aboutsummaryrefslogtreecommitdiffstats
path: root/grub-core/lib/libgcrypt-grub/cipher/rijndael.c
blob: 557b3be78ec0b10b1f7b818fe7bc52e03676f8d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
/* This file was automatically imported with 
   import_gcry.py. Please don't modify it */
#include <grub/dl.h>
GRUB_MOD_LICENSE ("GPLv3+");
/* Rijndael (AES) for GnuPG
 * Copyright (C) 2000, 2001, 2002, 2003, 2007,
 *               2008 Free Software Foundation, Inc.
 *
 * This file is part of Libgcrypt.
 *
 * Libgcrypt is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * Libgcrypt is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
 *******************************************************************
 * The code here is based on the optimized implementation taken from
 * http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ on Oct 2, 2000,
 * which carries this notice:
 *------------------------------------------
 * rijndael-alg-fst.c   v2.3   April '2000
 *
 * Optimised ANSI C code
 *
 * authors: v1.0: Antoon Bosselaers
 *          v2.0: Vincent Rijmen
 *          v2.3: Paulo Barreto
 *
 * This code is placed in the public domain.
 *------------------------------------------
 *
 * The SP800-38a document is available at:
 *   http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
 *
 */


#include "types.h"  /* for byte and u32 typedefs */
#include "g10lib.h"
#include "cipher.h"

#define MAXKC			(256/32)
#define MAXROUNDS		14
#define BLOCKSIZE               (128/8)


/* USE_PADLOCK indicates whether to compile the padlock specific
   code.  */
#undef USE_PADLOCK
#ifdef ENABLE_PADLOCK_SUPPORT
# if defined (__i386__) && SIZEOF_UNSIGNED_LONG == 4 && defined (__GNUC__)
# define USE_PADLOCK
# endif
#endif /*ENABLE_PADLOCK_SUPPORT*/


typedef struct 
{
  int   ROUNDS;             /* Key-length-dependent number of rounds.  */
  int decryption_prepared;  /* The decryption key schedule is available.  */
#ifdef USE_PADLOCK
  int use_padlock;          /* Padlock shall be used.  */
  /* The key as passed to the padlock engine.  */
  unsigned char padlock_key[16] __attribute__ ((aligned (16)));
#endif
  union
  {
    PROPERLY_ALIGNED_TYPE dummy;
    byte keyschedule[MAXROUNDS+1][4][4];
  } u1;
  union
  {
    PROPERLY_ALIGNED_TYPE dummy;
    byte keyschedule[MAXROUNDS+1][4][4];	
  } u2;
} RIJNDAEL_context;

#define keySched  u1.keyschedule
#define keySched2 u2.keyschedule

/* All the numbers.  */
#include "rijndael-tables.h"


/* Perform the key setup.  */  
static gcry_err_code_t
do_setkey (RIJNDAEL_context *ctx, const byte *key, const unsigned keylen)
{
  static int initialized = 0;
  static const char *selftest_failed=0;
  int ROUNDS;
  int i,j, r, t, rconpointer = 0;
  int KC;
  union
  {
    PROPERLY_ALIGNED_TYPE dummy;
    byte k[MAXKC][4];
  } k;
#define k k.k
  union
  {
    PROPERLY_ALIGNED_TYPE dummy;
    byte tk[MAXKC][4];
  } tk;
#define tk tk.tk  

  /* The on-the-fly self tests are only run in non-fips mode. In fips
     mode explicit self-tests are required.  Actually the on-the-fly
     self-tests are not fully thread-safe and it might happen that a
     failed self-test won't get noticed in another thread.  

