aboutsummaryrefslogtreecommitdiffstats
path: root/target-i386/kvm.c
diff options
context:
space:
mode:
authorfishsoupisgood <github@madingley.org>2019-04-29 01:17:54 +0100
committerfishsoupisgood <github@madingley.org>2019-05-27 03:43:43 +0100
commit3f2546b2ef55b661fd8dd69682b38992225e86f6 (patch)
tree65ca85f13617aee1dce474596800950f266a456c /target-i386/kvm.c
downloadqemu-3f2546b2ef55b661fd8dd69682b38992225e86f6.tar.gz
qemu-3f2546b2ef55b661fd8dd69682b38992225e86f6.tar.bz2
qemu-3f2546b2ef55b661fd8dd69682b38992225e86f6.zip
Initial import of qemu-2.4.1HEADmaster
Diffstat (limited to 'target-i386/kvm.c')
-rw-r--r--target-i386/kvm.c2923
1 files changed, 2923 insertions, 0 deletions
diff --git a/target-i386/kvm.c b/target-i386/kvm.c
new file mode 100644
index 00000000..066d03d9
--- /dev/null
+++ b/target-i386/kvm.c
@@ -0,0 +1,2923 @@
+/*
+ * QEMU KVM support
+ *
+ * Copyright (C) 2006-2008 Qumranet Technologies
+ * Copyright IBM, Corp. 2008
+ *
+ * Authors:
+ * Anthony Liguori <aliguori@us.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ */
+
+#include <sys/types.h>
+#include <sys/ioctl.h>
+#include <sys/mman.h>
+#include <sys/utsname.h>
+
+#include <linux/kvm.h>
+#include <linux/kvm_para.h>
+
+#include "qemu-common.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/kvm_int.h"
+#include "kvm_i386.h"
+#include "cpu.h"
+#include "exec/gdbstub.h"
+#include "qemu/host-utils.h"
+#include "qemu/config-file.h"
+#include "hw/i386/pc.h"
+#include "hw/i386/apic.h"
+#include "hw/i386/apic_internal.h"
+#include "hw/i386/apic-msidef.h"
+#include "exec/ioport.h"
+#include <asm/hyperv.h>
+#include "hw/pci/pci.h"
+#include "migration/migration.h"
+#include "exec/memattrs.h"
+
+//#define DEBUG_KVM
+
+#ifdef DEBUG_KVM
+#define DPRINTF(fmt, ...) \
+ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
+#else
+#define DPRINTF(fmt, ...) \
+ do { } while (0)
+#endif
+
+#define MSR_KVM_WALL_CLOCK 0x11
+#define MSR_KVM_SYSTEM_TIME 0x12
+
+#ifndef BUS_MCEERR_AR
+#define BUS_MCEERR_AR 4
+#endif
+#ifndef BUS_MCEERR_AO
+#define BUS_MCEERR_AO 5
+#endif
+
+const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
+ KVM_CAP_INFO(SET_TSS_ADDR),
+ KVM_CAP_INFO(EXT_CPUID),
+ KVM_CAP_INFO(MP_STATE),
+ KVM_CAP_LAST_INFO
+};
+
+static bool has_msr_star;
+static bool has_msr_hsave_pa;
+static bool has_msr_tsc_adjust;
+static bool has_msr_tsc_deadline;
+static bool has_msr_feature_control;
+static bool has_msr_async_pf_en;
+static bool has_msr_pv_eoi_en;
+static bool has_msr_misc_enable;
+static bool has_msr_smbase;
+static bool has_msr_bndcfgs;
+static bool has_msr_kvm_steal_time;
+static int lm_capable_kernel;
+static bool has_msr_hv_hypercall;
+static bool has_msr_hv_vapic;
+static bool has_msr_hv_tsc;
+static bool has_msr_mtrr;
+static bool has_msr_xss;
+
+static bool has_msr_architectural_pmu;
+static uint32_t num_architectural_pmu_counters;
+
+bool kvm_has_smm(void)
+{
+ return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
+}
+
+bool kvm_allows_irq0_override(void)
+{
+ return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
+}
+
+static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
+{
+ struct kvm_cpuid2 *cpuid;
+ int r, size;
+
+ size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
+ cpuid = g_malloc0(size);
+ cpuid->nent = max;
+ r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
+ if (r == 0 && cpuid->nent >= max) {
+ r = -E2BIG;
+ }
+ if (r < 0) {
+ if (r == -E2BIG) {
+ g_free(cpuid);
+ return NULL;
+ } else {
+ fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
+ strerror(-r));
+ exit(1);
+ }
+ }
+ return cpuid;
+}
+
+/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
+ * for all entries.
+ */
+static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
+{
+ struct kvm_cpuid2 *cpuid;
+ int max = 1;
+ while ((cpuid = try_get_cpuid(s, max)) == NULL) {
+ max *= 2;
+ }
+ return cpuid;
+}
+
+static const struct kvm_para_features {
+ int cap;
+ int feature;
+} para_features[] = {
+ { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
+ { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
+ { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
+ { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
+};
+
+static int get_para_features(KVMState *s)
+{
+ int i, features = 0;
+
+ for (i = 0; i < ARRAY_SIZE(para_features); i++) {
+ if (kvm_check_extension(s, para_features[i].cap)) {
+ features |= (1 << para_features[i].feature);
+ }
+ }
+
+ return features;
+}
+
+
+/* Returns the value for a specific register on the cpuid entry
+ */
+static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
+{
+ uint32_t ret = 0;
+ switch (reg) {
+ case R_EAX:
+ ret = entry->eax;
+ break;
+ case R_EBX:
+ ret = entry->ebx;
+ break;
+ case R_ECX:
+ ret = entry->ecx;
+ break;
+ case R_EDX:
+ ret = entry->edx;
+ break;
+ }
+ return ret;
+}
+
+/* Find matching entry for function/index on kvm_cpuid2 struct
+ */
+static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
+ uint32_t function,
+ uint32_t index)
+{
+ int i;
+ for (i = 0; i < cpuid->nent; ++i) {
+ if (cpuid->entries[i].function == function &&
+ cpuid->entries[i].index == index) {
+ return &cpuid->entries[i];
+ }
+ }
+ /* not found: */
+ return NULL;
+}
+
+uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
+ uint32_t index, int reg)
+{
+ struct kvm_cpuid2 *cpuid;
+ uint32_t ret = 0;
+ uint32_t cpuid_1_edx;
+ bool found = false;
+
+ cpuid = get_supported_cpuid(s);
+
+ struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
+ if (entry) {
+ found = true;
+ ret = cpuid_entry_get_reg(entry, reg);
+ }
+
+ /* Fixups for the data returned by KVM, below */
+
+ if (function == 1 && reg == R_EDX) {
+ /* KVM before 2.6.30 misreports the following features */
+ ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
+ } else if (function == 1 && reg == R_ECX) {
+ /* We can set the hypervisor flag, even if KVM does not return it on
+ * GET_SUPPORTED_CPUID
+ */
+ ret |= CPUID_EXT_HYPERVISOR;
+ /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
+ * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
+ * and the irqchip is in the kernel.
+ */
+ if (kvm_irqchip_in_kernel() &&
+ kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
+ ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
+ }
+
+ /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
+ * without the in-kernel irqchip
+ */
+ if (!kvm_irqchip_in_kernel()) {
+ ret &= ~CPUID_EXT_X2APIC;
+ }
+ } else if (function == 6 && reg == R_EAX) {
+ ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
+ } else if (function == 0x80000001 && reg == R_EDX) {
+ /* On Intel, kvm returns cpuid according to the Intel spec,
+ * so add missing bits according to the AMD spec:
+ */
+ cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
+ ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
+ }
+
+ g_free(cpuid);
+
+ /* fallback for older kernels */
+ if ((function == KVM_CPUID_FEATURES) && !found) {
+ ret = get_para_features(s);
+ }
+
+ return ret;
+}
+
+typedef struct HWPoisonPage {
+ ram_addr_t ram_addr;
+ QLIST_ENTRY(HWPoisonPage) list;
+} HWPoisonPage;
+
+static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
+ QLIST_HEAD_INITIALIZER(hwpoison_page_list);
+
+static void kvm_unpoison_all(void *param)
+{
+ HWPoisonPage *page, *next_page;
+
+ QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
+ QLIST_REMOVE(page, list);
+ qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
+ g_free(page);
+ }
+}
+
+static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
+{
+ HWPoisonPage *page;
+
+ QLIST_FOREACH(page, &hwpoison_page_list, list) {
+ if (page->ram_addr == ram_addr) {
+ return;
+ }
+ }
+ page = g_new(HWPoisonPage, 1);
+ page->ram_addr = ram_addr;
+ QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
+}
+
+static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
+ int *max_banks)
+{
+ int r;
+
+ r = kvm_check_extension(s, KVM_CAP_MCE);
+ if (r > 0) {
+ *max_banks = r;
+ return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
+ }
+ return -ENOSYS;
+}
+
+static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
+{
+ CPUX86State *env = &cpu->env;
+ uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
+ MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
+ uint64_t mcg_status = MCG_STATUS_MCIP;
+
+ if (code == BUS_MCEERR_AR) {
+ status |= MCI_STATUS_AR | 0x134;
+ mcg_status |= MCG_STATUS_EIPV;
+ } else {
+ status |= 0xc0;
+ mcg_status |= MCG_STATUS_RIPV;
+ }
+ cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
+ (MCM_ADDR_PHYS << 6) | 0xc,
+ cpu_x86_support_mca_broadcast(env) ?
