aboutsummaryrefslogtreecommitdiffstats
path: root/xen/common/sched_credit.c
diff options
context:
space:
mode:
authorDario Faggioli <dario.faggioli@citrix.com>2013-04-17 10:57:31 +0000
committerIan Campbell <ian.campbell@citrix.com>2013-04-17 12:11:14 +0100
commitcfcc144ff1ce59a9f93a44bbc89d1e20f5011c3d (patch)
tree2ff4399fd7c4a001353e2adc9c9c70736a645d1b /xen/common/sched_credit.c
parentebb064aa22715ae473f72468d093e7a05e3c3c58 (diff)
downloadxen-cfcc144ff1ce59a9f93a44bbc89d1e20f5011c3d.tar.gz
xen-cfcc144ff1ce59a9f93a44bbc89d1e20f5011c3d.tar.bz2
xen-cfcc144ff1ce59a9f93a44bbc89d1e20f5011c3d.zip
xen: sched_credit: let the scheduler know about node-affinity
As vcpu-affinity tells where VCPUs must run, node-affinity tells where they prefer to. While respecting vcpu-affinity remains mandatory, node-affinity is not that strict, it only expresses a preference, although honouring it will bring significant performance benefits (especially as compared to not having any affinity at all). This change modifies the VCPUs load balancing algorithm (for the credit scheduler only), introducing a two steps logic. During the first step, we use both the vcpu-affinity and the node-affinity masks (by looking at their intersection). The aim is giving precedence to the PCPUs where the domain prefers to run, as expressed by its node-affinity (with the intersection with the vcpu-afinity being necessary in order to avoid running a VCPU where it never should). If that fails in finding a valid PCPU, the node-affinity is just ignored and, in the second step, we fall back to using cpu-affinity only. Signed-off-by: Dario Faggioli <dario.faggioli@citrix.com> Acked-by: Juergen Gross <juergen.gross@ts.fujitsu.com> Acked-by: George Dunlap <george.dunlap@eu.citrix.com> Acked-by: Keir Fraser <keir@xen.org>
Diffstat (limited to 'xen/common/sched_credit.c')
-rw-r--r--xen/common/sched_credit.c460
1 files changed, 307 insertions, 153 deletions
diff --git a/xen/common/sched_credit.c b/xen/common/sched_credit.c
index 64e76c5bef..be0b4b0c6c 100644
--- a/xen/common/sched_credit.c
+++ b/xen/common/sched_credit.c
@@ -112,6 +112,12 @@
/*
+ * Node Balancing
+ */
+#define CSCHED_BALANCE_NODE_AFFINITY 0
+#define CSCHED_BALANCE_CPU_AFFINITY 1
+
+/*
* Boot parameters
*/
static int __read_mostly sched_credit_tslice_ms = CSCHED_DEFAULT_TSLICE_MS;
@@ -126,9 +132,20 @@ struct csched_pcpu {
struct timer ticker;
unsigned int tick;
unsigned int idle_bias;
+ /* Store this here to avoid having too many cpumask_var_t-s on stack */
+ cpumask_var_t balance_mask;
};
/*
+ * Convenience macro for accessing the per-PCPU cpumask we need for
+ * implementing the two steps (vcpu and node affinity) balancing logic.
+ * It is stored in csched_pcpu so that serialization is not an issue,
+ * as there is a csched_pcpu for each PCPU and we always hold the
+ * runqueue spin-lock when using this.
+ */
+#define csched_balance_mask (CSCHED_PCPU(smp_processor_id())->balance_mask)
+
+/*
* Virtual CPU
*/
struct csched_vcpu {
@@ -161,6 +178,9 @@ struct csched_dom {
struct list_head active_vcpu;
struct list_head active_sdom_elem;
struct domain *dom;
+ /* cpumask translated from the domain's node-affinity.