     FIXME: We might want to have a central registry of succeeded
     self-tests. */
  if (!fips_mode () && !initialized)
    {
      initialized = 1;
      selftest_failed = selftest ();
      if (selftest_failed)
        log_error ("%s\n", selftest_failed );
    }
  if (selftest_failed)
    return GPG_ERR_SELFTEST_FAILED;

  ctx->decryption_prepared = 0;
#ifdef USE_PADLOCK
  ctx->use_padlock = 0;
#endif

  if( keylen == 128/8 )
    {
      ROUNDS = 10;
      KC = 4;
#ifdef USE_PADLOCK
      if ((_gcry_get_hw_features () & HWF_PADLOCK_AES))
        {
          ctx->use_padlock = 1;
          memcpy (ctx->padlock_key, key, keylen);
        }
#endif
    }
  else if ( keylen == 192/8 )
    {
      ROUNDS = 12;
      KC = 6;
    }
  else if ( keylen == 256/8 )
    {
      ROUNDS = 14;
      KC = 8;
    }
  else
    return GPG_ERR_INV_KEYLEN;

  ctx->ROUNDS = ROUNDS;

#ifdef USE_PADLOCK
  if (ctx->use_padlock)
    {
      /* Nothing to do as we support only hardware key generation for
         now.  */
    }
  else
#endif /*USE_PADLOCK*/
    {
#define W (ctx->keySched)
      for (i = 0; i < keylen; i++) 
        {
          k[i >> 2][i & 3] = key[i]; 
        }
      
      for (j = KC-1; j >= 0; j--) 
        {
          *((u32*)tk[j]) = *((u32*)k[j]);
        }
      r = 0;
      t = 0;
      /* Copy values into round key array.  */
      for (j = 0; (j < KC) && (r < ROUNDS + 1); )
        {
          for (; (j < KC) && (t < 4); j++, t++)
            {
              *((u32*)W[r][t]) = *((u32*)tk[j]);
            }
          if (t == 4)
            {
              r++;
              t = 0;
            }
        }
      
      while (r < ROUNDS + 1)
        {
          /* While not enough round key material calculated calculate
             new values.  */
          tk[0][0] ^= S[tk[KC-1][1]];
          tk[0][1] ^= S[tk[KC-1][2]];
          tk[0][2] ^= S[tk[KC-1][3]];
          tk[0][3] ^= S[tk[KC-1][0]];
          tk[0][0] ^= rcon[rconpointer++];
          
          if (KC != 8)
            {
              for (j = 1; j < KC; j++) 
                {
                  *((u32*)tk[j]) ^= *((u32*)tk[j-1]);
                }
            } 
          else 
            {
              for (j = 1; j < KC/2; j++)
                {
                  *((u32*)tk[j]) ^= *((u32*)tk[j-1]);
                }
              tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
              tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
              tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
              tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
              for (j = KC/2 + 1; j < KC; j++)
                {
                  *((u32*)tk[j]) ^= *((u32*)tk[j-1]);
                }
            }
          
          /* Copy values into round key array.  */
          for (j = 0; (j < KC) && (r < ROUNDS + 1); )
            {
              for (; (j < KC) && (t < 4); j++, t++)
                {
                  *((u32*)W[r][t]) = *((u32*)tk[j]);
                }
              if (t == 4)
                {
                  r++;
                  t = 0;
                }
            }
        }		
#undef W    
    }

  return 0;
#undef tk
#undef k
}


static gcry_err_code_t
rijndael_setkey (void *context, const byte *key, const unsigned keylen)
{
  RIJNDAEL_context *ctx = context;

  int rc = do_setkey (ctx, key, keylen);
  _gcry_burn_stack ( 100 + 16*sizeof(int));
  return rc;
}


/* Make a decryption key from an encryption key. */
static void
prepare_decryption( RIJNDAEL_context *ctx )
{
  int r;
  union
  {
    PROPERLY_ALIGNED_TYPE dummy;
    byte *w;
  } w;
#define w w.w

  for (r=0; r < MAXROUNDS+1; r++ )
    {
      *((u32*)ctx->keySched2[r][0]) = *((u32*)ctx->keySched[r][0]);
      *((u32*)ctx->keySched2[r][1]) = *((u32*)ctx->keySched[r][1]);
      *((u32*)ctx->keySched2[r][2]) = *((u32*)ctx->keySched[r][2]);
      *((u32*)ctx->keySched2[r][3]) = *((u32*)ctx->keySched[r][3]);
    }
#define W (ctx->keySched2)
  for (r = 1; r < ctx->ROUNDS; r++)
    {
      w = W[r][0];
      *((u32*)w) = *((u32*)U1[w[0]]) ^ *((u32*)U2[w[1]])
        ^ *((u32*)U3[w[2]]) ^ *((u32*)U4[w[3]]);
       