+ MCE_INJECT_BROADCAST : 0);
+}
+
+static void hardware_memory_error(void)
+{
+ fprintf(stderr, "Hardware memory error!\n");
+ exit(1);
+}
+
+int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
+{
+ X86CPU *cpu = X86_CPU(c);
+ CPUX86State *env = &cpu->env;
+ ram_addr_t ram_addr;
+ hwaddr paddr;
+
+ if ((env->mcg_cap & MCG_SER_P) && addr
+ && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
+ if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
+ !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
+ fprintf(stderr, "Hardware memory error for memory used by "
+ "QEMU itself instead of guest system!\n");
+ /* Hope we are lucky for AO MCE */
+ if (code == BUS_MCEERR_AO) {
+ return 0;
+ } else {
+ hardware_memory_error();
+ }
+ }
+ kvm_hwpoison_page_add(ram_addr);
+ kvm_mce_inject(cpu, paddr, code);
+ } else {
+ if (code == BUS_MCEERR_AO) {
+ return 0;
+ } else if (code == BUS_MCEERR_AR) {
+ hardware_memory_error();
+ } else {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+int kvm_arch_on_sigbus(int code, void *addr)
+{
+ X86CPU *cpu = X86_CPU(first_cpu);
+
+ if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
+ ram_addr_t ram_addr;
+ hwaddr paddr;
+
+ /* Hope we are lucky for AO MCE */
+ if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
+ !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
+ addr, &paddr)) {
+ fprintf(stderr, "Hardware memory error for memory used by "
+ "QEMU itself instead of guest system!: %p\n", addr);
+ return 0;
+ }
+ kvm_hwpoison_page_add(ram_addr);
+ kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
+ } else {
+ if (code == BUS_MCEERR_AO) {
+ return 0;
+ } else if (code == BUS_MCEERR_AR) {
+ hardware_memory_error();
+ } else {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+static int kvm_inject_mce_oldstyle(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+
+ if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
+ unsigned int bank, bank_num = env->mcg_cap & 0xff;
+ struct kvm_x86_mce mce;
+
+ env->exception_injected = -1;
+
+ /*
+ * There must be at least one bank in use if an MCE is pending.
+ * Find it and use its values for the event injection.
+ */
+ for (bank = 0; bank < bank_num; bank++) {
+ if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
+ break;
+ }
+ }
+ assert(bank < bank_num);
+
+ mce.bank = bank;
+ mce.status = env->mce_banks[bank * 4 + 1];
+ mce.mcg_status = env->mcg_status;
+ mce.addr = env->mce_banks[bank * 4 + 2];
+ mce.misc = env->mce_banks[bank * 4 + 3];
+
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
+ }
+ return 0;
+}
+
+static void cpu_update_state(void *opaque, int running, RunState state)
+{
+ CPUX86State *env = opaque;
+
+ if (running) {
+ env->tsc_valid = false;
+ }
+}
+
+unsigned long kvm_arch_vcpu_id(CPUState *cs)
+{
+ X86CPU *cpu = X86_CPU(cs);
+ return cpu->apic_id;
+}
+
+#ifndef KVM_CPUID_SIGNATURE_NEXT
+#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
+#endif
+
+static bool hyperv_hypercall_available(X86CPU *cpu)
+{
+ return cpu->hyperv_vapic ||
+ (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
+}
+
+static bool hyperv_enabled(X86CPU *cpu)
+{
+ CPUState *cs = CPU(cpu);
+ return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
+ (hyperv_hypercall_available(cpu) ||
+ cpu->hyperv_time ||
+ cpu->hyperv_relaxed_timing);
+}
+
+static Error *invtsc_mig_blocker;
+
+#define KVM_MAX_CPUID_ENTRIES 100
+
+int kvm_arch_init_vcpu(CPUState *cs)
+{
+ struct {
+ struct kvm_cpuid2 cpuid;
+ struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
+ } QEMU_PACKED cpuid_data;
+ X86CPU *cpu = X86_CPU(cs);
+ CPUX86State *env = &cpu->env;
+ uint32_t limit, i, j, cpuid_i;
+ uint32_t unused;
+ struct kvm_cpuid_entry2 *c;
+ uint32_t signature[3];
+ int kvm_base = KVM_CPUID_SIGNATURE;
+ int r;
+
+ memset(&cpuid_data, 0, sizeof(cpuid_data));
+
+ cpuid_i = 0;
+
+ /* Paravirtualization CPUIDs */
+ if (hyperv_enabled(cpu)) {
+ c = &cpuid_data.entries[cpuid_i++];
+ c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
+ memcpy(signature, "Microsoft Hv", 12);
+ c->eax = HYPERV_CPUID_MIN;
+ c->ebx = signature[0];
+ c->ecx = signature[1];
+ c->edx = signature[2];
+
+ c = &cpuid_data.entries[cpuid_i++];
+ c->function = HYPERV_CPUID_INTERFACE;
+ memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
+ c->eax = signature[0];
+ c->ebx = 0;
+ c->ecx = 0;
+ c->edx = 0;
+
+ c = &cpuid_data.entries[cpuid_i++];
+ c->function = HYPERV_CPUID_VERSION;
+ c->eax = 0x00001bbc;
+ c->ebx = 0x00060001;
+
+ c = &cpuid_data.entries[cpuid_i++];
+ c->function = HYPERV_CPUID_FEATURES;
+ if (cpu->hyperv_relaxed_timing) {
+ c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
+ }
+ if (cpu->hyperv_vapic) {
+ c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
+ c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
+ has_msr_hv_vapic = true;
+ }
+ if (cpu->hyperv_time &&
+ kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
+ c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
+ c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
+ c->eax |= 0x200;
+ has_msr_hv_tsc = true;
+ }
+ c = &cpuid_data.entries[cpuid_i++];
+ c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
+ if (cpu->hyperv_relaxed_timing) {
+ c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
+ }
+ if (has_msr_hv_vapic) {
+ c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
+ }
+ c->ebx = cpu->hyperv_spinlock_attempts;
+
+ c = &cpuid_data.entries[cpuid_i++];
+ c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
+ c->eax = 0x40;
+ c->ebx = 0x40;
+
+ kvm_base = KVM_CPUID_SIGNATURE_NEXT;
+ has_msr_hv_hypercall = true;
+ }
+
+ if (cpu->expose_kvm) {
+ memcpy(signature, "KVMKVMKVM\0\0\0", 12);
+ c = &cpuid_data.entries[cpuid_i++];
+ c->function = KVM_CPUID_SIGNATURE | kvm_base;
+ c->eax = KVM_CPUID_FEATURES | kvm_base;
+ c->ebx = signature[0];
+ c->ecx = signature[1];
+ c->edx = signature[2];
+
+ c = &cpuid_data.entries[cpuid_i++];
+ c->function = KVM_CPUID_FEATURES | kvm_base;
+ c->eax = env->features[FEAT_KVM];
+
+ has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
+
+ has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
+
+ has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
+ }
+
+ cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
+
+ for (i = 0; i <= limit; i++) {
+ if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
+ fprintf(stderr, "unsupported level value: 0x%x\n", limit);
+ abort();
+ }
+ c = &cpuid_data.entries[cpuid_i++];
+
+ switch (i) {
+ case 2: {
+ /* Keep reading function 2 till all the input is received */
+ int times;
+
+ c->function = i;
+ c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
+ KVM_CPUID_FLAG_STATE_READ_NEXT;
+ cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
+ times = c->eax & 0xff;
+
+ for (j = 1; j < times; ++j) {
+ if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
+ fprintf(stderr, "cpuid_data is full, no space for "
+ "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
+ abort();
+ }
+ c = &cpuid_data.entries[cpuid_i++];
+ c->function = i;
+ c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
+ cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
+ }
+ break;
+ }
+ case 4:
+ case 0xb:
+ case 0xd:
+ for (j = 0; ; j++) {
+ if (i == 0xd && j == 64) {
+ break;
+ }
+ c->function = i;
+ c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+ c->index = j;
+ cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
+
+ if (i == 4 && c->eax == 0) {
+ break;
+ }
+ if (i == 0xb && !(c->ecx & 0xff00)) {
+ break;
+ }
+ if (i == 0xd && c->eax == 0) {
+ continue;
+ }
+ if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
+ fprintf(stderr, "cpuid_data is full, no space for "
+ "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
+ abort();
+ }
+ c = &cpuid_data.entries[cpuid_i++];
+ }
+ break;
+ default:
+ c->function = i;
+ c->flags = 0;
+ cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
+ break;
+ }
+ }
+
+ if (limit >= 0x0a) {
+ uint32_t ver;
+
+ cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
+ if ((ver & 0xff) > 0) {
+ has_msr_architectural_pmu = true;
+ num_architectural_pmu_counters = (ver & 0xff00) >> 8;
+
+ /* Shouldn't be more than 32, since that's the number of bits
+ * available in EBX to tell us _which_ counters are available.
+ * Play it safe.