+ * Basically, the CPUs we prefer to be scheduled on. */
+ cpumask_var_t node_affinity_cpumask;
uint16_t active_vcpu_count;
uint16_t weight;
uint16_t cap;
@@ -241,6 +261,35 @@ __runq_remove(struct csched_vcpu *svc)
list_del_init(&svc->runq_elem);
}
+#define for_each_csched_balance_step(step) \
+ for ( (step) = 0; (step) <= CSCHED_BALANCE_CPU_AFFINITY; (step)++ )
+
+
+/*
+ * vcpu-affinity balancing is always necessary and must never be skipped.
+ * OTOH, if a domain's node-affinity spans all the nodes, we can safely
+ * avoid dealing with node-affinity entirely.
+ */
+#define __vcpu_has_node_affinity(vc) \
+ ( !cpumask_full(CSCHED_DOM(vc->domain)->node_affinity_cpumask) )
+
+/*
+ * Each csched-balance step uses its own cpumask. This function determines
+ * which one (given the step) and copies it in mask. For the node-affinity
+ * balancing step, the pcpus that are not part of vc's vcpu-affinity are
+ * filtered out from the result, to avoid running a vcpu where it would
+ * like, but is not allowed to!
+ */
+static void
+csched_balance_cpumask(const struct vcpu *vc, int step, cpumask_t *mask)
+{
+ if ( step == CSCHED_BALANCE_NODE_AFFINITY )
+ cpumask_and(mask, CSCHED_DOM(vc->domain)->node_affinity_cpumask,
+ vc->cpu_affinity);
+ else /* step == CSCHED_BALANCE_CPU_AFFINITY */
+ cpumask_copy(mask, vc->cpu_affinity);
+}
+
static void burn_credits(struct csched_vcpu *svc, s_time_t now)
{
s_time_t delta;
@@ -272,13 +321,13 @@ __runq_tickle(unsigned int cpu, struct csched_vcpu *new)
struct csched_vcpu * const cur = CSCHED_VCPU(curr_on_cpu(cpu));
struct csched_private *prv = CSCHED_PRIV(per_cpu(scheduler, cpu));
cpumask_t mask, idle_mask;
- int idlers_empty;
+ int balance_step, idlers_empty;
ASSERT(cur);
cpumask_clear(&mask);
-
idlers_empty = cpumask_empty(prv->idlers);
+
/*
* If the pcpu is idle, or there are no idlers and the new
* vcpu is a higher priority than the old vcpu, run it here.
@@ -297,41 +346,70 @@ __runq_tickle(unsigned int cpu, struct csched_vcpu *new)
}
else if ( !idlers_empty )
{
- /* Check whether or not there are idlers that can run new */
- cpumask_and(&idle_mask, prv->idlers, new->vcpu->cpu_affinity);
-
/*
- * If there are no suitable idlers for new, and it's higher
- * priority than cur, ask the scheduler to migrate cur away.
- * We have to act like this (instead of just waking some of
- * the idlers suitable for cur) because cur is running.
- *
- * If there are suitable idlers for new, no matter priorities,
- * leave cur alone (as it is running and is, likely, cache-hot)
- * and wake some of them (which is waking up and so is, likely,
- * cache cold anyway).
+ * Node and vcpu-affinity balancing loop. For vcpus without
+ * a useful node-affinity, consider vcpu-affinity only.
*/
- if ( cpumask_empty(&idle_mask) && new->pri > cur->pri )
- {
- SCHED_STAT_CRANK(tickle_idlers_none);
- SCHED_VCPU_STAT_CRANK(cur, kicked_away);
- SCHED_VCPU_STAT_CRANK(cur, migrate_r);
- SCHED_STAT_CRANK(migrate_kicked_away);
- set_bit(_VPF_migrating, &cur->vcpu->pause_flags);
- cpumask_set_cpu(cpu, &mask);
- }
- else if ( !cpumask_empty(&idle_mask) )
+ for_each_csched_balance_step( balance_step )
{
- /* Which of the idlers suitable for new shall we wake up? */
- SCHED_STAT_CRANK(tickle_idlers_some);
- if ( opt_tickle_one_idle )
+ int new_idlers_empty;
+
+ if ( balance_step == CSCHED_BALANCE_NODE_AFFINITY
+ && !__vcpu_has_node_affinity(new->vcpu) )
+ continue;
+
+ /* Are there idlers suitable for new (for this balance step)? */
+ csched_balance_cpumask(new->vcpu, balance_step,
+ csched_balance_mask);
+ cpumask_and(&idle_mask, prv->idlers, csched_balance_mask);
+ new_idlers_empty = cpumask_empty(&idle_mask);
+
+ /*
+ * Let's not be too harsh! If there aren't idlers suitable
+ * for new in its node-affinity mask, make sure we check its
+ * vcpu-affinity as well, before taking final decisions.