      w = W[r][1];
      *((u32*)w) = *((u32*)U1[w[0]]) ^ *((u32*)U2[w[1]])
        ^ *((u32*)U3[w[2]]) ^ *((u32*)U4[w[3]]);
        
      w = W[r][2];
      *((u32*)w) = *((u32*)U1[w[0]]) ^ *((u32*)U2[w[1]])
        ^ *((u32*)U3[w[2]]) ^ *((u32*)U4[w[3]]);
        
      w = W[r][3];
      *((u32*)w) = *((u32*)U1[w[0]]) ^ *((u32*)U2[w[1]])
        ^ *((u32*)U3[w[2]]) ^ *((u32*)U4[w[3]]);
    }
#undef W
#undef w
}	



/* Encrypt one block.  A and B need to be aligned on a 4 byte
   boundary.  A and B may be the same. */
static void
do_encrypt_aligned (const RIJNDAEL_context *ctx, 
                    unsigned char *b, const unsigned char *a)
{
#define rk (ctx->keySched)
  int ROUNDS = ctx->ROUNDS;
  int r;
  union
  {
    u32  tempu32[4];  /* Force correct alignment. */
    byte temp[4][4];
  } u;

  *((u32*)u.temp[0]) = *((u32*)(a   )) ^ *((u32*)rk[0][0]);
  *((u32*)u.temp[1]) = *((u32*)(a+ 4)) ^ *((u32*)rk[0][1]);
  *((u32*)u.temp[2]) = *((u32*)(a+ 8)) ^ *((u32*)rk[0][2]);
  *((u32*)u.temp[3]) = *((u32*)(a+12)) ^ *((u32*)rk[0][3]);
  *((u32*)(b    ))   = (*((u32*)T1[u.temp[0][0]])
                        ^ *((u32*)T2[u.temp[1][1]])
                        ^ *((u32*)T3[u.temp[2][2]]) 
                        ^ *((u32*)T4[u.temp[3][3]]));
  *((u32*)(b + 4))   = (*((u32*)T1[u.temp[1][0]])
                        ^ *((u32*)T2[u.temp[2][1]])
                        ^ *((u32*)T3[u.temp[3][2]]) 
                        ^ *((u32*)T4[u.temp[0][3]]));
  *((u32*)(b + 8))   = (*((u32*)T1[u.temp[2][0]])
                        ^ *((u32*)T2[u.temp[3][1]])
                        ^ *((u32*)T3[u.temp[0][2]]) 
                        ^ *((u32*)T4[u.temp[1][3]]));
  *((u32*)(b +12))   = (*((u32*)T1[u.temp[3][0]])
                        ^ *((u32*)T2[u.temp[0][1]])
                        ^ *((u32*)T3[u.temp[1][2]]) 
                        ^ *((u32*)T4[u.temp[2][3]]));

  for (r = 1; r < ROUNDS-1; r++)
    {
      *((u32*)u.temp[0]) = *((u32*)(b   )) ^ *((u32*)rk[r][0]);
      *((u32*)u.temp[1]) = *((u32*)(b+ 4)) ^ *((u32*)rk[r][1]);
      *((u32*)u.temp[2]) = *((u32*)(b+ 8)) ^ *((u32*)rk[r][2]);
      *((u32*)u.temp[3]) = *((u32*)(b+12)) ^ *((u32*)rk[r][3]);

      *((u32*)(b    ))   = (*((u32*)T1[u.temp[0][0]])
                            ^ *((u32*)T2[u.temp[1][1]])
                            ^ *((u32*)T3[u.temp[2][2]]) 
                            ^ *((u32*)T4[u.temp[3][3]]));
      *((u32*)(b + 4))   = (*((u32*)T1[u.temp[1][0]])
                            ^ *((u32*)T2[u.temp[2][1]])
                            ^ *((u32*)T3[u.temp[3][2]]) 
                            ^ *((u32*)T4[u.temp[0][3]]));
      *((u32*)(b + 8))   = (*((u32*)T1[u.temp[2][0]])
                            ^ *((u32*)T2[u.temp[3][1]])
                            ^ *((u32*)T3[u.temp[0][2]]) 
                            ^ *((u32*)T4[u.temp[1][3]]));
      *((u32*)(b +12))   = (*((u32*)T1[u.temp[3][0]])
                            ^ *((u32*)T2[u.temp[0][1]])
                            ^ *((u32*)T3[u.temp[1][2]]) 
                            ^ *((u32*)T4[u.temp[2][3]]));
    }

