if (!pgd_none(*pgd)) {
+ pmd_free(new);
+ check_pgt_cache();
+ goto out;
+ }
+ }
+ pgd_populate(mm, pgd, new);
+out:
+ return pmd_offset(pgd, address);
+}
+
+/*
+ * Allocate the page table directory.
+ *
+ * We've already handled the fast-path in-line, and we own the
+ * page table lock.
+ */
+pte_t *pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
+{
+ if (pmd_none(*pmd)) {
+ pte_t *new;
+
+ /* "fast" allocation can happen without dropping the lock.. */
+ new = pte_alloc_one_fast(mm, address);
+ if (!new) {
+ XENO_flush_page_update_queue();
+ spin_unlock(&mm->page_table_lock);
+ new = pte_alloc_one(mm, address);
+ spin_lock(&mm->page_table_lock);
+ if (!new)
+ return NULL;
+
+ /*
+ * Because we dropped the lock, we should re-check the
+ * entry, as somebody else could have populated it..
+ */
+ if (!pmd_none(*pmd)) {
+ pte_free(new);
+ check_pgt_cache();
+ goto out;
+ }
+ }
+ pmd_populate(mm, pmd, new);
+ }
+out:
+ return pte_offset(pmd, address);
+}
+
+int make_pages_present(unsigned long addr, unsigned long end)
+{
+ int ret, len, write;
+ struct vm_area_struct * vma;
+
+ vma = find_vma(current->mm, addr);
+ write = (vma->vm_flags & VM_WRITE) != 0;
+ if (addr >= end)
+ BUG();
+ if (end > vma->vm_end)
+ BUG();
+ len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
+ ret = get_user_pages(current, current->mm, addr,
+ len, write, 0, NULL, NULL);
+ return ret == len ? 0 : -1;
+}
+
+struct page * vmalloc_to_page(void * vmalloc_addr)
+{
+ unsigned long addr = (unsigned long) vmalloc_addr;
+ struct page *page = NULL;
+ pmd_t *pmd;
+ pte_t *pte;
+ pgd_t *pgd;
+
+ pgd = pgd_offset_k(addr);
+ if (!pgd_none(*pgd)) {
+ pmd = pmd_offset(pgd, addr);
+ if (!pmd_none(*pmd)) {
+ pte = pte_offset(pmd, addr);
+ if (pte_present(*pte)) {
+ page = pte_page(*pte);
+ }
+ }
+ }
+ return page;
+}