+ */
+ if ( new_idlers_empty
+ && balance_step == CSCHED_BALANCE_NODE_AFFINITY )
+ continue;
+
+ /*
+ * If there are no suitable idlers for new, and it's higher
+ * priority than cur, ask the scheduler to migrate cur away.
+ * We have to act like this (instead of just waking some of
+ * the idlers suitable for cur) because cur is running.
+ *
+ * If there are suitable idlers for new, no matter priorities,
+ * leave cur alone (as it is running and is, likely, cache-hot)
+ * and wake some of them (which is waking up and so is, likely,
+ * cache cold anyway).
+ */
+ if ( new_idlers_empty && new->pri > cur->pri )
{
- this_cpu(last_tickle_cpu) =
- cpumask_cycle(this_cpu(last_tickle_cpu), &idle_mask);
- cpumask_set_cpu(this_cpu(last_tickle_cpu), &mask);
+ SCHED_STAT_CRANK(tickle_idlers_none);
+ SCHED_VCPU_STAT_CRANK(cur, kicked_away);
+ SCHED_VCPU_STAT_CRANK(cur, migrate_r);
+ SCHED_STAT_CRANK(migrate_kicked_away);
+ set_bit(_VPF_migrating, &cur->vcpu->pause_flags);
+ cpumask_set_cpu(cpu, &mask);
}
- else
- cpumask_or(&mask, &mask, &idle_mask);
+ else if ( !new_idlers_empty )
+ {
+ /* Which of the idlers suitable for new shall we wake up? */
+ SCHED_STAT_CRANK(tickle_idlers_some);
+ if ( opt_tickle_one_idle )
+ {
+ this_cpu(last_tickle_cpu) =
+ cpumask_cycle(this_cpu(last_tickle_cpu), &idle_mask);
+ cpumask_set_cpu(this_cpu(last_tickle_cpu), &mask);
+ }
+ else
+ cpumask_or(&mask, &mask, &idle_mask);
+ }
+
+ /* Did we find anyone? */
+ if ( !cpumask_empty(&mask) )
+ break;
}
}
@@ -376,6 +454,7 @@ csched_free_pdata(const struct scheduler *ops, void *pcpu, int cpu)
spin_unlock_irqrestore(&prv->lock, flags);
+ free_cpumask_var(spc->balance_mask);
xfree(spc);
}
@@ -391,6 +470,12 @@ csched_alloc_pdata(const struct scheduler *ops, int cpu)
if ( spc == NULL )
return NULL;
+ if ( !alloc_cpumask_var(&spc->balance_mask) )
+ {
+ xfree(spc);
+ return NULL;
+ }
+
spin_lock_irqsave(&prv->lock, flags);
/* Initialize/update system-wide config */
@@ -481,15 +566,16 @@ __csched_vcpu_is_cache_hot(struct vcpu *v)
}
static inline int
-__csched_vcpu_is_migrateable(struct vcpu *vc, int dest_cpu)
+__csched_vcpu_is_migrateable(struct vcpu *vc, int dest_cpu, cpumask_t *mask)
{
/*
* Don't pick up work that's in the peer's scheduling tail or hot on
- * peer PCPU. Only pick up work that's allowed to run on our CPU.
+ * peer PCPU. Only pick up work that prefers and/or is allowed to run
+ * on our CPU.