  /* Last round is special. */   
  *((u32*)u.temp[0]) = *((u32*)(b   )) ^ *((u32*)rk[ROUNDS-1][0]);
  *((u32*)u.temp[1]) = *((u32*)(b+ 4)) ^ *((u32*)rk[ROUNDS-1][1]);
  *((u32*)u.temp[2]) = *((u32*)(b+ 8)) ^ *((u32*)rk[ROUNDS-1][2]);
  *((u32*)u.temp[3]) = *((u32*)(b+12)) ^ *((u32*)rk[ROUNDS-1][3]);
  b[ 0] = T1[u.temp[0][0]][1];
  b[ 1] = T1[u.temp[1][1]][1];
  b[ 2] = T1[u.temp[2][2]][1];
  b[ 3] = T1[u.temp[3][3]][1];
  b[ 4] = T1[u.temp[1][0]][1];
  b[ 5] = T1[u.temp[2][1]][1];
  b[ 6] = T1[u.temp[3][2]][1];
  b[ 7] = T1[u.temp[0][3]][1];
  b[ 8] = T1[u.temp[2][0]][1];
  b[ 9] = T1[u.temp[3][1]][1];
  b[10] = T1[u.temp[0][2]][1];
  b[11] = T1[u.temp[1][3]][1];
  b[12] = T1[u.temp[3][0]][1];
  b[13] = T1[u.temp[0][1]][1];
  b[14] = T1[u.temp[1][2]][1];
  b[15] = T1[u.temp[2][3]][1];
  *((u32*)(b   )) ^= *((u32*)rk[ROUNDS][0]);
  *((u32*)(b+ 4)) ^= *((u32*)rk[ROUNDS][1]);
  *((u32*)(b+ 8)) ^= *((u32*)rk[ROUNDS][2]);
  *((u32*)(b+12)) ^= *((u32*)rk[ROUNDS][3]);
#undef rk
}


static void
do_encrypt (const RIJNDAEL_context *ctx,
            unsigned char *bx, const unsigned char *ax)
{
  /* BX and AX are not necessary correctly aligned.  Thus we need to
     copy them here. */
  union
  {
    u32  dummy[4]; 
    byte a[16];
  } a;
  union
  {
    u32  dummy[4]; 
    byte b[16];
  } b;

  memcpy (a.a, ax, 16);
  do_encrypt_aligned (ctx, b.b, a.a);
  memcpy (bx, b.b, 16);
}


/* Encrypt or decrypt one block using the padlock engine.  A and B may
   be the same. */
#ifdef USE_PADLOCK
static void
do_padlock (const RIJNDAEL_context *ctx, int decrypt_flag,
            unsigned char *bx, const unsigned char *ax)
{
  /* BX and AX are not necessary correctly aligned.  Thus we need to
     copy them here. */
  unsigned char a[16] __attribute__ ((aligned (16)));
  unsigned char b[16] __attribute__ ((aligned (16)));
  unsigned int cword[4] __attribute__ ((aligned (16)));

  /* The control word fields are:
      127:12   11:10 9     8     7     6     5     4     3:0
      RESERVED KSIZE CRYPT INTER KEYGN CIPHR ALIGN DGEST ROUND  */
  cword[0] = (ctx->ROUNDS & 15);  /* (The mask is just a safeguard.)  */
  cword[1] = 0;
  cword[2] = 0;
  cword[3] = 0;
  if (decrypt_flag)
    cword[0] |= 0x00000200;

  memcpy (a, ax, 16);
   
  asm volatile 
    ("pushfl\n\t"          /* Force key reload.  */            
     "popfl\n\t"
     "xchg %3, %%ebx\n\t"  /* Load key.  */
     "movl $1, %%ecx\n\t"  /* Init counter for just one block.  */
     ".byte 0xf3, 0x0f, 0xa7, 0xc8\n\t" /* REP XSTORE ECB. */
     "xchg %3, %%ebx\n"    /* Restore GOT register.  */
     : /* No output */
     : "S" (a), "D" (b), "d" (cword), "r" (ctx->padlock_key)
     : "%ecx", "cc", "memory"
     );

  memcpy (bx, b, 16);