+ */
+ if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
+ num_architectural_pmu_counters = MAX_GP_COUNTERS;
+ }
+ }
+ }
+
+ cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
+
+ for (i = 0x80000000; i <= limit; i++) {
+ if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
+ fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
+ abort();
+ }
+ c = &cpuid_data.entries[cpuid_i++];
+
+ c->function = i;
+ c->flags = 0;
+ cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
+ }
+
+ /* Call Centaur's CPUID instructions they are supported. */
+ if (env->cpuid_xlevel2 > 0) {
+ cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
+
+ for (i = 0xC0000000; i <= limit; i++) {
+ if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
+ fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
+ abort();
+ }
+ c = &cpuid_data.entries[cpuid_i++];
+
+ c->function = i;
+ c->flags = 0;
+ cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
+ }
+ }
+
+ cpuid_data.cpuid.nent = cpuid_i;
+
+ if (((env->cpuid_version >> 8)&0xF) >= 6
+ && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
+ (CPUID_MCE | CPUID_MCA)
+ && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
+ uint64_t mcg_cap;
+ int banks;
+ int ret;
+
+ ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
+ if (ret < 0) {
+ fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
+ return ret;
+ }
+
+ if (banks > MCE_BANKS_DEF) {
+ banks = MCE_BANKS_DEF;
+ }
+ mcg_cap &= MCE_CAP_DEF;
+ mcg_cap |= banks;
+ ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
+ if (ret < 0) {
+ fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
+ return ret;
+ }
+
+ env->mcg_cap = mcg_cap;
+ }
+
+ qemu_add_vm_change_state_handler(cpu_update_state, env);
+
+ c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
+ if (c) {
+ has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
+ !!(c->ecx & CPUID_EXT_SMX);
+ }
+
+ c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0);
+ if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) {
+ /* for migration */
+ error_setg(&invtsc_mig_blocker,
+ "State blocked by non-migratable CPU device"
+ " (invtsc flag)");
+ migrate_add_blocker(invtsc_mig_blocker);
+ /* for savevm */
+ vmstate_x86_cpu.unmigratable = 1;
+ }
+
+ cpuid_data.cpuid.padding = 0;
+ r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
+ if (r) {
+ return r;
+ }
+
+ r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
+ if (r && env->tsc_khz) {
+ r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
+ if (r < 0) {
+ fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
+ return r;
+ }
+ }
+
+ if (kvm_has_xsave()) {
+ env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
+ }
+
+ if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
+ has_msr_mtrr = true;
+ }
+
+ return 0;
+}
+
+void kvm_arch_reset_vcpu(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+
+ env->exception_injected = -1;
+ env->interrupt_injected = -1;
+ env->xcr0 = 1;
+ if (kvm_irqchip_in_kernel()) {
+ env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
+ KVM_MP_STATE_UNINITIALIZED;
+ } else {
+ env->mp_state = KVM_MP_STATE_RUNNABLE;
+ }
+}
+
+void kvm_arch_do_init_vcpu(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+
+ /* APs get directly into wait-for-SIPI state. */
+ if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
+ env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
+ }
+}
+
+static int kvm_get_supported_msrs(KVMState *s)
+{
+ static int kvm_supported_msrs;
+ int ret = 0;
+
+ /* first time */
+ if (kvm_supported_msrs == 0) {
+ struct kvm_msr_list msr_list, *kvm_msr_list;
+
+ kvm_supported_msrs = -1;
+
+ /* Obtain MSR list from KVM. These are the MSRs that we must
+ * save/restore */
+ msr_list.nmsrs = 0;
+ ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
+ if (ret < 0 && ret != -E2BIG) {
+ return ret;
+ }
+ /* Old kernel modules had a bug and could write beyond the provided
+ memory. Allocate at least a safe amount of 1K. */
+ kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
+ msr_list.nmsrs *
+ sizeof(msr_list.indices[0])));
+
+ kvm_msr_list->nmsrs = msr_list.nmsrs;
+ ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
+ if (ret >= 0) {
+ int i;
+
+ for (i = 0; i < kvm_msr_list->nmsrs; i++) {
+ if (kvm_msr_list->indices[i] == MSR_STAR) {
+ has_msr_star = true;
+ continue;
+ }
+ if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
+ has_msr_hsave_pa = true;
+ continue;
+ }
+ if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
+ has_msr_tsc_adjust = true;
+ continue;
+ }
+ if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
+ has_msr_tsc_deadline = true;
+ continue;
+ }
+ if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) {
+ has_msr_smbase = true;
+ continue;
+ }
+ if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
+ has_msr_misc_enable = true;
+ continue;
+ }
+ if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
+ has_msr_bndcfgs = true;
+ continue;
+ }
+ if (kvm_msr_list->indices[i] == MSR_IA32_XSS) {
+ has_msr_xss = true;
+ continue;
+ }
+ }
+ }
+
+ g_free(kvm_msr_list);
+ }
+
+ return ret;
+}
+
+static Notifier smram_machine_done;
+static KVMMemoryListener smram_listener;
+static AddressSpace smram_address_space;
+static MemoryRegion smram_as_root;
+static MemoryRegion smram_as_mem;
+
+static void register_smram_listener(Notifier *n, void *unused)
+{
+ MemoryRegion *smram =
+ (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
+
+ /* Outer container... */
+ memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
+ memory_region_set_enabled(&smram_as_root, true);
+
+ /* ... with two regions inside: normal system memory with low
+ * priority, and...
+ */
+ memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
+ get_system_memory(), 0, ~0ull);
+ memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
+ memory_region_set_enabled(&smram_as_mem, true);
+
+ if (smram) {
+ /* ... SMRAM with higher priority */
+ memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
+ memory_region_set_enabled(smram, true);
+ }
+
+ address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
+ kvm_memory_listener_register(kvm_state, &smram_listener,
+ &smram_address_space, 1);
+}
+
+int kvm_arch_init(MachineState *ms, KVMState *s)
+{
+ uint64_t identity_base = 0xfffbc000;
+ uint64_t shadow_mem;
+ int ret;
+ struct utsname utsname;
+
+ ret = kvm_get_supported_msrs(s);
+ if (ret < 0) {
+ return ret;
+ }
+
+ uname(&utsname);
+ lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
+
+ /*
+ * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
+ * In order to use vm86 mode, an EPT identity map and a TSS are needed.
+ * Since these must be part of guest physical memory, we need to allocate
+ * them, both by setting their start addresses in the kernel and by
+ * creating a corresponding e820 entry. We need 4 pages before the BIOS.
+ *
+ * Older KVM versions may not support setting the identity map base. In
+ * that case we need to stick with the default, i.e. a 256K maximum BIOS
+ * size.
+ */
+ if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
+ /* Allows up to 16M BIOSes. */
+ identity_base = 0xfeffc000;
+
+ ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
+ if (ret < 0) {
+ return ret;
+ }
+ }
+
+ /* Set TSS base one page after EPT identity map. */
+ ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* Tell fw_cfg to notify the BIOS to reserve the range. */
+ ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
+ if (ret < 0) {
+ fprintf(stderr, "e820_add_entry() table is full\n");
+ return ret;
+ }
+ qemu_register_reset(kvm_unpoison_all, NULL);
+
+ shadow_mem = machine_kvm_shadow_mem(ms);
+ if (shadow_mem != -1) {
+ shadow_mem /= 4096;
+ ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
+ if (ret < 0) {
+ return ret;
+ }
+ }
+
+ if (kvm_check_extension(s, KVM_CAP_X86_SMM)) {
+ smram_machine_done.notify = register_smram_listener;
+ qemu_add_machine_init_done_notifier(&smram_machine_done);
+ }
+ return 0;
+}
+
+static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
+{
+ lhs->selector = rhs->selector;
+ lhs->base = rhs->base;
+ lhs->limit = rhs->limit;
+ lhs->type = 3;
+ lhs->present = 1;
+ lhs->dpl = 3;
+ lhs->db = 0;
+ lhs->s = 1;
+ lhs->l = 0;
+ lhs->g = 0;
+ lhs->avl = 0;
+ lhs->unusable = 0;
+}
+
+static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
+{
+ unsigned flags = rhs->flags;
+ lhs->selector = rhs->selector;
+ lhs->base = rhs->base;
+ lhs->limit = rhs->limit;
+ lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
+ lhs->present = (flags & DESC_P_MASK) != 0;
+ lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
+ lhs->db = (flags >> DESC_B_SHIFT) & 1;
+ lhs->s = (flags & DESC_S_MASK) != 0;
+ lhs->l = (flags >> DESC_L_SHIFT) & 1;
+ lhs->g = (flags & DESC_G_MASK) != 0;
+ lhs->avl = (flags & DESC_AVL_MASK) != 0;
+ lhs->unusable = 0;
+ lhs->padding = 0;
+}
+
+static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
+{
+ lhs->selector = rhs->selector;
+ lhs->base = rhs->base;
+ lhs->limit = rhs->limit;
+ lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
+ (rhs->present * DESC_P_MASK) |
+ (rhs->dpl << DESC_DPL_SHIFT) |
+ (rhs->db << DESC_B_SHIFT) |
+ (rhs->s * DESC_S_MASK) |
+ (rhs->l << DESC_L_SHIFT) |
+ (rhs->g * DESC_G_MASK) |
+ (rhs->avl * DESC_AVL_MASK);
+}
+
+static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
+{
+ if (set) {
+ *kvm_reg = *qemu_reg;
+ } else {
+ *qemu_reg = *kvm_reg;
+ }
+}
+
+static int kvm_getput_regs(X86CPU *cpu, int set)
+{
+ CPUX86State *env = &cpu->env;
+ struct kvm_regs regs;
+ int ret = 0;
+
+ if (!set) {
+ ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
+ if (ret < 0) {
+ return ret;
+ }
+ }
+
+ kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
+ kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
+ kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
+ kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
+ kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
+ kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
+ kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
+ kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
+#ifdef TARGET_X86_64