*/
return !vc->is_running &&
!__csched_vcpu_is_cache_hot(vc) &&
- cpumask_test_cpu(dest_cpu, vc->cpu_affinity);
+ cpumask_test_cpu(dest_cpu, mask);
}
static int
@@ -499,100 +585,114 @@ _csched_cpu_pick(const struct scheduler *ops, struct vcpu *vc, bool_t commit)
cpumask_t idlers;
cpumask_t *online;
struct csched_pcpu *spc = NULL;
- int cpu;
+ int cpu = vc->processor;
+ int balance_step;
- /*
- * Pick from online CPUs in VCPU's affinity mask, giving a
- * preference to its current processor if it's in there.
- */
online = cpupool_scheduler_cpumask(vc->domain->cpupool);
- cpumask_and(&cpus, online, vc->cpu_affinity);
- cpu = cpumask_test_cpu(vc->processor, &cpus)
- ? vc->processor
- : cpumask_cycle(vc->processor, &cpus);
- ASSERT( !cpumask_empty(&cpus) && cpumask_test_cpu(cpu, &cpus) );
+ for_each_csched_balance_step( balance_step )
+ {
+ if ( balance_step == CSCHED_BALANCE_NODE_AFFINITY
+ && !__vcpu_has_node_affinity(vc) )
+ continue;
- /*
- * Try to find an idle processor within the above constraints.
- *
- * In multi-core and multi-threaded CPUs, not all idle execution
- * vehicles are equal!
- *
- * We give preference to the idle execution vehicle with the most
- * idling neighbours in its grouping. This distributes work across
- * distinct cores first and guarantees we don't do something stupid
- * like run two VCPUs on co-hyperthreads while there are idle cores
- * or sockets.
- *
- * Notice that, when computing the "idleness" of cpu, we may want to
- * discount vc. That is, iff vc is the currently running and the only
- * runnable vcpu on cpu, we add cpu to the idlers.
- */
- cpumask_and(&idlers, &cpu_online_map, CSCHED_PRIV(ops)->idlers);
- if ( vc->processor == cpu && IS_RUNQ_IDLE(cpu) )
- cpumask_set_cpu(cpu, &idlers);
- cpumask_and(&cpus, &cpus, &idlers);
+ /* Pick an online CPU from the proper affinity mask */
+ csched_balance_cpumask(vc, balance_step, &cpus);
+ cpumask_and(&cpus, &cpus, online);
- /*
- * It is important that cpu points to an idle processor, if a suitable
- * one exists (and we can use cpus to check and, possibly, choose a new
- * CPU, as we just &&-ed it with idlers). In fact, if we are on SMT, and
- * cpu points to a busy thread with an idle sibling, both the threads
- * will be considered the same, from the "idleness" calculation point
- * of view", preventing vcpu from being moved to the thread that is
- * actually idle.
- *
- * Notice that cpumask_test_cpu() is quicker than cpumask_empty(), so
- * we check for it first.
- */
- if ( !cpumask_test_cpu(cpu, &cpus) && !cpumask_empty(&cpus) )
- cpu = cpumask_cycle(cpu, &cpus);
- cpumask_clear_cpu(cpu, &cpus);
+ /* If present, prefer vc's current processor */
+ cpu = cpumask_test_cpu(vc->processor, &cpus)
+ ? vc->processor
+ : cpumask_cycle(vc->processor, &cpus);
+ ASSERT( !cpumask_empty(&cpus) && cpumask_test_cpu(cpu, &cpus) );
- while ( !cpumask_empty(&cpus) )
- {
- cpumask_t cpu_idlers;
- cpumask_t nxt_idlers;
- int nxt, weight_cpu, weight_nxt;
- int migrate_factor;
+ /*
+ * Try to find an idle processor within the above constraints.
+ *
+ * In multi-core and multi-threaded CPUs, not all idle execution
+ * vehicles are equal!
+ *
+ * We give preference to the idle execution vehicle with the most
+ * idling neighbours in its grouping. This distributes work across
+ * distinct cores first and guarantees we don't do something stupid
+ * like run two VCPUs on co-hyperthreads while there are idle cores
+ * or sockets.
+ *
+ * Notice that, when computing the "idleness" of cpu, we may want to
+ * discount vc. That is, iff vc is the currently running and the only
+ * runnable vcpu on cpu, we add cpu to the idlers.