}
#endif /*USE_PADLOCK*/


static void
rijndael_encrypt (void *context, byte *b, const byte *a)
{
  RIJNDAEL_context *ctx = context;

#ifdef USE_PADLOCK
  if (ctx->use_padlock)
    {
      do_padlock (ctx, 0, b, a);
      _gcry_burn_stack (48 + 15 /* possible padding for alignment */);
    }
  else
#endif /*USE_PADLOCK*/
    {
      do_encrypt (ctx, b, a);
      _gcry_burn_stack (48 + 2*sizeof(int));
    }
}


/* Bulk encryption of complete blocks in CFB mode.  Caller needs to
   make sure that IV is aligned on an unsigned long boundary.  This
   function is only intended for the bulk encryption feature of
   cipher.c. */


/* Bulk encryption of complete blocks in CBC mode.  Caller needs to
   make sure that IV is aligned on an unsigned long boundary.  This
   function is only intended for the bulk encryption feature of
   cipher.c. */



/* Decrypt one block.  A and B need to be aligned on a 4 byte boundary
   and the decryption must have been prepared.  A and B may be the
   same. */
static void
do_decrypt_aligned (RIJNDAEL_context *ctx, 
                    unsigned char *b, const unsigned char *a)
{
#define rk  (ctx->keySched2)
  int ROUNDS = ctx->ROUNDS; 
  int r;
  union 
  {
    u32  tempu32[4];  /* Force correct alignment. */
    byte temp[4][4];
  } u;


  *((u32*)u.temp[0]) = *((u32*)(a   )) ^ *((u32*)rk[ROUNDS][0]);
  *((u32*)u.temp[1]) = *((u32*)(a+ 4)) ^ *((u32*)rk[ROUNDS][1]);
  *((u32*)u.temp[2]) = *((u32*)(a+ 8)) ^ *((u32*)rk[ROUNDS][2]);
  *((u32*)u.temp[3]) = *((u32*)(a+12)) ^ *((u32*)rk[ROUNDS][3]);
  
  *((u32*)(b   ))    = (*((u32*)T5[u.temp[0][0]])
                        ^ *((u32*)T6[u.temp[3][1]])
                        ^ *((u32*)T7[u.temp[2][2]]) 
                        ^ *((u32*)T8[u.temp[1][3]]));
  *((u32*)(b+ 4))    = (*((u32*)T5[u.temp[1][0]])
                        ^ *((u32*)T6[u.temp[0][1]])
                        ^ *((u32*)T7[u.temp[3][2]]) 
                        ^ *((u32*)T8[u.temp[2][3]]));
  *((u32*)(b+ 8))    = (*((u32*)T5[u.temp[2][0]])
                        ^ *((u32*)T6[u.temp[1][1]])
                        ^ *((u32*)T7[u.temp[0][2]]) 
                        ^ *((u32*)T8[u.temp[3][3]]));
  *((u32*)(b+12))    = (*((u32*)T5[u.temp[3][0]])
                        ^ *((u32*)T6[u.temp[2][1]])
                        ^ *((u32*)T7[u.temp[1][2]]) 
                        ^ *((u32*)T8[u.temp[0][3]]));

  for (r = ROUNDS-1; r > 1; r--)
    {
      *((u32*)u.temp[0]) = *((u32*)(b   )) ^ *((u32*)rk[r][0]);
      *((u32*)u.temp[1]) = *((u32*)(b+ 4)) ^ *((u32*)rk[r][1]);
      *((u32*)u.temp[2]) = *((u32*)(b+ 8)) ^ *((u32*)rk[r][2]);
      *((u32*)u.temp[3]) = *((u32*)(b+12)) ^ *((u32*)rk[r][3]);
      *((u32*)(b   ))    = (*((u32*)T5[u.temp[0][0]])
                            ^ *((u32*)T6[u.temp[3][1]])
                            ^ *((u32*)T7[u.temp[2][2]]) 
                            ^ *((u32*)T8[u.temp[1][3]]));
      *((u32*)(b+ 4))    = (*((u32*)T5[u.temp[1][0]])
                            ^ *((u32*)T6[u.temp[0][1]])
                            ^ *((u32*)T7[u.temp[3][2]]) 
                            ^ *((u32*)T8[u.temp[2][3]]));
      *((u32*)(b+ 8))    = (*((u32*)T5[u.temp[2][0]])
                            ^ *((u32*)T6[u.temp[1][1]])
                            ^ *((u32*)T7[u.temp[0][2]]) 
                            ^ *((u32*)T8[u.temp[3][3]]));
      *((u32*)(b+12))    = (*((u32*)T5[u.temp[3][0]])
                            ^ *((u32*)T6[u.temp[2][1]])
                            ^ *((u32*)T7[u.temp[1][2]]) 
                            ^ *((u32*)T8[u.temp[0][3]]));
    }

  /* Last round is special. */   
  *((u32*)u.temp[0]) = *((u32*)(b   )) ^ *((u32*)rk[1][0]);
  *((u32*)u.temp[1]) = *((u32*)(b+ 4)) ^ *((u32*)rk[1][1]);
  *((u32*)u.temp[2]) = *((u32*)(b+ 8)) ^ *((u32*)rk[1][2]);
  *((u32*)u.temp[3]) = *((u32*)(b+12)) ^ *((u32*)rk[1][3]);
  b[ 0] = S5[u.temp[0][0]];
  b[ 1] = S5[u.temp[3][1]];
  b[ 2] = S5[u.temp[2][2]];
  b[ 3] = S5[u.temp[1][3]];
  b[ 4] = S5[u.temp[1][0]];
  b[ 5] = S5[u.temp[0][1]];
  b[ 6] = S5[u.temp[3][2]];
  b[ 7] = S5[u.temp[2][3]];
  b[ 8] = S5[u.temp[2][0]];
  b[ 9] = S5[u.temp[1][1]];
  b[10] = S5[u.temp[0][2]];
  b[11] = S5[u.temp[3][3]];
  b[12] = S5[u.temp[3][0]];
  b[13] = S5[u.temp[2][1]];
  b[14] = S5[u.temp[1][2]];
  b[15] = S5[u.temp[0][3]];
  *((u32*)(b   )) ^= *((u32*)rk[0][0]);
  *((u32*)(b+ 4)) ^= *((u32*)rk[0][1]);
  *((u32*)(b+ 8)) ^= *((u32*)rk[0][2]);
  *((u32*)(b+12)) ^= *((u32*)rk[0][3]);
#undef rk
}


/* Decrypt one block.  AX and BX may be the same. */
static void
do_decrypt (RIJNDAEL_context *ctx, byte *bx, const byte *ax)
{
  /* BX and AX are not necessary correctly aligned.  Thus we need to
     copy them here. */
  union
  {
    u32  dummy[4]; 
    byte a[16];
  } a;
  union
  {
    u32  dummy[4]; 
    byte b[16];
  } b;

  if ( !ctx->decryption_prepared )
    {
      prepare_decryption ( ctx );
      _gcry_burn_stack (64);
      ctx->decryption_prepared = 1;
    }

  memcpy (a.a, ax, 16);
  do_decrypt_aligned (ctx, b.b, a.a);
  memcpy (bx, b.b, 16);
#undef rk
}
    



static void
rijndael_decrypt (void *context, byte *b, const byte *a)
{
  RIJNDAEL_context *ctx = context;

#ifdef USE_PADLOCK
  if (ctx->use_padlock)
    {
      do_padlock (ctx, 1, b, a);
      _gcry_burn_stack (48 + 2*sizeof(int) /* FIXME */);
    }
  else
#endif /*USE_PADLOCK*/
    {
      do_decrypt (ctx, b, a);
      _gcry_burn_stack (48+2*sizeof(int));
    }
}


/* Bulk decryption of complete blocks in CFB mode.  Caller needs to
   make sure that IV is aligned on an unisgned lonhg boundary.  This
   function is only intended for the bulk encryption feature of
   cipher.c. */


/* Bulk decryption of complete blocks in CBC mode.  Caller needs to
   make sure that IV is aligned on an unsigned long boundary.  This
   function is only intended for the bulk encryption feature of
   cipher.c. */




/* Run the self-tests for AES 128.  Returns NULL on success. */

/* Run the self-tests for AES 192.  Returns NULL on success. */


/* Run the self-tests for AES 256.  Returns NULL on success. */

/* Run all the self-tests and return NULL on success.  This function
   is used for the on-the-fly self-tests. */


/* SP800-38a.pdf for AES-128.  */


/* Complete selftest for AES-128 with all modes and driver code.  */

/* Complete selftest for AES-192.  */


/* Complete selftest for AES-256.  */



/* Run a full self-test for ALGO and return 0 on success.  */




static const char *rijndael_names[] =
  {
    "RIJNDAEL",
    "AES128",
    "AES-128",
    NULL
  };

static gcry_cipher_oid_spec_t rijndael_oids[] =
  {
    { "2.16.840.1.101.3.4.1.1", GCRY_CIPHER_MODE_ECB },
    { "2.16.840.1.101.3.4.1.2", GCRY_CIPHER_MODE_CBC },
    { "2.16.840.1.101.3.4.1.3", GCRY_CIPHER_MODE_OFB },
    { "2.16.840.1.101.3.4.1.4", GCRY_CIPHER_MODE_CFB },
    { NULL }
  };

gcry_cipher_spec_t _gcry_cipher_spec_aes =
  {
    "AES", rijndael_names, rijndael_oids, 16, 128, sizeof (RIJNDAEL_context),
    rijndael_setkey, rijndael_encrypt, rijndael_decrypt
  };

static const char *rijndael192_names[] =
  {
    "RIJNDAEL192",
    "AES-192",
    NULL
  };

static gcry_cipher_oid_spec_t rijndael192_oids[] =
  {
    { "2.16.840.1.101.3.4.1.21", GCRY_CIPHER_MODE_ECB },
    { "2.16.840.1.101.3.4.1.22", GCRY_CIPHER_MODE_CBC },
    { "2.16.840.1.101.3.4.1.23", GCRY_CIPHER_MODE_OFB },
    { "2.16.840.1.101.3.4.1.24", GCRY_CIPHER_MODE_CFB },
    { NULL }
  };

gcry_cipher_spec_t _gcry_cipher_spec_aes192 =
  {
    "AES192", rijndael192_names, rijndael192_oids, 16, 192, sizeof (RIJNDAEL_context),
    rijndael_setkey, rijndael_encrypt, rijndael_decrypt
  };

static const char *rijndael256_names[] =
  {
    "RIJNDAEL256",
    "AES-256",
    NULL
  };

static gcry_cipher_oid_spec_t rijndael256_oids[] =
  {
    { "2.16.840.1.101.3.4.1.41", GCRY_CIPHER_MODE_ECB },
    { "2.16.840.1.101.3.4.1.42", GCRY_CIPHER_MODE_CBC },
    { "2.16.840.1.101.3.4.1.43", GCRY_CIPHER_MODE_OFB },
    { "2.16.840.1.101.3.4.1.44", GCRY_CIPHER_MODE_CFB },
    { NULL }
  };

gcry_cipher_spec_t _gcry_cipher_spec_aes256 =
  {
    "AES256", rijndael256_names, rijndael256_oids, 16, 256,
    sizeof (RIJNDAEL_context),
    rijndael_setkey, rijndael_encrypt, rijndael_decrypt
  };



GRUB_MOD_INIT(gcry_rijndael)
{
  grub_cipher_register (&_gcry_cipher_spec_aes);
  grub_cipher_register (&_gcry_cipher_spec_aes192);
  grub_cipher_register (&_gcry_cipher_spec_aes256);
}

GRUB_MOD_FINI(gcry_rijndael)
{
  grub_cipher_unregister (&_gcry_cipher_spec_aes);
  grub_cipher_unregister (&_gcry_cipher_spec_aes192);
  grub_cipher_unregister (&_gcry_cipher_spec_aes256);
}