+ kvm_getput_reg(&regs.r8, &env->regs[8], set);
+ kvm_getput_reg(&regs.r9, &env->regs[9], set);
+ kvm_getput_reg(&regs.r10, &env->regs[10], set);
+ kvm_getput_reg(&regs.r11, &env->regs[11], set);
+ kvm_getput_reg(&regs.r12, &env->regs[12], set);
+ kvm_getput_reg(&regs.r13, &env->regs[13], set);
+ kvm_getput_reg(&regs.r14, &env->regs[14], set);
+ kvm_getput_reg(&regs.r15, &env->regs[15], set);
+#endif
+
+ kvm_getput_reg(&regs.rflags, &env->eflags, set);
+ kvm_getput_reg(&regs.rip, &env->eip, set);
+
+ if (set) {
+ ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
+ }
+
+ return ret;
+}
+
+static int kvm_put_fpu(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+ struct kvm_fpu fpu;
+ int i;
+
+ memset(&fpu, 0, sizeof fpu);
+ fpu.fsw = env->fpus & ~(7 << 11);
+ fpu.fsw |= (env->fpstt & 7) << 11;
+ fpu.fcw = env->fpuc;
+ fpu.last_opcode = env->fpop;
+ fpu.last_ip = env->fpip;
+ fpu.last_dp = env->fpdp;
+ for (i = 0; i < 8; ++i) {
+ fpu.ftwx |= (!env->fptags[i]) << i;
+ }
+ memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
+ for (i = 0; i < CPU_NB_REGS; i++) {
+ stq_p(&fpu.xmm[i][0], env->xmm_regs[i].XMM_Q(0));
+ stq_p(&fpu.xmm[i][8], env->xmm_regs[i].XMM_Q(1));
+ }
+ fpu.mxcsr = env->mxcsr;
+
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
+}
+
+#define XSAVE_FCW_FSW 0
+#define XSAVE_FTW_FOP 1
+#define XSAVE_CWD_RIP 2
+#define XSAVE_CWD_RDP 4
+#define XSAVE_MXCSR 6
+#define XSAVE_ST_SPACE 8
+#define XSAVE_XMM_SPACE 40
+#define XSAVE_XSTATE_BV 128
+#define XSAVE_YMMH_SPACE 144
+#define XSAVE_BNDREGS 240
+#define XSAVE_BNDCSR 256
+#define XSAVE_OPMASK 272
+#define XSAVE_ZMM_Hi256 288
+#define XSAVE_Hi16_ZMM 416
+
+static int kvm_put_xsave(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+ struct kvm_xsave* xsave = env->kvm_xsave_buf;
+ uint16_t cwd, swd, twd;
+ uint8_t *xmm, *ymmh, *zmmh;
+ int i, r;
+
+ if (!kvm_has_xsave()) {
+ return kvm_put_fpu(cpu);
+ }
+
+ memset(xsave, 0, sizeof(struct kvm_xsave));
+ twd = 0;
+ swd = env->fpus & ~(7 << 11);
+ swd |= (env->fpstt & 7) << 11;
+ cwd = env->fpuc;
+ for (i = 0; i < 8; ++i) {
+ twd |= (!env->fptags[i]) << i;
+ }
+ xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
+ xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
+ memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
+ memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
+ memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
+ sizeof env->fpregs);
+ xsave->region[XSAVE_MXCSR] = env->mxcsr;
+ *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
+ memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
+ sizeof env->bnd_regs);
+ memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
+ sizeof(env->bndcs_regs));
+ memcpy(&xsave->region[XSAVE_OPMASK], env->opmask_regs,
+ sizeof env->opmask_regs);
+
+ xmm = (uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
+ ymmh = (uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
+ zmmh = (uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
+ for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
+ stq_p(xmm, env->xmm_regs[i].XMM_Q(0));
+ stq_p(xmm+8, env->xmm_regs[i].XMM_Q(1));
+ stq_p(ymmh, env->xmm_regs[i].XMM_Q(2));
+ stq_p(ymmh+8, env->xmm_regs[i].XMM_Q(3));
+ stq_p(zmmh, env->xmm_regs[i].XMM_Q(4));
+ stq_p(zmmh+8, env->xmm_regs[i].XMM_Q(5));
+ stq_p(zmmh+16, env->xmm_regs[i].XMM_Q(6));
+ stq_p(zmmh+24, env->xmm_regs[i].XMM_Q(7));
+ }
+
+#ifdef TARGET_X86_64
+ memcpy(&xsave->region[XSAVE_Hi16_ZMM], &env->xmm_regs[16],
+ 16 * sizeof env->xmm_regs[16]);
+#endif
+ r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
+ return r;
+}
+
+static int kvm_put_xcrs(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+ struct kvm_xcrs xcrs = {};
+
+ if (!kvm_has_xcrs()) {
+ return 0;
+ }
+
+ xcrs.nr_xcrs = 1;
+ xcrs.flags = 0;
+ xcrs.xcrs[0].xcr = 0;
+ xcrs.xcrs[0].value = env->xcr0;
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
+}
+
+static int kvm_put_sregs(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+ struct kvm_sregs sregs;
+
+ memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
+ if (env->interrupt_injected >= 0) {
+ sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
+ (uint64_t)1 << (env->interrupt_injected % 64);
+ }
+
+ if ((env->eflags & VM_MASK)) {
+ set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
+ set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
+ set_v8086_seg(&sregs.es, &env->segs[R_ES]);
+ set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
+ set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
+ set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
+ } else {
+ set_seg(&sregs.cs, &env->segs[R_CS]);
+ set_seg(&sregs.ds, &env->segs[R_DS]);
+ set_seg(&sregs.es, &env->segs[R_ES]);
+ set_seg(&sregs.fs, &env->segs[R_FS]);
+ set_seg(&sregs.gs, &env->segs[R_GS]);
+ set_seg(&sregs.ss, &env->segs[R_SS]);
+ }
+
+ set_seg(&sregs.tr, &env->tr);
+ set_seg(&sregs.ldt, &env->ldt);
+
+ sregs.idt.limit = env->idt.limit;
+ sregs.idt.base = env->idt.base;
+ memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
+ sregs.gdt.limit = env->gdt.limit;
+ sregs.gdt.base = env->gdt.base;
+ memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
+
+ sregs.cr0 = env->cr[0];
+ sregs.cr2 = env->cr[2];
+ sregs.cr3 = env->cr[3];
+ sregs.cr4 = env->cr[4];
+
+ sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
+ sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
+
+ sregs.efer = env->efer;
+
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
+}
+
+static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
+ uint32_t index, uint64_t value)
+{
+ entry->index = index;
+ entry->reserved = 0;
+ entry->data = value;
+}
+
+static int kvm_put_tscdeadline_msr(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+ struct {
+ struct kvm_msrs info;
+ struct kvm_msr_entry entries[1];
+ } msr_data;
+ struct kvm_msr_entry *msrs = msr_data.entries;
+
+ if (!has_msr_tsc_deadline) {
+ return 0;
+ }
+
+ kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
+
+ msr_data.info = (struct kvm_msrs) {
+ .nmsrs = 1,
+ };
+
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
+}
+
+/*
+ * Provide a separate write service for the feature control MSR in order to
+ * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
+ * before writing any other state because forcibly leaving nested mode
+ * invalidates the VCPU state.
+ */
+static int kvm_put_msr_feature_control(X86CPU *cpu)
+{
+ struct {
+ struct kvm_msrs info;
+ struct kvm_msr_entry entry;
+ } msr_data;
+
+ kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
+ cpu->env.msr_ia32_feature_control);
+
+ msr_data.info = (struct kvm_msrs) {
+ .nmsrs = 1,
+ };
+
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
+}
+
+static int kvm_put_msrs(X86CPU *cpu, int level)
+{
+ CPUX86State *env = &cpu->env;
+ struct {
+ struct kvm_msrs info;
+ struct kvm_msr_entry entries[150];
+ } msr_data;
+ struct kvm_msr_entry *msrs = msr_data.entries;
+ int n = 0, i;
+
+ kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
+ kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
+ kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
+ kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
+ if (has_msr_star) {
+ kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
+ }
+ if (has_msr_hsave_pa) {
+ kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
+ }
+ if (has_msr_tsc_adjust) {
+ kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
+ }
+ if (has_msr_misc_enable) {
+ kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
+ env->msr_ia32_misc_enable);
+ }
+ if (has_msr_smbase) {
+ kvm_msr_entry_set(&msrs[n++], MSR_IA32_SMBASE, env->smbase);
+ }
+ if (has_msr_bndcfgs) {
+ kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
+ }
+ if (has_msr_xss) {
+ kvm_msr_entry_set(&msrs[n++], MSR_IA32_XSS, env->xss);
+ }
+#ifdef TARGET_X86_64
+ if (lm_capable_kernel) {
+ kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
+ kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
+ kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
+ kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
+ }
+#endif
+ /*
+ * The following MSRs have side effects on the guest or are too heavy
+ * for normal writeback. Limit them to reset or full state updates.
+ */
+ if (level >= KVM_PUT_RESET_STATE) {
+ kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
+ kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
+ env->system_time_msr);
+ kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
+ if (has_msr_async_pf_en) {
+ kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
+ env->async_pf_en_msr);
+ }
+ if (has_msr_pv_eoi_en) {
+ kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
+ env->pv_eoi_en_msr);
+ }
+ if (has_msr_kvm_steal_time) {
+ kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
+ env->steal_time_msr);
+ }
+ if (has_msr_architectural_pmu) {
+ /* Stop the counter. */
+ kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
+ kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
+
+ /* Set the counter values. */
+ for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
+ kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
+ env->msr_fixed_counters[i]);
+ }
+ for (i = 0; i < num_architectural_pmu_counters; i++) {
+ kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
+ env->msr_gp_counters[i]);
+ kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
+ env->msr_gp_evtsel[i]);
+ }
+ kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
+ env->msr_global_status);
+ kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
+ env->msr_global_ovf_ctrl);
+
+ /* Now start the PMU. */
+ kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
+ env->msr_fixed_ctr_ctrl);
+ kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
+ env->msr_global_ctrl);
+ }
+ if (has_msr_hv_hypercall) {
+ kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
+ env->msr_hv_guest_os_id);
+ kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
+ env->msr_hv_hypercall);
+ }
+ if (has_msr_hv_vapic) {
+ kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE,
+ env->msr_hv_vapic);
+ }
+ if (has_msr_hv_tsc) {
+ kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC,
+ env->msr_hv_tsc);
+ }
+ if (has_msr_mtrr) {
+ kvm_msr_entry_set(&msrs[n++], MSR_MTRRdefType, env->mtrr_deftype);
+ kvm_msr_entry_set(&msrs[n++],
+ MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
+ kvm_msr_entry_set(&msrs[n++],
+ MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
+ kvm_msr_entry_set(&msrs[n++],
+ MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
+ kvm_msr_entry_set(&msrs[n++],
+ MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
+ kvm_msr_entry_set(&msrs[n++],
+ MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
+ kvm_msr_entry_set(&msrs[n++],
+ MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
+ kvm_msr_entry_set(&msrs[n++],
+ MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
+ kvm_msr_entry_set(&msrs[n++],
+ MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
+ kvm_msr_entry_set(&msrs[n++],
+ MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
+ kvm_msr_entry_set(&msrs[n++],
+ MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
+ kvm_msr_entry_set(&msrs[n++],
+ MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
+ for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
+ kvm_msr_entry_set(&msrs[n++],
+ MSR_MTRRphysBase(i), env->mtrr_var[i].base);
+ kvm_msr_entry_set(&msrs[n++],
+ MSR_MTRRphysMask(i), env->mtrr_var[i].mask);
+ }
+ }
+
+ /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
+ * kvm_put_msr_feature_control. */
+ }
+ if (env->mcg_cap) {
+ int i;
+
+ kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
+ kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
+ for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
+ kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
+ }
+ }
+
+ msr_data.info = (struct kvm_msrs) {
+ .nmsrs = n,
+ };
+
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
+
+}
+
+
+static int kvm_get_fpu(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+ struct kvm_fpu fpu;
+ int i, ret;
+
+ ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
+ if (ret < 0) {
+ return ret;
+ }
+
+ env->fpstt = (fpu.fsw >> 11) & 7;
+ env->fpus = fpu.fsw;
+ env->fpuc = fpu.fcw;
+ env->fpop = fpu.last_opcode;
+ env->fpip = fpu.last_ip;
+ env->fpdp = fpu.last_dp;
+ for (i = 0; i < 8; ++i) {
+ env->fptags[i] = !((fpu.ftwx >> i) & 1);
+ }
+ memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
+ for (i = 0; i < CPU_NB_REGS; i++) {
+ env->xmm_regs[i].XMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
+ env->xmm_regs[i].XMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
+ }
+ env->mxcsr = fpu.mxcsr;
+
+ return 0;
+}
+
+static int kvm_get_xsave(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+ struct kvm_xsave* xsave = env->kvm_xsave_buf;
+ int ret, i;
+ const uint8_t *xmm, *ymmh, *zmmh;
+ uint16_t cwd, swd, twd;
+
+ if (!kvm_has_xsave()) {
+ return kvm_get_fpu(cpu);
+ }
+
+ ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
+ if (ret < 0) {
+ return ret;
+ }
+
+ cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
+ swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
+ twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
+ env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
+ env->fpstt = (swd >> 11) & 7;
+ env->fpus = swd;
+ env->fpuc = cwd;
+ for (i = 0; i < 8; ++i) {
+ env->fptags[i] = !((twd >> i) & 1);
+ }
+ memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
+ memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
+ env->mxcsr = xsave->region[XSAVE_MXCSR];
+ memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
+ sizeof env->fpregs);
+ env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
+ memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
+ sizeof env->bnd_regs);
+ memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
+ sizeof(env->bndcs_regs));
+ memcpy(env->opmask_regs, &xsave->region[XSAVE_OPMASK],
+ sizeof env->opmask_regs);
+
+ xmm = (const uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
+ ymmh = (const uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
+ zmmh = (const uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
+ for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
+ env->xmm_regs[i].XMM_Q(0) = ldq_p(xmm);
+ env->xmm_regs[i].XMM_Q(1) = ldq_p(xmm+8);
+ env->xmm_regs[i].XMM_Q(2) = ldq_p(ymmh);
+ env->xmm_regs[i].XMM_Q(3) = ldq_p(ymmh+8);
+ env->xmm_regs[i].XMM_Q(4) = ldq_p(zmmh);
+ env->xmm_regs[i].XMM_Q(5) = ldq_p(zmmh+8);
+ env->xmm_regs[i].XMM_Q(6) = ldq_p(zmmh+16);
+ env->xmm_regs[i].XMM_Q(7) = ldq_p(zmmh+24);
+ }
+
+#ifdef TARGET_X86_64
+ memcpy(&env->xmm_regs[16], &xsave->region[XSAVE_Hi16_ZMM],
+ 16 * sizeof env->xmm_regs[16]);
+#endif
+ return 0;
+}
+
+static int kvm_get_xcrs(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+ int i, ret;
+ struct kvm_xcrs xcrs;
+
+ if (!kvm_has_xcrs()) {
+ return 0;
+ }
+
+ ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
+ if (ret < 0) {
+ return ret;
+ }
+
+ for (i = 0; i < xcrs.nr_xcrs; i++) {
+ /* Only support xcr0 now */
+ if (xcrs.xcrs[i].xcr == 0) {
+ env->xcr0 = xcrs.xcrs[i].value;
+ break;
+ }
+ }
+ return 0;
+}
+
+static int kvm_get_sregs(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+ struct kvm_sregs sregs;
+ uint32_t hflags;
+ int bit, i, ret;
+
+ ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* There can only be one pending IRQ set in the bitmap at a time, so try
+ to find it and save its number instead (-1 for none). */
+ env->interrupt_injected = -1;
+ for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
+ if (sregs.interrupt_bitmap[i]) {
+ bit = ctz64(sregs.interrupt_bitmap[i]);
+ env->interrupt_injected = i * 64 + bit;
+ break;
+ }
+ }
+
+ get_seg(&env->segs[R_CS], &sregs.cs);
+ get_seg(&env->segs[R_DS], &sregs.ds);
+ get_seg(&env->segs[R_ES], &sregs.es);
+ get_seg(&env->segs[R_FS], &sregs.fs);
+ get_seg(&env->segs[R_GS], &sregs.gs);
+ get_seg(&env->segs[R_SS], &sregs.ss);
+
+ get_seg(&env->tr, &sregs.tr);
+ get_seg(&env->ldt, &sregs.ldt);
+
+ env->idt.limit = sregs.idt.limit;
+ env->idt.base = sregs.idt.base;
+ env->gdt.limit = sregs.gdt.limit;
+ env->gdt.base = sregs.gdt.base;
+
+ env->cr[0] = sregs.cr0;
+ env->cr[2] = sregs.cr2;
+ env->cr[3] = sregs.cr3;
+ env->cr[4] = sregs.cr4;
+
+ env->efer = sregs.efer;
+
+ /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
+
+#define HFLAG_COPY_MASK \
+ ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
+ HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
+ HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
+ HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
+
+ hflags = (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
+ hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
+ hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
+ (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
+ hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
+ hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
+ (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
+
+ if (env->efer & MSR_EFER_LMA) {
+ hflags |= HF_LMA_MASK;
+ }
+
+ if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
+ hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
+ } else {
+ hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
+ (DESC_B_SHIFT - HF_CS32_SHIFT);
+ hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
+ (DESC_B_SHIFT - HF_SS32_SHIFT);
+ if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
+ !(hflags & HF_CS32_MASK)) {
+ hflags |= HF_ADDSEG_MASK;
+ } else {
+ hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
+ env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
+ }
+ }
+ env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
+
+ return 0;
+}
+
+static int kvm_get_msrs(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+ struct {
+ struct kvm_msrs info;
+ struct kvm_msr_entry entries[150];
+ } msr_data;
+ struct kvm_msr_entry *msrs = msr_data.entries;
+ int ret, i, n;
+
+ n = 0;
+ msrs[n++].index = MSR_IA32_SYSENTER_CS;
+ msrs[n++].index = MSR_IA32_SYSENTER_ESP;
+ msrs[n++].index = MSR_IA32_SYSENTER_EIP;
+ msrs[n++].index = MSR_PAT;
+ if (has_msr_star) {
+ msrs[n++].index = MSR_STAR;
+ }
+ if (has_msr_hsave_pa) {
+ msrs[n++].index = MSR_VM_HSAVE_PA;
+ }
+ if (has_msr_tsc_adjust) {
+ msrs[n++].index = MSR_TSC_ADJUST;
+ }
+ if (has_msr_tsc_deadline) {
+ msrs[n++].index = MSR_IA32_TSCDEADLINE;
+ }
+ if (has_msr_misc_enable) {
+ msrs[n++].index = MSR_IA32_MISC_ENABLE;
+ }
+ if (has_msr_smbase) {
+ msrs[n++].index = MSR_IA32_SMBASE;
+ }
+ if (has_msr_feature_control) {
+ msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
+ }
+ if (has_msr_bndcfgs) {
+ msrs[n++].index = MSR_IA32_BNDCFGS;
+ }
+ if (has_msr_xss) {
+ msrs[n++].index = MSR_IA32_XSS;
+ }
+
+
+ if (!env->tsc_valid) {
+ msrs[n++].index = MSR_IA32_TSC;
+ env->tsc_valid = !runstate_is_running();
+ }
+
+#ifdef TARGET_X86_64
+ if (lm_capable_kernel) {
+ msrs[n++].index = MSR_CSTAR;
+ msrs[n++].index = MSR_KERNELGSBASE;
+ msrs[n++].index = MSR_FMASK;
+ msrs[n++].index = MSR_LSTAR;
+ }
+#endif
+ msrs[n++].index = MSR_KVM_SYSTEM_TIME;
+ msrs[n++].index = MSR_KVM_WALL_CLOCK;
+ if (has_msr_async_pf_en) {
+ msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
+ }
+ if (has_msr_pv_eoi_en) {
+ msrs[n++].index = MSR_KVM_PV_EOI_EN;
+ }
+ if (has_msr_kvm_steal_time) {
+ msrs[n++].index = MSR_KVM_STEAL_TIME;
+ }
+ if (has_msr_architectural_pmu) {
+ msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
+ msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
+ msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
+ msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
+ for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
+ msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
+ }
+ for (i = 0; i < num_architectural_pmu_counters; i++) {
+ msrs[n++].index = MSR_P6_PERFCTR0 + i;
+ msrs[n++].index = MSR_P6_EVNTSEL0 + i;
+ }
+ }
+
+ if (env->mcg_cap) {
+ msrs[n++].index = MSR_MCG_STATUS;
+ msrs[n++].index = MSR_MCG_CTL;
+ for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
+ msrs[n++].index = MSR_MC0_CTL + i;
+ }
+ }
+
+ if (has_msr_hv_hypercall) {
+ msrs[n++].index = HV_X64_MSR_HYPERCALL;
+ msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
+ }
+ if (has_msr_hv_vapic) {
+ msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE;
+ }
+ if (has_msr_hv_tsc) {
+ msrs[n++].index = HV_X64_MSR_REFERENCE_TSC;
+ }
+ if (has_msr_mtrr) {
+ msrs[n++].index = MSR_MTRRdefType;
+ msrs[n++].index = MSR_MTRRfix64K_00000;
+ msrs[n++].index = MSR_MTRRfix16K_80000;
+ msrs[n++].index = MSR_MTRRfix16K_A0000;
+ msrs[n++].index = MSR_MTRRfix4K_C0000;
+ msrs[n++].index = MSR_MTRRfix4K_C8000;
+ msrs[n++].index = MSR_MTRRfix4K_D0000;
+ msrs[n++].index = MSR_MTRRfix4K_D8000;
+ msrs[n++].index = MSR_MTRRfix4K_E0000;
+ msrs[n++].index = MSR_MTRRfix4K_E8000;
+ msrs[n++].index = MSR_MTRRfix4K_F0000;
+ msrs[n++].index = MSR_MTRRfix4K_F8000;
+ for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
+ msrs[n++].index = MSR_MTRRphysBase(i);
+ msrs[n++].index = MSR_MTRRphysMask(i);
+ }
+ }
+
+ msr_data.info = (struct kvm_msrs) {
+ .nmsrs = n,
+ };
+
+ ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
+ if (ret < 0) {
+ return ret;
+ }
+
+ for (i = 0; i < ret; i++) {
+ uint32_t index = msrs[i].index;
+ switch (index) {
+ case MSR_IA32_SYSENTER_CS:
+ env->sysenter_cs = msrs[i].data;
+ break;
+ case MSR_IA32_SYSENTER_ESP:
+ env->sysenter_esp = msrs[i].data;
+ break;
+ case MSR_IA32_SYSENTER_EIP:
+ env->sysenter_eip = msrs[i].data;
+ break;
+ case MSR_PAT:
+ env->pat = msrs[i].data;
+ break;
+ case MSR_STAR:
+ env->star = msrs[i].data;
+ break;
+#ifdef TARGET_X86_64
+ case MSR_CSTAR:
+ env->cstar = msrs[i].data;
+ break;
+ case MSR_KERNELGSBASE:
+ env->kernelgsbase = msrs[i].data;
+ break;
+ case MSR_FMASK:
+ env->fmask = msrs[i].data;
+ break;
+ case MSR_LSTAR:
+ env->lstar = msrs[i].data;
+ break;
+#endif
+ case MSR_IA32_TSC:
+ env->tsc = msrs[i].data;
+ break;
+ case MSR_TSC_ADJUST:
+ env->tsc_adjust = msrs[i].data;
+ break;
+ case MSR_IA32_TSCDEADLINE:
+ env->tsc_deadline = msrs[i].data;
+ break;
+ case MSR_VM_HSAVE_PA:
+ env->vm_hsave = msrs[i].data;
+ break;
+ case MSR_KVM_SYSTEM_TIME:
+ env->system_time_msr = msrs[i].data;
+ break;
+ case MSR_KVM_WALL_CLOCK:
+ env->wall_clock_msr = msrs[i].data;
+ break;
+ case MSR_MCG_STATUS:
+ env->mcg_status = msrs[i].data;
+ break;
+ case MSR_MCG_CTL:
+ env->mcg_ctl = msrs[i].data;
+ break;
+ case MSR_IA32_MISC_ENABLE:
+ env->msr_ia32_misc_enable = msrs[i].data;
+ break;
+ case MSR_IA32_SMBASE:
+ env->smbase = msrs[i].data;
+ break;
+ case MSR_IA32_FEATURE_CONTROL:
+ env->msr_ia32_feature_control = msrs[i].data;
+ break;
+ case MSR_IA32_BNDCFGS:
+ env->msr_bndcfgs = msrs[i].data;
+ break;
+ case MSR_IA32_XSS:
+ env->xss = msrs[i].data;
+ break;
+ default:
+ if (msrs[i].index >= MSR_MC0_CTL &&
+ msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
+ env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
+ }
+ break;
+ case MSR_KVM_ASYNC_PF_EN:
+ env->async_pf_en_msr = msrs[i].data;
+ break;
+ case MSR_KVM_PV_EOI_EN:
+ env->pv_eoi_en_msr = msrs[i].data;
+ break;
+ case MSR_KVM_STEAL_TIME:
+ env->steal_time_msr = msrs[i].data;
+ break;
+ case MSR_CORE_PERF_FIXED_CTR_CTRL:
+ env->msr_fixed_ctr_ctrl = msrs[i].data;
+ break;
+ case MSR_CORE_PERF_GLOBAL_CTRL:
+ env->msr_global_ctrl = msrs[i].data;
+ break;
+ case MSR_CORE_PERF_GLOBAL_STATUS:
+ env->msr_global_status = msrs[i].data;
+ break;
+ case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
+ env->msr_global_ovf_ctrl = msrs[i].data;
+ break;
+ case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
+ env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
+ break;
+ case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
+ env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
+ break;
+ case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
+ env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
+ break;
+ case HV_X64_MSR_HYPERCALL:
+ env->msr_hv_hypercall = msrs[i].data;
+ break;
+ case HV_X64_MSR_GUEST_OS_ID:
+ env->msr_hv_guest_os_id = msrs[i].data;
+ break;
+ case HV_X64_MSR_APIC_ASSIST_PAGE:
+ env->msr_hv_vapic = msrs[i].data;
+ break;
+ case HV_X64_MSR_REFERENCE_TSC:
+ env->msr_hv_tsc = msrs[i].data;
+ break;
+ case MSR_MTRRdefType:
+ env->mtrr_deftype = msrs[i].data;
+ break;
+ case MSR_MTRRfix64K_00000:
+ env->mtrr_fixed[0] = msrs[i].data;
+ break;
+ case MSR_MTRRfix16K_80000:
+ env->mtrr_fixed[1] = msrs[i].data;
+ break;
+ case MSR_MTRRfix16K_A0000:
+ env->mtrr_fixed[2] = msrs[i].data;
+ break;
+ case MSR_MTRRfix4K_C0000:
+ env->mtrr_fixed[3] = msrs[i].data;
+ break;
+ case MSR_MTRRfix4K_C8000:
+ env->mtrr_fixed[4] = msrs[i].data;
+ break;
+ case MSR_MTRRfix4K_D0000:
+ env->mtrr_fixed[5] = msrs[i].data;
+ break;
+ case MSR_MTRRfix4K_D8000:
+ env->mtrr_fixed[6] = msrs[i].data;
+ break;
+ case MSR_MTRRfix4K_E0000:
+ env->mtrr_fixed[7] = msrs[i].data;
+ break;
+ case MSR_MTRRfix4K_E8000:
+ env->mtrr_fixed[8] = msrs[i].data;
+ break;
+ case MSR_MTRRfix4K_F0000:
+ env->mtrr_fixed[9] = msrs[i].data;
+ break;
+ case MSR_MTRRfix4K_F8000:
+ env->mtrr_fixed[10] = msrs[i].data;
+ break;
+ case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
+ if (index & 1) {
+ env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data;
+ } else {
+ env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
+ }
+ break;
+ }
+ }
+
+ return 0;
+}
+
+static int kvm_put_mp_state(X86CPU *cpu)
+{
+ struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
+
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
+}
+
+static int kvm_get_mp_state(X86CPU *cpu)
+{
+ CPUState *cs = CPU(cpu);
+ CPUX86State *env = &cpu->env;
+ struct kvm_mp_state mp_state;
+ int ret;
+
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
+ if (ret < 0) {
+ return ret;
+ }
+ env->mp_state = mp_state.mp_state;
+ if (kvm_irqchip_in_kernel()) {
+ cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
+ }
+ return 0;
+}
+
+static int kvm_get_apic(X86CPU *cpu)
+{
+ DeviceState *apic = cpu->apic_state;
+ struct kvm_lapic_state kapic;
+ int ret;
+
+ if (apic && kvm_irqchip_in_kernel()) {
+ ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
+ if (ret < 0) {
+ return ret;
+ }
+
+ kvm_get_apic_state(apic, &kapic);
+ }
+ return 0;
+}
+
+static int kvm_put_apic(X86CPU *cpu)
+{
+ DeviceState *apic = cpu->apic_state;
+ struct kvm_lapic_state kapic;
+
+ if (apic && kvm_irqchip_in_kernel()) {
+ kvm_put_apic_state(apic, &kapic);
+
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
+ }
+ return 0;
+}
+
+static int kvm_put_vcpu_events(X86CPU *cpu, int level)
+{
+ CPUState *cs = CPU(cpu);
+ CPUX86State *env = &cpu->env;
+ struct kvm_vcpu_events events = {};
+
+ if (!kvm_has_vcpu_events()) {
+ return 0;
+ }
+
+ events.exception.injected = (env->exception_injected >= 0);
+ events.exception.nr = env->exception_injected;
+ events.exception.has_error_code = env->has_error_code;
+ events.exception.error_code = env->error_code;
+ events.exception.pad = 0;
+
+ events.interrupt.injected = (env->interrupt_injected >= 0);
+ events.interrupt.nr = env->interrupt_injected;
+ events.interrupt.soft = env->soft_interrupt;
+
+ events.nmi.injected = env->nmi_injected;
+ events.nmi.pending = env->nmi_pending;
+ events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
+ events.nmi.pad = 0;
+
+ events.sipi_vector = env->sipi_vector;
+
+ if (has_msr_smbase) {
+ events.smi.smm = !!(env->hflags & HF_SMM_MASK);
+ events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
+ if (kvm_irqchip_in_kernel()) {
+ /* As soon as these are moved to the kernel, remove them
+ * from cs->interrupt_request.
+ */
+ events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
+ events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
+ cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
+ } else {
+ /* Keep these in cs->interrupt_request. */
+ events.smi.pending = 0;
+ events.smi.latched_init = 0;
+ }
+ events.flags |= KVM_VCPUEVENT_VALID_SMM;
+ }
+
+ events.flags = 0;
+ if (level >= KVM_PUT_RESET_STATE) {
+ events.flags |=
+ KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
+ }
+
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
+}
+
+static int kvm_get_vcpu_events(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+ struct kvm_vcpu_events events;
+ int ret;
+
+ if (!kvm_has_vcpu_events()) {
+ return 0;
+ }
+
+ memset(&events, 0, sizeof(events));
+ ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
+ if (ret < 0) {
+ return ret;
+ }
+ env->exception_injected =
+ events.exception.injected ? events.exception.nr : -1;
+ env->has_error_code = events.exception.has_error_code;
+ env->error_code = events.exception.error_code;
+
+ env->interrupt_injected =
+ events.interrupt.injected ? events.interrupt.nr : -1;
+ env->soft_interrupt = events.interrupt.soft;
+
+ env->nmi_injected = events.nmi.injected;
+ env->nmi_pending = events.nmi.pending;
+ if (events.nmi.masked) {
+ env->hflags2 |= HF2_NMI_MASK;
+ } else {
+ env->hflags2 &= ~HF2_NMI_MASK;
+ }
+
+ if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
+ if (events.smi.smm) {
+ env->hflags |= HF_SMM_MASK;
+ } else {
+ env->hflags &= ~HF_SMM_MASK;
+ }
+ if (events.smi.pending) {
+ cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
+ } else {
+ cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
+ }
+ if (events.smi.smm_inside_nmi) {
+ env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
+ } else {
+ env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
+ }
+ if (events.smi.latched_init) {
+ cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
+ } else {
+ cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
+ }
+ }
+
+ env->sipi_vector = events.sipi_vector;
+
+ return 0;
+}
+
+static int kvm_guest_debug_workarounds(X86CPU *cpu)
+{
+ CPUState *cs = CPU(cpu);
+ CPUX86State *env = &cpu->env;
+ int ret = 0;
+ unsigned long reinject_trap = 0;
+
+ if (!kvm_has_vcpu_events()) {
+ if (env->exception_injected == 1) {
+ reinject_trap = KVM_GUESTDBG_INJECT_DB;
+ } else if (env->exception_injected == 3) {
+ reinject_trap = KVM_GUESTDBG_INJECT_BP;
+ }
+ env->exception_injected = -1;
+ }
+
+ /*
+ * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
+ * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
+ * by updating the debug state once again if single-stepping is on.
+ * Another reason to call kvm_update_guest_debug here is a pending debug
+ * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
+ * reinject them via SET_GUEST_DEBUG.
+ */
+ if (reinject_trap ||
+ (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
+ ret = kvm_update_guest_debug(cs, reinject_trap);
+ }
+ return ret;
+}
+
+static int kvm_put_debugregs(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+ struct kvm_debugregs dbgregs;
+ int i;
+
+ if (!kvm_has_debugregs()) {
+ return 0;
+ }
+
+ for (i = 0; i < 4; i++) {
+ dbgregs.db[i] = env->dr[i];
+ }
+ dbgregs.dr6 = env->dr[6];
+ dbgregs.dr7 = env->dr[7];
+ dbgregs.flags = 0;
+
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
+}
+
+static int kvm_get_debugregs(X86CPU *cpu)
+{
+ CPUX86State *env = &cpu->env;
+ struct kvm_debugregs dbgregs;
+ int i, ret;
+
+ if (!kvm_has_debugregs()) {
+ return 0;
+ }
+
+ ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
+ if (ret < 0) {
+ return ret;
+ }
+ for (i = 0; i < 4; i++) {
+ env->dr[i] = dbgregs.db[i];
+ }
+ env->dr[4] = env->dr[6] = dbgregs.dr6;
+ env->dr[5] = env->dr[7] = dbgregs.dr7;
+
+ return 0;
+}
+
+int kvm_arch_put_registers(CPUState *cpu, int level)
+{
+ X86CPU *x86_cpu = X86_CPU(cpu);
+ int ret;
+
+ assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
+
+ if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) {
+ ret = kvm_put_msr_feature_control(x86_cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ }
+
+ ret = kvm_getput_regs(x86_cpu, 1);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_put_xsave(x86_cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_put_xcrs(x86_cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_put_sregs(x86_cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ /* must be before kvm_put_msrs */
+ ret = kvm_inject_mce_oldstyle(x86_cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_put_msrs(x86_cpu, level);
+ if (ret < 0) {
+ return ret;
+ }
+ if (level >= KVM_PUT_RESET_STATE) {
+ ret = kvm_put_mp_state(x86_cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_put_apic(x86_cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ }
+
+ ret = kvm_put_tscdeadline_msr(x86_cpu);
+ if (ret < 0) {
+ return ret;
+ }
+
+ ret = kvm_put_vcpu_events(x86_cpu, level);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_put_debugregs(x86_cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ /* must be last */
+ ret = kvm_guest_debug_workarounds(x86_cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ return 0;
+}
+
+int kvm_arch_get_registers(CPUState *cs)
+{
+ X86CPU *cpu = X86_CPU(cs);
+ int ret;
+
+ assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
+
+ ret = kvm_getput_regs(cpu, 0);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_get_xsave(cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_get_xcrs(cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_get_sregs(cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_get_msrs(cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_get_mp_state(cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_get_apic(cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_get_vcpu_events(cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ ret = kvm_get_debugregs(cpu);
+ if (ret < 0) {
+ return ret;
+ }
+ return 0;
+}
+
+void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
+{
+ X86CPU *x86_cpu = X86_CPU(cpu);
+ CPUX86State *env = &x86_cpu->env;
+ int ret;
+
+ /* Inject NMI */
+ if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
+ if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
+ qemu_mutex_lock_iothread();
+ cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
+ qemu_mutex_unlock_iothread();
+ DPRINTF("injected NMI\n");
+ ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
+ if (ret < 0) {
+ fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
+ strerror(-ret));
+ }
+ }
+ if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
+ qemu_mutex_lock_iothread();
+ cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
+ qemu_mutex_unlock_iothread();
+ DPRINTF("injected SMI\n");
+ ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
+ if (ret < 0) {
+ fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
+ strerror(-ret));
+ }
+ }
+ }
+
+ if (!kvm_irqchip_in_kernel()) {
+ qemu_mutex_lock_iothread();
+ }
+
+ /* Force the VCPU out of its inner loop to process any INIT requests
+ * or (for userspace APIC, but it is cheap to combine the checks here)
+ * pending TPR access reports.
+ */
+ if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
+ if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
+ !(env->hflags & HF_SMM_MASK)) {
+ cpu->exit_request = 1;
+ }
+ if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
+ cpu->exit_request = 1;
+ }
+ }
+
+ if (!kvm_irqchip_in_kernel()) {
+ /* Try to inject an interrupt if the guest can accept it */
+ if (run->ready_for_interrupt_injection &&
+ (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env->eflags & IF_MASK)) {
+ int irq;
+
+ cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
+ irq = cpu_get_pic_interrupt(env);
+ if (irq >= 0) {
+ struct kvm_interrupt intr;
+
+ intr.irq = irq;
+ DPRINTF("injected interrupt %d\n", irq);
+ ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
+ if (ret < 0) {
+ fprintf(stderr,
+ "KVM: injection failed, interrupt lost (%s)\n",
+ strerror(-ret));
+ }
+ }
+ }
+
+ /* If we have an interrupt but the guest is not ready to receive an
+ * interrupt, request an interrupt window exit. This will
+ * cause a return to userspace as soon as the guest is ready to
+ * receive interrupts. */
+ if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
+ run->request_interrupt_window = 1;
+ } else {
+ run->request_interrupt_window = 0;
+ }
+
+ DPRINTF("setting tpr\n");
+ run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
+
+ qemu_mutex_unlock_iothread();
+ }
+}
+
+MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
+{
+ X86CPU *x86_cpu = X86_CPU(cpu);
+ CPUX86State *env = &x86_cpu->env;
+
+ if (run->flags & KVM_RUN_X86_SMM) {
+ env->hflags |= HF_SMM_MASK;
+ } else {
+ env->hflags &= HF_SMM_MASK;
+ }
+ if (run->if_flag) {
+ env->eflags |= IF_MASK;
+ } else {
+ env->eflags &= ~IF_MASK;
+ }
+
+ /* We need to protect the apic state against concurrent accesses from
+ * different threads in case the userspace irqchip is used. */
+ if (!kvm_irqchip_in_kernel()) {
+ qemu_mutex_lock_iothread();
+ }
+ cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
+ cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
+ if (!kvm_irqchip_in_kernel()) {
+ qemu_mutex_unlock_iothread();
+ }
+ return cpu_get_mem_attrs(env);
+}
+
+int kvm_arch_process_async_events(CPUState *cs)
+{
+ X86CPU *cpu = X86_CPU(cs);
+ CPUX86State *env = &cpu->env;
+
+ if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
+ /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
+ assert(env->mcg_cap);
+
+ cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
+
+ kvm_cpu_synchronize_state(cs);
+
+ if (env->exception_injected == EXCP08_DBLE) {
+ /* this means triple fault */
+ qemu_system_reset_request();
+ cs->exit_request = 1;
+ return 0;
+ }
+ env->exception_injected = EXCP12_MCHK;
+ env->has_error_code = 0;
+
+ cs->halted = 0;
+ if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
+ env->mp_state = KVM_MP_STATE_RUNNABLE;
+ }
+ }
+
+ if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
+ !(env->hflags & HF_SMM_MASK)) {
+ kvm_cpu_synchronize_state(cs);
+ do_cpu_init(cpu);
+ }
+
+ if (kvm_irqchip_in_kernel()) {
+ return 0;
+ }
+
+ if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
+ cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
+ apic_poll_irq(cpu->apic_state);
+ }
+ if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env->eflags & IF_MASK)) ||
+ (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
+ cs->halted = 0;
+ }
+ if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
+ kvm_cpu_synchronize_state(cs);
+ do_cpu_sipi(cpu);
+ }
+ if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
+ cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
+ kvm_cpu_synchronize_state(cs);
+ apic_handle_tpr_access_report(cpu->apic_state, env->eip,
+ env->tpr_access_type);
+ }
+
+ return cs->halted;
+}
+
+static int kvm_handle_halt(X86CPU *cpu)
+{
+ CPUState *cs = CPU(cpu);
+ CPUX86State *env = &cpu->env;
+
+ if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env->eflags & IF_MASK)) &&
+ !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
+ cs->halted = 1;
+ return EXCP_HLT;
+ }
+
+ return 0;
+}
+
+static int kvm_handle_tpr_access(X86CPU *cpu)
+{
+ CPUState *cs = CPU(cpu);
+ struct kvm_run *run = cs->kvm_run;
+
+ apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
+ run->tpr_access.is_write ? TPR_ACCESS_WRITE
+ : TPR_ACCESS_READ);
+ return 1;
+}
+
+int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+ static const uint8_t int3 = 0xcc;
+
+ if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
+ cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
+ return -EINVAL;
+ }
+ return 0;
+}
+
+int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+ uint8_t int3;
+
+ if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
+ cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static struct {
+ target_ulong addr;
+ int len;
+ int type;
+} hw_breakpoint[4];
+
+static int nb_hw_breakpoint;
+
+static int find_hw_breakpoint(target_ulong addr, int len, int type)
+{
+ int n;
+
+ for (n = 0; n < nb_hw_breakpoint; n++) {
+ if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
+ (hw_breakpoint[n].len == len || len == -1)) {
+ return n;
+ }
+ }
+ return -1;
+}
+
+int kvm_arch_insert_hw_breakpoint(target_ulong addr,
+ target_ulong len, int type)
+{
+ switch (type) {
+ case GDB_BREAKPOINT_HW:
+ len = 1;
+ break;
+ case GDB_WATCHPOINT_WRITE:
+ case GDB_WATCHPOINT_ACCESS:
+ switch (len) {
+ case 1:
+ break;
+ case 2:
+ case 4:
+ case 8:
+ if (addr & (len - 1)) {
+ return -EINVAL;
+ }
+ break;
+ default:
+ return -EINVAL;
+ }
+ break;
+ default:
+ return -ENOSYS;
+ }
+
+ if (nb_hw_breakpoint == 4) {
+ return -ENOBUFS;
+ }
+ if (find_hw_breakpoint(addr, len, type) >= 0) {
+ return -EEXIST;
+ }
+ hw_breakpoint[nb_hw_breakpoint].addr = addr;
+ hw_breakpoint[nb_hw_breakpoint].len = len;
+ hw_breakpoint[nb_hw_breakpoint].type = type;
+ nb_hw_breakpoint++;
+
+ return 0;
+}
+
+int kvm_arch_remove_hw_breakpoint(target_ulong addr,
+ target_ulong len, int type)
+{
+ int n;
+
+ n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
+ if (n < 0) {
+ return -ENOENT;
+ }
+ nb_hw_breakpoint--;
+ hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
+
+ return 0;
+}
+
+void kvm_arch_remove_all_hw_breakpoints(void)
+{
+ nb_hw_breakpoint = 0;
+}
+
+static CPUWatchpoint hw_watchpoint;
+
+static int kvm_handle_debug(X86CPU *cpu,
+ struct kvm_debug_exit_arch *arch_info)
+{
+ CPUState *cs = CPU(cpu);
+ CPUX86State *env = &cpu->env;
+ int ret = 0;
+ int n;
+
+ if (arch_info->exception == 1) {
+ if (arch_info->dr6 & (1 << 14)) {
+ if (cs->singlestep_enabled) {
+ ret = EXCP_DEBUG;
+ }
+ } else {
+ for (n = 0; n < 4; n++) {
+ if (arch_info->dr6 & (1 << n)) {
+ switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
+ case 0x0:
+ ret = EXCP_DEBUG;
+ break;
+ case 0x1:
+ ret = EXCP_DEBUG;
+ cs->watchpoint_hit = &hw_watchpoint;
+ hw_watchpoint.vaddr = hw_breakpoint[n].addr;
+ hw_watchpoint.flags = BP_MEM_WRITE;
+ break;
+ case 0x3:
+ ret = EXCP_DEBUG;
+ cs->watchpoint_hit = &hw_watchpoint;
+ hw_watchpoint.vaddr = hw_breakpoint[n].addr;
+ hw_watchpoint.flags = BP_MEM_ACCESS;
+ break;
+ }
+ }
+ }
+ }
+ } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
+ ret = EXCP_DEBUG;
+ }
+ if (ret == 0) {
+ cpu_synchronize_state(cs);
+ assert(env->exception_injected == -1);
+
+ /* pass to guest */
+ env->exception_injected = arch_info->exception;
+ env->has_error_code = 0;
+ }
+
+ return ret;
+}
+
+void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
+{
+ const uint8_t type_code[] = {
+ [GDB_BREAKPOINT_HW] = 0x0,
+ [GDB_WATCHPOINT_WRITE] = 0x1,
+ [GDB_WATCHPOINT_ACCESS] = 0x3
+ };
+ const uint8_t len_code[] = {
+ [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
+ };
+ int n;
+
+ if (kvm_sw_breakpoints_active(cpu)) {
+ dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
+ }
+ if (nb_hw_breakpoint > 0) {
+ dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
+ dbg->arch.debugreg[7] = 0x0600;
+ for (n = 0; n < nb_hw_breakpoint; n++) {
+ dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
+ dbg->arch.debugreg[7] |= (2 << (n * 2)) |
+ (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
+ ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
+ }
+ }
+}
+
+static bool host_supports_vmx(void)
+{
+ uint32_t ecx, unused;
+
+ host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
+ return ecx & CPUID_EXT_VMX;
+}
+
+#define VMX_INVALID_GUEST_STATE 0x80000021
+
+int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
+{
+ X86CPU *cpu = X86_CPU(cs);
+ uint64_t code;
+ int ret;
+
+ switch (run->exit_reason) {
+ case KVM_EXIT_HLT:
+ DPRINTF("handle_hlt\n");
+ qemu_mutex_lock_iothread();
+ ret = kvm_handle_halt(cpu);
+ qemu_mutex_unlock_iothread();
+ break;
+ case KVM_EXIT_SET_TPR:
+ ret = 0;
+ break;
+ case KVM_EXIT_TPR_ACCESS:
+ qemu_mutex_lock_iothread();
+ ret = kvm_handle_tpr_access(cpu);
+ qemu_mutex_unlock_iothread();
+ break;
+ case KVM_EXIT_FAIL_ENTRY:
+ code = run->fail_entry.hardware_entry_failure_reason;
+ fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
+ code);
+ if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
+ fprintf(stderr,
+ "\nIf you're running a guest on an Intel machine without "
+ "unrestricted mode\n"
+ "support, the failure can be most likely due to the guest "
+ "entering an invalid\n"
+ "state for Intel VT. For example, the guest maybe running "
+ "in big real mode\n"
+ "which is not supported on less recent Intel processors."
+ "\n\n");
+ }
+ ret = -1;
+ break;
+ case KVM_EXIT_EXCEPTION:
+ fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
+ run->ex.exception, run->ex.error_code);
+ ret = -1;
+ break;
+ case KVM_EXIT_DEBUG:
+ DPRINTF("kvm_exit_debug\n");
+ qemu_mutex_lock_iothread();
+ ret = kvm_handle_debug(cpu, &run->debug.arch);
+ qemu_mutex_unlock_iothread();
+ break;
+ default:
+ fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
+ ret = -1;
+ break;
+ }
+
+ return ret;
+}
+
+bool kvm_arch_stop_on_emulation_error(CPUState *cs)
+{
+ X86CPU *cpu = X86_CPU(cs);
+ CPUX86State *env = &cpu->env;
+
+ kvm_cpu_synchronize_state(cs);
+ return !(env->cr[0] & CR0_PE_MASK) ||
+ ((env->segs[R_CS].selector & 3) != 3);
+}
+
+void kvm_arch_init_irq_routing(KVMState *s)
+{
+ if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
+ /* If kernel can't do irq routing, interrupt source
+ * override 0->2 cannot be set up as required by HPET.
+ * So we have to disable it.
+ */
+ no_hpet = 1;
+ }
+ /* We know at this point that we're using the in-kernel
+ * irqchip, so we can use irqfds, and on x86 we know
+ * we can use msi via irqfd and GSI routing.
+ */
+ kvm_msi_via_irqfd_allowed = true;
+ kvm_gsi_routing_allowed = true;
+}
+
+/* Classic KVM device assignment interface. Will remain x86 only. */
+int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
+ uint32_t flags, uint32_t *dev_id)
+{
+ struct kvm_assigned_pci_dev dev_data = {
+ .segnr = dev_addr->domain,
+ .busnr = dev_addr->bus,
+ .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
+ .flags = flags,
+ };
+ int ret;
+
+ dev_data.assigned_dev_id =
+ (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
+
+ ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
+ if (ret < 0) {
+ return ret;
+ }
+
+ *dev_id = dev_data.assigned_dev_id;
+
+ return 0;
+}
+
+int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
+{
+ struct kvm_assigned_pci_dev dev_data = {
+ .assigned_dev_id = dev_id,
+ };
+
+ return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
+}
+
+static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
+ uint32_t irq_type, uint32_t guest_irq)
+{
+ struct kvm_assigned_irq assigned_irq = {
+ .assigned_dev_id = dev_id,
+ .guest_irq = guest_irq,
+ .flags = irq_type,
+ };
+
+ if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
+ return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
+ } else {
+ return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
+ }
+}
+
+int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
+ uint32_t guest_irq)
+{
+ uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
+ (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
+
+ return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
+}
+
+int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
+{
+ struct kvm_assigned_pci_dev dev_data = {
+ .assigned_dev_id = dev_id,
+ .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
+ };
+
+ return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
+}
+
+static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
+ uint32_t type)
+{
+ struct kvm_assigned_irq assigned_irq = {
+ .assigned_dev_id = dev_id,
+ .flags = type,
+ };
+
+ return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
+}
+
+int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
+{
+ return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
+ (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
+}
+
+int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
+{
+ return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
+ KVM_DEV_IRQ_GUEST_MSI, virq);
+}
+
+int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
+{
+ return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
+ KVM_DEV_IRQ_HOST_MSI);
+}
+
+bool kvm_device_msix_supported(KVMState *s)
+{
+ /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
+ * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
+ return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
+}
+
+int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
+ uint32_t nr_vectors)
+{
+ struct kvm_assigned_msix_nr msix_nr = {
+ .assigned_dev_id = dev_id,
+ .entry_nr = nr_vectors,
+ };
+
+ return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
+}
+
+int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
+ int virq)
+{
+ struct kvm_assigned_msix_entry msix_entry = {
+ .assigned_dev_id = dev_id,
+ .gsi = virq,
+ .entry = vector,
+ };
+
+ return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
+}
+
+int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
+{
+ return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
+ KVM_DEV_IRQ_GUEST_MSIX, 0);
+}
+
+int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
+{
+ return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
+ KVM_DEV_IRQ_HOST_MSIX);
+}
+
+int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
+ uint64_t address, uint32_t data)
+{
+ return 0;
+}
+
+int kvm_arch_msi_data_to_gsi(uint32_t data)
+{
+ abort();
+}