+ */
+ cpumask_and(&idlers, &cpu_online_map, CSCHED_PRIV(ops)->idlers);
+ if ( vc->processor == cpu && IS_RUNQ_IDLE(cpu) )
+ cpumask_set_cpu(cpu, &idlers);
+ cpumask_and(&cpus, &cpus, &idlers);
- nxt = cpumask_cycle(cpu, &cpus);
+ /*
+ * It is important that cpu points to an idle processor, if a suitable
+ * one exists (and we can use cpus to check and, possibly, choose a new
+ * CPU, as we just &&-ed it with idlers). In fact, if we are on SMT, and
+ * cpu points to a busy thread with an idle sibling, both the threads
+ * will be considered the same, from the "idleness" calculation point
+ * of view", preventing vcpu from being moved to the thread that is
+ * actually idle.
+ *
+ * Notice that cpumask_test_cpu() is quicker than cpumask_empty(), so
+ * we check for it first.
+ */
+ if ( !cpumask_test_cpu(cpu, &cpus) && !cpumask_empty(&cpus) )
+ cpu = cpumask_cycle(cpu, &cpus);
+ cpumask_clear_cpu(cpu, &cpus);
- if ( cpumask_test_cpu(cpu, per_cpu(cpu_core_mask, nxt)) )
+ while ( !cpumask_empty(&cpus) )
{
- /* We're on the same socket, so check the busy-ness of threads.
- * Migrate if # of idlers is less at all */
- ASSERT( cpumask_test_cpu(nxt, per_cpu(cpu_core_mask, cpu)) );
- migrate_factor = 1;
- cpumask_and(&cpu_idlers, &idlers, per_cpu(cpu_sibling_mask, cpu));
- cpumask_and(&nxt_idlers, &idlers, per_cpu(cpu_sibling_mask, nxt));
- }
- else
- {
- /* We're on different sockets, so check the busy-ness of cores.
- * Migrate only if the other core is twice as idle */
- ASSERT( !cpumask_test_cpu(nxt, per_cpu(cpu_core_mask, cpu)) );
- migrate_factor = 2;
- cpumask_and(&cpu_idlers, &idlers, per_cpu(cpu_core_mask, cpu));
- cpumask_and(&nxt_idlers, &idlers, per_cpu(cpu_core_mask, nxt));
- }
+ cpumask_t cpu_idlers;
+ cpumask_t nxt_idlers;
+ int nxt, weight_cpu, weight_nxt;
+ int migrate_factor;
- weight_cpu = cpumask_weight(&cpu_idlers);
- weight_nxt = cpumask_weight(&nxt_idlers);
- /* smt_power_savings: consolidate work rather than spreading it */
- if ( sched_smt_power_savings ?
- weight_cpu > weight_nxt :
- weight_cpu * migrate_factor < weight_nxt )
- {
- cpumask_and(&nxt_idlers, &cpus, &nxt_idlers);
- spc = CSCHED_PCPU(nxt);
- cpu = cpumask_cycle(spc->idle_bias, &nxt_idlers);
- cpumask_andnot(&cpus, &cpus, per_cpu(cpu_sibling_mask, cpu));
- }
- else
- {
- cpumask_andnot(&cpus, &cpus, &nxt_idlers);
+ nxt = cpumask_cycle(cpu, &cpus);
+
+ if ( cpumask_test_cpu(cpu, per_cpu(cpu_core_mask, nxt)) )
+ {
+ /* We're on the same socket, so check the busy-ness of threads.
+ * Migrate if # of idlers is less at all */
+ ASSERT( cpumask_test_cpu(nxt, per_cpu(cpu_core_mask, cpu)) );
+ migrate_factor = 1;
+ cpumask_and(&cpu_idlers, &idlers, per_cpu(cpu_sibling_mask,
+ cpu));
+ cpumask_and(&nxt_idlers, &idlers, per_cpu(cpu_sibling_mask,
+ nxt));
+ }
+ else
+ {
+ /* We're on different sockets, so check the busy-ness of cores.
+ * Migrate only if the other core is twice as idle */
+ ASSERT( !cpumask_test_cpu(nxt, per_cpu(cpu_core_mask, cpu)) );
+ migrate_factor = 2;
+ cpumask_and(&cpu_idlers, &idlers, per_cpu(cpu_core_mask, cpu));
+ cpumask_and(&nxt_idlers, &idlers, per_cpu(cpu_core_mask, nxt));
+ }
+
+ weight_cpu = cpumask_weight(&cpu_idlers);
+ weight_nxt = cpumask_weight(&nxt_idlers);
+ /* smt_power_savings: consolidate work rather than spreading it */
+ if ( sched_smt_power_savings ?
+ weight_cpu > weight_nxt :
+ weight_cpu * migrate_factor < weight_nxt )
+ {
+ cpumask_and(&nxt_idlers, &cpus, &nxt_idlers);
+ spc = CSCHED_PCPU(nxt);
+ cpu = cpumask_cycle(spc->idle_bias, &nxt_idlers);
+ cpumask_andnot(&cpus, &cpus, per_cpu(cpu_sibling_mask, cpu));
+ }
+ else
+ {
+ cpumask_andnot(&cpus, &cpus, &nxt_idlers);
+ }
}
+
+ /* Stop if cpu is idle */
+ if ( cpumask_test_cpu(cpu, &idlers) )
+ break;
}
if ( commit && spc )
@@ -934,6 +1034,13 @@ csched_alloc_domdata(const struct scheduler *ops, struct domain *dom)
if ( sdom == NULL )
return NULL;
+ if ( !alloc_cpumask_var(&sdom->node_affinity_cpumask) )
+ {
+ xfree(sdom);
+ return NULL;
+ }
+ cpumask_setall(sdom->node_affinity_cpumask);
+
/* Initialize credit and weight */
INIT_LIST_HEAD(&sdom->active_vcpu);
sdom->active_vcpu_count = 0;
@@ -965,6 +1072,9 @@ csched_dom_init(const struct scheduler *ops, struct domain *dom)
static void
csched_free_domdata(const struct scheduler *ops, void *data)
{
+ struct csched_dom *sdom = data;
+
+ free_cpumask_var(sdom->node_affinity_cpumask);
xfree(data);
}
@@ -1259,7 +1369,7 @@ csched_tick(void *_cpu)
}
static struct csched_vcpu *
-csched_runq_steal(int peer_cpu, int cpu, int pri)
+csched_runq_steal(int peer_cpu, int cpu, int pri, int balance_step)
{
const struct csched_pcpu * const peer_pcpu = CSCHED_PCPU(peer_cpu);
const struct vcpu * const peer_vcpu = curr_on_cpu(peer_cpu);
@@ -1284,11 +1394,28 @@ csched_runq_steal(int peer_cpu, int cpu, int pri)
if ( speer->pri <= pri )
break;
- /* Is this VCPU is runnable on our PCPU? */
+ /* Is this VCPU runnable on our PCPU? */
vc = speer->vcpu;
BUG_ON( is_idle_vcpu(vc) );
- if (__csched_vcpu_is_migrateable(vc, cpu))
+ /*
+ * If the vcpu has no useful node-affinity, skip this vcpu.
+ * In fact, what we want is to check if we have any node-affine
+ * work to steal, before starting to look at vcpu-affine work.
+ *
+ * Notice that, if not even one vCPU on this runq has a useful
+ * node-affinity, we could have avoid considering this runq for
+ * a node balancing step in the first place. This, for instance,
+ * can be implemented by taking note of on what runq there are
+ * vCPUs with useful node-affinities in some sort of bitmap
+ * or counter.
+ */
+ if ( balance_step == CSCHED_BALANCE_NODE_AFFINITY
+ && !__vcpu_has_node_affinity(vc) )
+ continue;
+
+ csched_balance_cpumask(vc, balance_step, csched_balance_mask);
+ if ( __csched_vcpu_is_migrateable(vc, cpu, csched_balance_mask) )
{
/* We got a candidate. Grab it! */
TRACE_3D(TRC_CSCHED_STOLEN_VCPU, peer_cpu,
@@ -1314,7 +1441,8 @@ csched_load_balance(struct csched_private *prv, int cpu,
struct csched_vcpu *speer;
cpumask_t workers;
cpumask_t *online;
- int peer_cpu;
+ int peer_cpu, peer_node, bstep;
+ int node = cpu_to_node(cpu);
BUG_ON( cpu != snext->vcpu->processor );
online = cpupool_scheduler_cpumask(per_cpu(cpupool, cpu));
@@ -1331,42 +1459,68 @@ csched_load_balance(struct csched_private *prv, int cpu,
SCHED_STAT_CRANK(load_balance_other);
/*
- * Peek at non-idling CPUs in the system, starting with our
- * immediate neighbour.
+ * Let's look around for work to steal, taking both vcpu-affinity
+ * and node-affinity into account. More specifically, we check all
+ * the non-idle CPUs' runq, looking for:
+ * 1. any node-affine work to steal first,
+ * 2. if not finding anything, any vcpu-affine work to steal.
*/
- cpumask_andnot(&workers, online, prv->idlers);
- cpumask_clear_cpu(cpu, &workers);
- peer_cpu = cpu;
-
- while ( !cpumask_empty(&workers) )
+ for_each_csched_balance_step( bstep )
{
- peer_cpu = cpumask_cycle(peer_cpu, &workers);
- cpumask_clear_cpu(peer_cpu, &workers);
-
/*
- * Get ahold of the scheduler lock for this peer CPU.
- *
- * Note: We don't spin on this lock but simply try it. Spinning could
- * cause a deadlock if the peer CPU is also load balancing and trying
- * to lock this CPU.
+ * We peek at the non-idling CPUs in a node-wise fashion. In fact,
+ * it is more likely that we find some node-affine work on our same
+ * node, not to mention that migrating vcpus within the same node
+ * could well expected to be cheaper than across-nodes (memory
+ * stays local, there might be some node-wide cache[s], etc.).
*/
- if ( !pcpu_schedule_trylock(peer_cpu) )
+ peer_node = node;
+ do
{
- SCHED_STAT_CRANK(steal_trylock_failed);
- continue;
- }
+ /* Find out what the !idle are in this node */
+ cpumask_andnot(&workers, online, prv->idlers);
+ cpumask_and(&workers, &workers, &node_to_cpumask(peer_node));
+ cpumask_clear_cpu(cpu, &workers);
- /*
- * Any work over there to steal?
- */
- speer = cpumask_test_cpu(peer_cpu, online) ?
- csched_runq_steal(peer_cpu, cpu, snext->pri) : NULL;
- pcpu_schedule_unlock(peer_cpu);
- if ( speer != NULL )
- {
- *stolen = 1;
- return speer;
- }
+ if ( cpumask_empty(&workers) )
+ goto next_node;
+
+ peer_cpu = cpumask_first(&workers);
+ do
+ {
+ /*
+ * Get ahold of the scheduler lock for this peer CPU.
+ *
+ * Note: We don't spin on this lock but simply try it. Spinning
+ * could cause a deadlock if the peer CPU is also load
+ * balancing and trying to lock this CPU.
+ */
+ if ( !pcpu_schedule_trylock(peer_cpu) )
+ {
+ SCHED_STAT_CRANK(steal_trylock_failed);
+ peer_cpu = cpumask_cycle(peer_cpu, &workers);
+ continue;
+ }
+
+ /* Any work over there to steal? */
+ speer = cpumask_test_cpu(peer_cpu, online) ?
+ csched_runq_steal(peer_cpu, cpu, snext->pri, bstep) : NULL;
+ pcpu_schedule_unlock(peer_cpu);
+
+ /* As soon as one vcpu is found, balancing ends */
+ if ( speer != NULL )
+ {
+ *stolen = 1;
+ return speer;
+ }
+
+ peer_cpu = cpumask_cycle(peer_cpu, &workers);
+
+ } while( peer_cpu != cpumask_first(&workers) );
+
+ next_node:
+ peer_node = cycle_node(peer_node, node_online_map);
+ } while( peer_node != node );
}
out: