aboutsummaryrefslogtreecommitdiffstats
path: root/target-arm/cpu.h
diff options
context:
space:
mode:
authorfishsoupisgood <github@madingley.org>2019-04-29 01:17:54 +0100
committerfishsoupisgood <github@madingley.org>2019-05-27 03:43:43 +0100
commit3f2546b2ef55b661fd8dd69682b38992225e86f6 (patch)
tree65ca85f13617aee1dce474596800950f266a456c /target-arm/cpu.h
downloadqemu-3f2546b2ef55b661fd8dd69682b38992225e86f6.tar.gz
qemu-3f2546b2ef55b661fd8dd69682b38992225e86f6.tar.bz2
qemu-3f2546b2ef55b661fd8dd69682b38992225e86f6.zip
Initial import of qemu-2.4.1HEADmaster
Diffstat (limited to 'target-arm/cpu.h')
-rw-r--r--target-arm/cpu.h1936
1 files changed, 1936 insertions, 0 deletions
diff --git a/target-arm/cpu.h b/target-arm/cpu.h
new file mode 100644
index 00000000..7e89152b
--- /dev/null
+++ b/target-arm/cpu.h
@@ -0,0 +1,1936 @@
+/*
+ * ARM virtual CPU header
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#ifndef CPU_ARM_H
+#define CPU_ARM_H
+
+#include "config.h"
+
+#include "kvm-consts.h"
+
+#if defined(TARGET_AARCH64)
+ /* AArch64 definitions */
+# define TARGET_LONG_BITS 64
+# define ELF_MACHINE EM_AARCH64
+#else
+# define TARGET_LONG_BITS 32
+# define ELF_MACHINE EM_ARM
+#endif
+
+#define TARGET_IS_BIENDIAN 1
+
+#define CPUArchState struct CPUARMState
+
+#include "qemu-common.h"
+#include "exec/cpu-defs.h"
+
+#include "fpu/softfloat.h"
+
+#define EXCP_UDEF 1 /* undefined instruction */
+#define EXCP_SWI 2 /* software interrupt */
+#define EXCP_PREFETCH_ABORT 3
+#define EXCP_DATA_ABORT 4
+#define EXCP_IRQ 5
+#define EXCP_FIQ 6
+#define EXCP_BKPT 7
+#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
+#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
+#define EXCP_STREX 10
+#define EXCP_HVC 11 /* HyperVisor Call */
+#define EXCP_HYP_TRAP 12
+#define EXCP_SMC 13 /* Secure Monitor Call */
+#define EXCP_VIRQ 14
+#define EXCP_VFIQ 15
+
+#define ARMV7M_EXCP_RESET 1
+#define ARMV7M_EXCP_NMI 2
+#define ARMV7M_EXCP_HARD 3
+#define ARMV7M_EXCP_MEM 4
+#define ARMV7M_EXCP_BUS 5
+#define ARMV7M_EXCP_USAGE 6
+#define ARMV7M_EXCP_SVC 11
+#define ARMV7M_EXCP_DEBUG 12
+#define ARMV7M_EXCP_PENDSV 14
+#define ARMV7M_EXCP_SYSTICK 15
+
+/* ARM-specific interrupt pending bits. */
+#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
+#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
+#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
+
+/* The usual mapping for an AArch64 system register to its AArch32
+ * counterpart is for the 32 bit world to have access to the lower
+ * half only (with writes leaving the upper half untouched). It's
+ * therefore useful to be able to pass TCG the offset of the least
+ * significant half of a uint64_t struct member.
+ */
+#ifdef HOST_WORDS_BIGENDIAN
+#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
+#define offsetofhigh32(S, M) offsetof(S, M)
+#else
+#define offsetoflow32(S, M) offsetof(S, M)
+#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
+#endif
+
+/* Meanings of the ARMCPU object's four inbound GPIO lines */
+#define ARM_CPU_IRQ 0
+#define ARM_CPU_FIQ 1
+#define ARM_CPU_VIRQ 2
+#define ARM_CPU_VFIQ 3
+
+struct arm_boot_info;
+
+#define NB_MMU_MODES 7
+
+/* We currently assume float and double are IEEE single and double
+ precision respectively.
+ Doing runtime conversions is tricky because VFP registers may contain
+ integer values (eg. as the result of a FTOSI instruction).
+ s<2n> maps to the least significant half of d<n>
+ s<2n+1> maps to the most significant half of d<n>
+ */
+
+/* CPU state for each instance of a generic timer (in cp15 c14) */
+typedef struct ARMGenericTimer {
+ uint64_t cval; /* Timer CompareValue register */
+ uint64_t ctl; /* Timer Control register */
+} ARMGenericTimer;
+
+#define GTIMER_PHYS 0
+#define GTIMER_VIRT 1
+#define NUM_GTIMERS 2
+
+typedef struct {
+ uint64_t raw_tcr;
+ uint32_t mask;
+ uint32_t base_mask;
+} TCR;
+
+typedef struct CPUARMState {
+ /* Regs for current mode. */
+ uint32_t regs[16];
+
+ /* 32/64 switch only happens when taking and returning from
+ * exceptions so the overlap semantics are taken care of then
+ * instead of having a complicated union.
+ */
+ /* Regs for A64 mode. */
+ uint64_t xregs[32];
+ uint64_t pc;
+ /* PSTATE isn't an architectural register for ARMv8. However, it is
+ * convenient for us to assemble the underlying state into a 32 bit format
+ * identical to the architectural format used for the SPSR. (This is also
+ * what the Linux kernel's 'pstate' field in signal handlers and KVM's
+ * 'pstate' register are.) Of the PSTATE bits:
+ * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
+ * semantics as for AArch32, as described in the comments on each field)
+ * nRW (also known as M[4]) is kept, inverted, in env->aarch64
+ * DAIF (exception masks) are kept in env->daif
+ * all other bits are stored in their correct places in env->pstate
+ */
+ uint32_t pstate;
+ uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
+
+ /* Frequently accessed CPSR bits are stored separately for efficiency.
+ This contains all the other bits. Use cpsr_{read,write} to access
+ the whole CPSR. */
+ uint32_t uncached_cpsr;
+ uint32_t spsr;
+
+ /* Banked registers. */
+ uint64_t banked_spsr[8];
+ uint32_t banked_r13[8];
+ uint32_t banked_r14[8];
+
+ /* These hold r8-r12. */
+ uint32_t usr_regs[5];
+ uint32_t fiq_regs[5];
+
+ /* cpsr flag cache for faster execution */
+ uint32_t CF; /* 0 or 1 */
+ uint32_t VF; /* V is the bit 31. All other bits are undefined */
+ uint32_t NF; /* N is bit 31. All other bits are undefined. */
+ uint32_t ZF; /* Z set if zero. */
+ uint32_t QF; /* 0 or 1 */
+ uint32_t GE; /* cpsr[19:16] */
+ uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
+ uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
+ uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
+
+ uint64_t elr_el[4]; /* AArch64 exception link regs */
+ uint64_t sp_el[4]; /* AArch64 banked stack pointers */
+
+ /* System control coprocessor (cp15) */
+ struct {
+ uint32_t c0_cpuid;
+ union { /* Cache size selection */
+ struct {
+ uint64_t _unused_csselr0;
+ uint64_t csselr_ns;
+ uint64_t _unused_csselr1;
+ uint64_t csselr_s;
+ };
+ uint64_t csselr_el[4];
+ };
+ union { /* System control register. */
+ struct {
+ uint64_t _unused_sctlr;
+ uint64_t sctlr_ns;
+ uint64_t hsctlr;
+ uint64_t sctlr_s;
+ };
+ uint64_t sctlr_el[4];
+ };
+ uint64_t cpacr_el1; /* Architectural feature access control register */
+ uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
+ uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
+ uint64_t sder; /* Secure debug enable register. */
+ uint32_t nsacr; /* Non-secure access control register. */
+ union { /* MMU translation table base 0. */
+ struct {
+ uint64_t _unused_ttbr0_0;
+ uint64_t ttbr0_ns;
+ uint64_t _unused_ttbr0_1;
+ uint64_t ttbr0_s;
+ };
+ uint64_t ttbr0_el[4];
+ };
+ union { /* MMU translation table base 1. */
+ struct {
+ uint64_t _unused_ttbr1_0;
+ uint64_t ttbr1_ns;
+ uint64_t _unused_ttbr1_1;
+ uint64_t ttbr1_s;
+ };
+ uint64_t ttbr1_el[4];
+ };
+ /* MMU translation table base control. */
+ TCR tcr_el[4];
+ uint32_t c2_data; /* MPU data cachable bits. */
+ uint32_t c2_insn; /* MPU instruction cachable bits. */
+ union { /* MMU domain access control register
+ * MPU write buffer control.
+ */
+ struct {
+ uint64_t dacr_ns;
+ uint64_t dacr_s;
+ };
+ struct {
+ uint64_t dacr32_el2;
+ };
+ };
+ uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
+ uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
+ uint64_t hcr_el2; /* Hypervisor configuration register */
+ uint64_t scr_el3; /* Secure configuration register. */
+ union { /* Fault status registers. */
+ struct {
+ uint64_t ifsr_ns;
+ uint64_t ifsr_s;
+ };
+ struct {
+ uint64_t ifsr32_el2;
+ };
+ };
+ union {
+ struct {
+ uint64_t _unused_dfsr;
+ uint64_t dfsr_ns;
+ uint64_t hsr;
+ uint64_t dfsr_s;
+ };
+ uint64_t esr_el[4];
+ };
+ uint32_t c6_region[8]; /* MPU base/size registers. */
+ union { /* Fault address registers. */
+ struct {
+ uint64_t _unused_far0;
+#ifdef HOST_WORDS_BIGENDIAN
+ uint32_t ifar_ns;
+ uint32_t dfar_ns;
+ uint32_t ifar_s;
+ uint32_t dfar_s;
+#else
+ uint32_t dfar_ns;
+ uint32_t ifar_ns;
+ uint32_t dfar_s;
+ uint32_t ifar_s;
+#endif
+ uint64_t _unused_far3;
+ };
+ uint64_t far_el[4];
+ };
+ union { /* Translation result. */
+ struct {
+ uint64_t _unused_par_0;
+ uint64_t par_ns;
+ uint64_t _unused_par_1;
+ uint64_t par_s;
+ };
+ uint64_t par_el[4];
+ };
+
+ uint32_t c6_rgnr;
+
+ uint32_t c9_insn; /* Cache lockdown registers. */
+ uint32_t c9_data;
+ uint64_t c9_pmcr; /* performance monitor control register */
+ uint64_t c9_pmcnten; /* perf monitor counter enables */
+ uint32_t c9_pmovsr; /* perf monitor overflow status */
+ uint32_t c9_pmxevtyper; /* perf monitor event type */
+ uint32_t c9_pmuserenr; /* perf monitor user enable */
+ uint32_t c9_pminten; /* perf monitor interrupt enables */
+ union { /* Memory attribute redirection */
+ struct {
+#ifdef HOST_WORDS_BIGENDIAN
+ uint64_t _unused_mair_0;
+ uint32_t mair1_ns;
+ uint32_t mair0_ns;
+ uint64_t _unused_mair_1;
+ uint32_t mair1_s;
+ uint32_t mair0_s;
+#else
+ uint64_t _unused_mair_0;
+ uint32_t mair0_ns;
+ uint32_t mair1_ns;
+ uint64_t _unused_mair_1;
+ uint32_t mair0_s;
+ uint32_t mair1_s;
+#endif
+ };
+ uint64_t mair_el[4];
+ };
+ union { /* vector base address register */
+ struct {
+ uint64_t _unused_vbar;
+ uint64_t vbar_ns;
+ uint64_t hvbar;
+ uint64_t vbar_s;
+ };
+ uint64_t vbar_el[4];
+ };
+ uint32_t mvbar; /* (monitor) vector base address register */
+ struct { /* FCSE PID. */
+ uint32_t fcseidr_ns;
+ uint32_t fcseidr_s;
+ };
+ union { /* Context ID. */
+ struct {
+ uint64_t _unused_contextidr_0;
+ uint64_t contextidr_ns;
+ uint64_t _unused_contextidr_1;
+ uint64_t contextidr_s;
+ };
+ uint64_t contextidr_el[4];
+ };
+ union { /* User RW Thread register. */
+ struct {
+ uint64_t tpidrurw_ns;
+ uint64_t tpidrprw_ns;
+ uint64_t htpidr;
+ uint64_t _tpidr_el3;
+ };
+ uint64_t tpidr_el[4];
+ };
+ /* The secure banks of these registers don't map anywhere */
+ uint64_t tpidrurw_s;
+ uint64_t tpidrprw_s;
+ uint64_t tpidruro_s;
+
+ union { /* User RO Thread register. */
+ uint64_t tpidruro_ns;
+ uint64_t tpidrro_el[1];
+ };
+ uint64_t c14_cntfrq; /* Counter Frequency register */
+ uint64_t c14_cntkctl; /* Timer Control register */
+ ARMGenericTimer c14_timer[NUM_GTIMERS];
+ uint32_t c15_cpar; /* XScale Coprocessor Access Register */
+ uint32_t c15_ticonfig; /* TI925T configuration byte. */
+ uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
+ uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
+ uint32_t c15_threadid; /* TI debugger thread-ID. */
+ uint32_t c15_config_base_address; /* SCU base address. */
+ uint32_t c15_diagnostic; /* diagnostic register */
+ uint32_t c15_power_diagnostic;
+ uint32_t c15_power_control; /* power control */
+ uint64_t dbgbvr[16]; /* breakpoint value registers */
+ uint64_t dbgbcr[16]; /* breakpoint control registers */
+ uint64_t dbgwvr[16]; /* watchpoint value registers */
+ uint64_t dbgwcr[16]; /* watchpoint control registers */
+ uint64_t mdscr_el1;
+ /* If the counter is enabled, this stores the last time the counter
+ * was reset. Otherwise it stores the counter value
+ */
+ uint64_t c15_ccnt;
+ uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
+ } cp15;
+
+ struct {
+ uint32_t other_sp;
+ uint32_t vecbase;
+ uint32_t basepri;
+ uint32_t control;
+ int current_sp;
+ int exception;
+ } v7m;
+
+ /* Information associated with an exception about to be taken:
+ * code which raises an exception must set cs->exception_index and
+ * the relevant parts of this structure; the cpu_do_interrupt function
+ * will then set the guest-visible registers as part of the exception
+ * entry process.
+ */
+ struct {
+ uint32_t syndrome; /* AArch64 format syndrome register */
+ uint32_t fsr; /* AArch32 format fault status register info */
+ uint64_t vaddress; /* virtual addr associated with exception, if any */
+ uint32_t target_el; /* EL the exception should be targeted for */
+ /* If we implement EL2 we will also need to store information
+ * about the intermediate physical address for stage 2 faults.
+ */
+ } exception;
+
+ /* Thumb-2 EE state. */
+ uint32_t teecr;
+ uint32_t teehbr;
+
+ /* VFP coprocessor state. */
+ struct {
+ /* VFP/Neon register state. Note that the mapping between S, D and Q
+ * views of the register bank differs between AArch64 and AArch32:
+ * In AArch32:
+ * Qn = regs[2n+1]:regs[2n]
+ * Dn = regs[n]
+ * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
+ * (and regs[32] to regs[63] are inaccessible)
+ * In AArch64:
+ * Qn = regs[2n+1]:regs[2n]
+ * Dn = regs[2n]
+ * Sn = regs[2n] bits 31..0
+ * This corresponds to the architecturally defined mapping between
+ * the two execution states, and means we do not need to explicitly
+ * map these registers when changing states.
+ */
+ float64 regs[64];
+
+ uint32_t xregs[16];
+ /* We store these fpcsr fields separately for convenience. */
+ int vec_len;
+ int vec_stride;
+
+ /* scratch space when Tn are not sufficient. */
+ uint32_t scratch[8];
+
+ /* fp_status is the "normal" fp status. standard_fp_status retains
+ * values corresponding to the ARM "Standard FPSCR Value", ie
+ * default-NaN, flush-to-zero, round-to-nearest and is used by
+ * any operations (generally Neon) which the architecture defines
+ * as controlled by the standard FPSCR value rather than the FPSCR.
+ *
+ * To avoid having to transfer exception bits around, we simply
+ * say that the FPSCR cumulative exception flags are the logical
+ * OR of the flags in the two fp statuses. This relies on the
+ * only thing which needs to read the exception flags being
+ * an explicit FPSCR read.
+ */
+ float_status fp_status;
+ float_status standard_fp_status;
+ } vfp;
+ uint64_t exclusive_addr;
+ uint64_t exclusive_val;
+ uint64_t exclusive_high;
+#if defined(CONFIG_USER_ONLY)
+ uint64_t exclusive_test;
+ uint32_t exclusive_info;
+#endif
+
+ /* iwMMXt coprocessor state. */
+ struct {
+ uint64_t regs[16];
+ uint64_t val;
+
+ uint32_t cregs[16];
+ } iwmmxt;
+
+ /* For mixed endian mode. */
+ bool bswap_code;
+
+#if defined(CONFIG_USER_ONLY)
+ /* For usermode syscall translation. */
+ int eabi;
+#endif
+
+ struct CPUBreakpoint *cpu_breakpoint[16];
+ struct CPUWatchpoint *cpu_watchpoint[16];
+
+ CPU_COMMON
+
+ /* These fields after the common ones so they are preserved on reset. */
+
+ /* Internal CPU feature flags. */
+ uint64_t features;
+
+ /* PMSAv7 MPU */
+ struct {
+ uint32_t *drbar;
+ uint32_t *drsr;
+ uint32_t *dracr;
+ } pmsav7;
+
+ void *nvic;
+ const struct arm_boot_info *boot_info;
+} CPUARMState;
+
+#include "cpu-qom.h"
+
+ARMCPU *cpu_arm_init(const char *cpu_model);
+int cpu_arm_exec(CPUState *cpu);
+uint32_t do_arm_semihosting(CPUARMState *env);
+void aarch64_sync_32_to_64(CPUARMState *env);
+void aarch64_sync_64_to_32(CPUARMState *env);
+
+static inline bool is_a64(CPUARMState *env)
+{
+ return env->aarch64;
+}
+
+/* you can call this signal handler from your SIGBUS and SIGSEGV
+ signal handlers to inform the virtual CPU of exceptions. non zero
+ is returned if the signal was handled by the virtual CPU. */
+int cpu_arm_signal_handler(int host_signum, void *pinfo,
+ void *puc);
+
+/**
+ * pmccntr_sync
+ * @env: CPUARMState
+ *
+ * Synchronises the counter in the PMCCNTR. This must always be called twice,
+ * once before any action that might affect the timer and again afterwards.
+ * The function is used to swap the state of the register if required.
+ * This only happens when not in user mode (!CONFIG_USER_ONLY)
+ */
+void pmccntr_sync(CPUARMState *env);
+
+/* SCTLR bit meanings. Several bits have been reused in newer
+ * versions of the architecture; in that case we define constants
+ * for both old and new bit meanings. Code which tests against those
+ * bits should probably check or otherwise arrange that the CPU
+ * is the architectural version it expects.
+ */
+#define SCTLR_M (1U << 0)
+#define SCTLR_A (1U << 1)
+#define SCTLR_C (1U << 2)
+#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
+#define SCTLR_SA (1U << 3)
+#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
+#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
+#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
+#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
+#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
+#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
+#define SCTLR_ITD (1U << 7) /* v8 onward */
+#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
+#define SCTLR_SED (1U << 8) /* v8 onward */
+#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
+#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
+#define SCTLR_F (1U << 10) /* up to v6 */
+#define SCTLR_SW (1U << 10) /* v7 onward */
+#define SCTLR_Z (1U << 11)
+#define SCTLR_I (1U << 12)
+#define SCTLR_V (1U << 13)
+#define SCTLR_RR (1U << 14) /* up to v7 */
+#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
+#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
+#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
+#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
+#define SCTLR_nTWI (1U << 16) /* v8 onward */
+#define SCTLR_HA (1U << 17)
+#define SCTLR_BR (1U << 17) /* PMSA only */
+#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
+#define SCTLR_nTWE (1U << 18) /* v8 onward */
+#define SCTLR_WXN (1U << 19)
+#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
+#define SCTLR_UWXN (1U << 20) /* v7 onward */
+#define SCTLR_FI (1U << 21)
+#define SCTLR_U (1U << 22)
+#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
+#define SCTLR_VE (1U << 24) /* up to v7 */
+#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
+#define SCTLR_EE (1U << 25)
+#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
+#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
+#define SCTLR_NMFI (1U << 27)
+#define SCTLR_TRE (1U << 28)
+#define SCTLR_AFE (1U << 29)
+#define SCTLR_TE (1U << 30)
+
+#define CPTR_TCPAC (1U << 31)
+#define CPTR_TTA (1U << 20)
+#define CPTR_TFP (1U << 10)
+
+#define CPSR_M (0x1fU)
+#define CPSR_T (1U << 5)
+#define CPSR_F (1U << 6)
+#define CPSR_I (1U << 7)
+#define CPSR_A (1U << 8)
+#define CPSR_E (1U << 9)
+#define CPSR_IT_2_7 (0xfc00U)
+#define CPSR_GE (0xfU << 16)
+#define CPSR_IL (1U << 20)
+/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
+ * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
+ * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
+ * where it is live state but not accessible to the AArch32 code.
+ */
+#define CPSR_RESERVED (0x7U << 21)
+#define CPSR_J (1U << 24)
+#define CPSR_IT_0_1 (3U << 25)
+#define CPSR_Q (1U << 27)
+#define CPSR_V (1U << 28)
+#define CPSR_C (1U << 29)
+#define CPSR_Z (1U << 30)
+#define CPSR_N (1U << 31)
+#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
+#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
+
+#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
+#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
+ | CPSR_NZCV)
+/* Bits writable in user mode. */
+#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
+/* Execution state bits. MRS read as zero, MSR writes ignored. */
+#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
+/* Mask of bits which may be set by exception return copying them from SPSR */
+#define CPSR_ERET_MASK (~CPSR_RESERVED)
+
+#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
+#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
+#define TTBCR_PD0 (1U << 4)
+#define TTBCR_PD1 (1U << 5)
+#define TTBCR_EPD0 (1U << 7)
+#define TTBCR_IRGN0 (3U << 8)
+#define TTBCR_ORGN0 (3U << 10)
+#define TTBCR_SH0 (3U << 12)
+#define TTBCR_T1SZ (3U << 16)
+#define TTBCR_A1 (1U << 22)
+#define TTBCR_EPD1 (1U << 23)
+#define TTBCR_IRGN1 (3U << 24)
+#define TTBCR_ORGN1 (3U << 26)
+#define TTBCR_SH1 (1U << 28)
+#define TTBCR_EAE (1U << 31)
+
+/* Bit definitions for ARMv8 SPSR (PSTATE) format.
+ * Only these are valid when in AArch64 mode; in
+ * AArch32 mode SPSRs are basically CPSR-format.
+ */
+#define PSTATE_SP (1U)
+#define PSTATE_M (0xFU)
+#define PSTATE_nRW (1U << 4)
+#define PSTATE_F (1U << 6)
+#define PSTATE_I (1U << 7)
+#define PSTATE_A (1U << 8)
+#define PSTATE_D (1U << 9)
+#define PSTATE_IL (1U << 20)
+#define PSTATE_SS (1U << 21)
+#define PSTATE_V (1U << 28)
+#define PSTATE_C (1U << 29)
+#define PSTATE_Z (1U << 30)
+#define PSTATE_N (1U << 31)
+#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
+#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
+#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
+/* Mode values for AArch64 */
+#define PSTATE_MODE_EL3h 13
+#define PSTATE_MODE_EL3t 12
+#define PSTATE_MODE_EL2h 9
+#define PSTATE_MODE_EL2t 8
+#define PSTATE_MODE_EL1h 5
+#define PSTATE_MODE_EL1t 4
+#define PSTATE_MODE_EL0t 0
+
+/* Map EL and handler into a PSTATE_MODE. */
+static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
+{
+ return (el << 2) | handler;
+}
+
+/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
+ * interprocessing, so we don't attempt to sync with the cpsr state used by
+ * the 32 bit decoder.
+ */
+static inline uint32_t pstate_read(CPUARMState *env)
+{
+ int ZF;
+
+ ZF = (env->ZF == 0);
+ return (env->NF & 0x80000000) | (ZF << 30)
+ | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
+ | env->pstate | env->daif;
+}
+
+static inline void pstate_write(CPUARMState *env, uint32_t val)
+{
+ env->ZF = (~val) & PSTATE_Z;
+ env->NF = val;
+ env->CF = (val >> 29) & 1;
+ env->VF = (val << 3) & 0x80000000;
+ env->daif = val & PSTATE_DAIF;
+ env->pstate = val & ~CACHED_PSTATE_BITS;
+}
+
+/* Return the current CPSR value. */
+uint32_t cpsr_read(CPUARMState *env);
+/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
+void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
+
+/* Return the current xPSR value. */
+static inline uint32_t xpsr_read(CPUARMState *env)
+{
+ int ZF;
+ ZF = (env->ZF == 0);
+ return (env->NF & 0x80000000) | (ZF << 30)
+ | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
+ | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
+ | ((env->condexec_bits & 0xfc) << 8)
+ | env->v7m.exception;
+}
+
+/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
+static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
+{
+ if (mask & CPSR_NZCV) {
+ env->ZF = (~val) & CPSR_Z;
+ env->NF = val;
+ env->CF = (val >> 29) & 1;
+ env->VF = (val << 3) & 0x80000000;
+ }
+ if (mask & CPSR_Q)
+ env->QF = ((val & CPSR_Q) != 0);
+ if (mask & (1 << 24))
+ env->thumb = ((val & (1 << 24)) != 0);
+ if (mask & CPSR_IT_0_1) {
+ env->condexec_bits &= ~3;
+ env->condexec_bits |= (val >> 25) & 3;
+ }
+ if (mask & CPSR_IT_2_7) {
+ env->condexec_bits &= 3;
+ env->condexec_bits |= (val >> 8) & 0xfc;
+ }
+ if (mask & 0x1ff) {
+ env->v7m.exception = val & 0x1ff;
+ }
+}
+
+#define HCR_VM (1ULL << 0)
+#define HCR_SWIO (1ULL << 1)
+#define HCR_PTW (1ULL << 2)
+#define HCR_FMO (1ULL << 3)
+#define HCR_IMO (1ULL << 4)
+#define HCR_AMO (1ULL << 5)
+#define HCR_VF (1ULL << 6)
+#define HCR_VI (1ULL << 7)
+#define HCR_VSE (1ULL << 8)
+#define HCR_FB (1ULL << 9)
+#define HCR_BSU_MASK (3ULL << 10)
+#define HCR_DC (1ULL << 12)
+#define HCR_TWI (1ULL << 13)
+#define HCR_TWE (1ULL << 14)
+#define HCR_TID0 (1ULL << 15)
+#define HCR_TID1 (1ULL << 16)
+#define HCR_TID2 (1ULL << 17)
+#define HCR_TID3 (1ULL << 18)
+#define HCR_TSC (1ULL << 19)
+#define HCR_TIDCP (1ULL << 20)
+#define HCR_TACR (1ULL << 21)
+#define HCR_TSW (1ULL << 22)
+#define HCR_TPC (1ULL << 23)
+#define HCR_TPU (1ULL << 24)
+#define HCR_TTLB (1ULL << 25)
+#define HCR_TVM (1ULL << 26)
+#define HCR_TGE (1ULL << 27)
+#define HCR_TDZ (1ULL << 28)
+#define HCR_HCD (1ULL << 29)
+#define HCR_TRVM (1ULL << 30)
+#define HCR_RW (1ULL << 31)
+#define HCR_CD (1ULL << 32)
+#define HCR_ID (1ULL << 33)
+#define HCR_MASK ((1ULL << 34) - 1)
+
+#define SCR_NS (1U << 0)
+#define SCR_IRQ (1U << 1)
+#define SCR_FIQ (1U << 2)
+#define SCR_EA (1U << 3)
+#define SCR_FW (1U << 4)
+#define SCR_AW (1U << 5)
+#define SCR_NET (1U << 6)
+#define SCR_SMD (1U << 7)
+#define SCR_HCE (1U << 8)
+#define SCR_SIF (1U << 9)
+#define SCR_RW (1U << 10)
+#define SCR_ST (1U << 11)
+#define SCR_TWI (1U << 12)
+#define SCR_TWE (1U << 13)
+#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
+#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
+
+/* Return the current FPSCR value. */
+uint32_t vfp_get_fpscr(CPUARMState *env);
+void vfp_set_fpscr(CPUARMState *env, uint32_t val);
+
+/* For A64 the FPSCR is split into two logically distinct registers,
+ * FPCR and FPSR. However since they still use non-overlapping bits
+ * we store the underlying state in fpscr and just mask on read/write.
+ */
+#define FPSR_MASK 0xf800009f
+#define FPCR_MASK 0x07f79f00
+static inline uint32_t vfp_get_fpsr(CPUARMState *env)
+{
+ return vfp_get_fpscr(env) & FPSR_MASK;
+}
+
+static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
+{
+ uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
+ vfp_set_fpscr(env, new_fpscr);
+}
+
+static inline uint32_t vfp_get_fpcr(CPUARMState *env)
+{
+ return vfp_get_fpscr(env) & FPCR_MASK;
+}
+
+static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
+{
+ uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
+ vfp_set_fpscr(env, new_fpscr);
+}
+
+enum arm_cpu_mode {
+ ARM_CPU_MODE_USR = 0x10,
+ ARM_CPU_MODE_FIQ = 0x11,
+ ARM_CPU_MODE_IRQ = 0x12,
+ ARM_CPU_MODE_SVC = 0x13,
+ ARM_CPU_MODE_MON = 0x16,
+ ARM_CPU_MODE_ABT = 0x17,
+ ARM_CPU_MODE_HYP = 0x1a,
+ ARM_CPU_MODE_UND = 0x1b,
+ ARM_CPU_MODE_SYS = 0x1f
+};
+
+/* VFP system registers. */
+#define ARM_VFP_FPSID 0
+#define ARM_VFP_FPSCR 1
+#define ARM_VFP_MVFR2 5
+#define ARM_VFP_MVFR1 6
+#define ARM_VFP_MVFR0 7
+#define ARM_VFP_FPEXC 8
+#define ARM_VFP_FPINST 9
+#define ARM_VFP_FPINST2 10
+
+/* iwMMXt coprocessor control registers. */
+#define ARM_IWMMXT_wCID 0
+#define ARM_IWMMXT_wCon 1
+#define ARM_IWMMXT_wCSSF 2
+#define ARM_IWMMXT_wCASF 3
+#define ARM_IWMMXT_wCGR0 8
+#define ARM_IWMMXT_wCGR1 9
+#define ARM_IWMMXT_wCGR2 10
+#define ARM_IWMMXT_wCGR3 11
+
+/* If adding a feature bit which corresponds to a Linux ELF
+ * HWCAP bit, remember to update the feature-bit-to-hwcap
+ * mapping in linux-user/elfload.c:get_elf_hwcap().
+ */
+enum arm_features {
+ ARM_FEATURE_VFP,
+ ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
+ ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
+ ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
+ ARM_FEATURE_V6,
+ ARM_FEATURE_V6K,
+ ARM_FEATURE_V7,
+ ARM_FEATURE_THUMB2,
+ ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
+ ARM_FEATURE_VFP3,
+ ARM_FEATURE_VFP_FP16,
+ ARM_FEATURE_NEON,
+ ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
+ ARM_FEATURE_M, /* Microcontroller profile. */
+ ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
+ ARM_FEATURE_THUMB2EE,
+ ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
+ ARM_FEATURE_V4T,
+ ARM_FEATURE_V5,
+ ARM_FEATURE_STRONGARM,
+ ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
+ ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
+ ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
+ ARM_FEATURE_GENERIC_TIMER,
+ ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
+ ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
+ ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
+ ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
+ ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
+ ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
+ ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
+ ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
+ ARM_FEATURE_V8,
+ ARM_FEATURE_AARCH64, /* supports 64 bit mode */
+ ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
+ ARM_FEATURE_CBAR, /* has cp15 CBAR */
+ ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
+ ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
+ ARM_FEATURE_EL2, /* has EL2 Virtualization support */
+ ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
+ ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
+ ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
+ ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
+ ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
+};
+
+static inline int arm_feature(CPUARMState *env, int feature)
+{
+ return (env->features & (1ULL << feature)) != 0;
+}
+
+#if !defined(CONFIG_USER_ONLY)
+/* Return true if exception levels below EL3 are in secure state,
+ * or would be following an exception return to that level.
+ * Unlike arm_is_secure() (which is always a question about the
+ * _current_ state of the CPU) this doesn't care about the current
+ * EL or mode.
+ */
+static inline bool arm_is_secure_below_el3(CPUARMState *env)
+{
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ return !(env->cp15.scr_el3 & SCR_NS);
+ } else {
+ /* If EL2 is not supported then the secure state is implementation
+ * defined, in which case QEMU defaults to non-secure.
+ */
+ return false;
+ }
+}
+
+/* Return true if the processor is in secure state */
+static inline bool arm_is_secure(CPUARMState *env)
+{
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
+ /* CPU currently in AArch64 state and EL3 */
+ return true;
+ } else if (!is_a64(env) &&
+ (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
+ /* CPU currently in AArch32 state and monitor mode */
+ return true;
+ }
+ }
+ return arm_is_secure_below_el3(env);
+}
+
+#else
+static inline bool arm_is_secure_below_el3(CPUARMState *env)
+{
+ return false;
+}
+
+static inline bool arm_is_secure(CPUARMState *env)
+{
+ return false;
+}
+#endif
+
+/* Return true if the specified exception level is running in AArch64 state. */
+static inline bool arm_el_is_aa64(CPUARMState *env, int el)
+{
+ /* We don't currently support EL2, and this isn't valid for EL0
+ * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
+ * then the state of EL0 isn't well defined.)
+ */
+ assert(el == 1 || el == 3);
+
+ /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
+ * is a QEMU-imposed simplification which we may wish to change later.
+ * If we in future support EL2 and/or EL3, then the state of lower
+ * exception levels is controlled by the HCR.RW and SCR.RW bits.
+ */
+ return arm_feature(env, ARM_FEATURE_AARCH64);
+}
+
+/* Function for determing whether guest cp register reads and writes should
+ * access the secure or non-secure bank of a cp register. When EL3 is
+ * operating in AArch32 state, the NS-bit determines whether the secure
+ * instance of a cp register should be used. When EL3 is AArch64 (or if
+ * it doesn't exist at all) then there is no register banking, and all
+ * accesses are to the non-secure version.
+ */
+static inline bool access_secure_reg(CPUARMState *env)
+{
+ bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
+ !arm_el_is_aa64(env, 3) &&
+ !(env->cp15.scr_el3 & SCR_NS));
+
+ return ret;
+}
+
+/* Macros for accessing a specified CP register bank */
+#define A32_BANKED_REG_GET(_env, _regname, _secure) \
+ ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
+
+#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
+ do { \
+ if (_secure) { \
+ (_env)->cp15._regname##_s = (_val); \
+ } else { \
+ (_env)->cp15._regname##_ns = (_val); \
+ } \
+ } while (0)
+
+/* Macros for automatically accessing a specific CP register bank depending on
+ * the current secure state of the system. These macros are not intended for
+ * supporting instruction translation reads/writes as these are dependent
+ * solely on the SCR.NS bit and not the mode.
+ */
+#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
+ A32_BANKED_REG_GET((_env), _regname, \
+ ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))))
+
+#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
+ A32_BANKED_REG_SET((_env), _regname, \
+ ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))), \
+ (_val))
+
+void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
+uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
+ uint32_t cur_el, bool secure);
+
+/* Interface between CPU and Interrupt controller. */
+void armv7m_nvic_set_pending(void *opaque, int irq);
+int armv7m_nvic_acknowledge_irq(void *opaque);
+void armv7m_nvic_complete_irq(void *opaque, int irq);
+
+/* Interface for defining coprocessor registers.
+ * Registers are defined in tables of arm_cp_reginfo structs
+ * which are passed to define_arm_cp_regs().
+ */
+
+/* When looking up a coprocessor register we look for it
+ * via an integer which encodes all of:
+ * coprocessor number
+ * Crn, Crm, opc1, opc2 fields
+ * 32 or 64 bit register (ie is it accessed via MRC/MCR
+ * or via MRRC/MCRR?)
+ * non-secure/secure bank (AArch32 only)
+ * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
+ * (In this case crn and opc2 should be zero.)
+ * For AArch64, there is no 32/64 bit size distinction;
+ * instead all registers have a 2 bit op0, 3 bit op1 and op2,
+ * and 4 bit CRn and CRm. The encoding patterns are chosen
+ * to be easy to convert to and from the KVM encodings, and also
+ * so that the hashtable can contain both AArch32 and AArch64
+ * registers (to allow for interprocessing where we might run
+ * 32 bit code on a 64 bit core).
+ */
+/* This bit is private to our hashtable cpreg; in KVM register
+ * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
+ * in the upper bits of the 64 bit ID.
+ */
+#define CP_REG_AA64_SHIFT 28
+#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
+
+/* To enable banking of coprocessor registers depending on ns-bit we
+ * add a bit to distinguish between secure and non-secure cpregs in the
+ * hashtable.
+ */
+#define CP_REG_NS_SHIFT 29
+#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
+
+#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
+ ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
+ ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
+
+#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
+ (CP_REG_AA64_MASK | \
+ ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
+ ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
+ ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
+ ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
+ ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
+ ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
+
+/* Convert a full 64 bit KVM register ID to the truncated 32 bit
+ * version used as a key for the coprocessor register hashtable
+ */
+static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
+{
+ uint32_t cpregid = kvmid;
+ if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
+ cpregid |= CP_REG_AA64_MASK;
+ } else {
+ if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
+ cpregid |= (1 << 15);
+ }
+
+ /* KVM is always non-secure so add the NS flag on AArch32 register
+ * entries.
+ */
+ cpregid |= 1 << CP_REG_NS_SHIFT;
+ }
+ return cpregid;
+}
+
+/* Convert a truncated 32 bit hashtable key into the full
+ * 64 bit KVM register ID.
+ */
+static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
+{
+ uint64_t kvmid;
+
+ if (cpregid & CP_REG_AA64_MASK) {
+ kvmid = cpregid & ~CP_REG_AA64_MASK;
+ kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
+ } else {
+ kvmid = cpregid & ~(1 << 15);
+ if (cpregid & (1 << 15)) {
+ kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
+ } else {
+ kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
+ }
+ }
+ return kvmid;
+}
+
+/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
+ * special-behaviour cp reg and bits [15..8] indicate what behaviour
+ * it has. Otherwise it is a simple cp reg, where CONST indicates that
+ * TCG can assume the value to be constant (ie load at translate time)
+ * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
+ * indicates that the TB should not be ended after a write to this register
+ * (the default is that the TB ends after cp writes). OVERRIDE permits
+ * a register definition to override a previous definition for the
+ * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
+ * old must have the OVERRIDE bit set.
+ * ALIAS indicates that this register is an alias view of some underlying
+ * state which is also visible via another register, and that the other
+ * register is handling migration and reset; registers marked ALIAS will not be
+ * migrated but may have their state set by syncing of register state from KVM.
+ * NO_RAW indicates that this register has no underlying state and does not
+ * support raw access for state saving/loading; it will not be used for either
+ * migration or KVM state synchronization. (Typically this is for "registers"
+ * which are actually used as instructions for cache maintenance and so on.)
+ * IO indicates that this register does I/O and therefore its accesses
+ * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
+ * registers which implement clocks or timers require this.
+ */
+#define ARM_CP_SPECIAL 1
+#define ARM_CP_CONST 2
+#define ARM_CP_64BIT 4
+#define ARM_CP_SUPPRESS_TB_END 8
+#define ARM_CP_OVERRIDE 16
+#define ARM_CP_ALIAS 32
+#define ARM_CP_IO 64
+#define ARM_CP_NO_RAW 128
+#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
+#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
+#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
+#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
+#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
+#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
+/* Used only as a terminator for ARMCPRegInfo lists */
+#define ARM_CP_SENTINEL 0xffff
+/* Mask of only the flag bits in a type field */
+#define ARM_CP_FLAG_MASK 0xff
+
+/* Valid values for ARMCPRegInfo state field, indicating which of
+ * the AArch32 and AArch64 execution states this register is visible in.
+ * If the reginfo doesn't explicitly specify then it is AArch32 only.
+ * If the reginfo is declared to be visible in both states then a second
+ * reginfo is synthesised for the AArch32 view of the AArch64 register,
+ * such that the AArch32 view is the lower 32 bits of the AArch64 one.
+ * Note that we rely on the values of these enums as we iterate through
+ * the various states in some places.
+ */
+enum {
+ ARM_CP_STATE_AA32 = 0,
+ ARM_CP_STATE_AA64 = 1,
+ ARM_CP_STATE_BOTH = 2,
+};
+
+/* ARM CP register secure state flags. These flags identify security state
+ * attributes for a given CP register entry.
+ * The existence of both or neither secure and non-secure flags indicates that
+ * the register has both a secure and non-secure hash entry. A single one of
+ * these flags causes the register to only be hashed for the specified
+ * security state.
+ * Although definitions may have any combination of the S/NS bits, each
+ * registered entry will only have one to identify whether the entry is secure
+ * or non-secure.
+ */
+enum {
+ ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
+ ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
+};
+
+/* Return true if cptype is a valid type field. This is used to try to
+ * catch errors where the sentinel has been accidentally left off the end
+ * of a list of registers.
+ */
+static inline bool cptype_valid(int cptype)
+{
+ return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
+ || ((cptype & ARM_CP_SPECIAL) &&
+ ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
+}
+
+/* Access rights:
+ * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
+ * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
+ * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
+ * (ie any of the privileged modes in Secure state, or Monitor mode).
+ * If a register is accessible in one privilege level it's always accessible
+ * in higher privilege levels too. Since "Secure PL1" also follows this rule
+ * (ie anything visible in PL2 is visible in S-PL1, some things are only
+ * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
+ * terminology a little and call this PL3.
+ * In AArch64 things are somewhat simpler as the PLx bits line up exactly
+ * with the ELx exception levels.
+ *
+ * If access permissions for a register are more complex than can be
+ * described with these bits, then use a laxer set of restrictions, and
+ * do the more restrictive/complex check inside a helper function.
+ */
+#define PL3_R 0x80
+#define PL3_W 0x40
+#define PL2_R (0x20 | PL3_R)
+#define PL2_W (0x10 | PL3_W)
+#define PL1_R (0x08 | PL2_R)
+#define PL1_W (0x04 | PL2_W)
+#define PL0_R (0x02 | PL1_R)
+#define PL0_W (0x01 | PL1_W)
+
+#define PL3_RW (PL3_R | PL3_W)
+#define PL2_RW (PL2_R | PL2_W)
+#define PL1_RW (PL1_R | PL1_W)
+#define PL0_RW (PL0_R | PL0_W)
+
+/* Return the current Exception Level (as per ARMv8; note that this differs
+ * from the ARMv7 Privilege Level).
+ */
+static inline int arm_current_el(CPUARMState *env)
+{
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ return !((env->v7m.exception == 0) && (env->v7m.control & 1));
+ }
+
+ if (is_a64(env)) {
+ return extract32(env->pstate, 2, 2);
+ }
+
+ switch (env->uncached_cpsr & 0x1f) {
+ case ARM_CPU_MODE_USR:
+ return 0;
+ case ARM_CPU_MODE_HYP:
+ return 2;
+ case ARM_CPU_MODE_MON:
+ return 3;
+ default:
+ if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
+ /* If EL3 is 32-bit then all secure privileged modes run in
+ * EL3
+ */
+ return 3;
+ }
+
+ return 1;
+ }
+}
+
+typedef struct ARMCPRegInfo ARMCPRegInfo;
+
+typedef enum CPAccessResult {
+ /* Access is permitted */
+ CP_ACCESS_OK = 0,
+ /* Access fails due to a configurable trap or enable which would
+ * result in a categorized exception syndrome giving information about
+ * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
+ * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
+ * PL1 if in EL0, otherwise to the current EL).
+ */
+ CP_ACCESS_TRAP = 1,
+ /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
+ * Note that this is not a catch-all case -- the set of cases which may
+ * result in this failure is specifically defined by the architecture.
+ */
+ CP_ACCESS_TRAP_UNCATEGORIZED = 2,
+ /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
+ CP_ACCESS_TRAP_EL2 = 3,
+ CP_ACCESS_TRAP_EL3 = 4,
+} CPAccessResult;
+
+/* Access functions for coprocessor registers. These cannot fail and
+ * may not raise exceptions.
+ */
+typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
+typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
+ uint64_t value);
+/* Access permission check functions for coprocessor registers. */
+typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
+/* Hook function for register reset */
+typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
+
+#define CP_ANY 0xff
+
+/* Definition of an ARM coprocessor register */
+struct ARMCPRegInfo {
+ /* Name of register (useful mainly for debugging, need not be unique) */
+ const char *name;
+ /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
+ * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
+ * 'wildcard' field -- any value of that field in the MRC/MCR insn
+ * will be decoded to this register. The register read and write
+ * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
+ * used by the program, so it is possible to register a wildcard and
+ * then behave differently on read/write if necessary.
+ * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
+ * must both be zero.
+ * For AArch64-visible registers, opc0 is also used.
+ * Since there are no "coprocessors" in AArch64, cp is purely used as a
+ * way to distinguish (for KVM's benefit) guest-visible system registers
+ * from demuxed ones provided to preserve the "no side effects on
+ * KVM register read/write from QEMU" semantics. cp==0x13 is guest
+ * visible (to match KVM's encoding); cp==0 will be converted to
+ * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
+ */
+ uint8_t cp;
+ uint8_t crn;
+ uint8_t crm;
+ uint8_t opc0;
+ uint8_t opc1;
+ uint8_t opc2;
+ /* Execution state in which this register is visible: ARM_CP_STATE_* */
+ int state;
+ /* Register type: ARM_CP_* bits/values */
+ int type;
+ /* Access rights: PL*_[RW] */
+ int access;
+ /* Security state: ARM_CP_SECSTATE_* bits/values */
+ int secure;
+ /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
+ * this register was defined: can be used to hand data through to the
+ * register read/write functions, since they are passed the ARMCPRegInfo*.
+ */
+ void *opaque;
+ /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
+ * fieldoffset is non-zero, the reset value of the register.
+ */
+ uint64_t resetvalue;
+ /* Offset of the field in CPUARMState for this register.
+ *
+ * This is not needed if either:
+ * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
+ * 2. both readfn and writefn are specified
+ */
+ ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
+
+ /* Offsets of the secure and non-secure fields in CPUARMState for the
+ * register if it is banked. These fields are only used during the static
+ * registration of a register. During hashing the bank associated
+ * with a given security state is copied to fieldoffset which is used from
+ * there on out.
+ *
+ * It is expected that register definitions use either fieldoffset or
+ * bank_fieldoffsets in the definition but not both. It is also expected
+ * that both bank offsets are set when defining a banked register. This
+ * use indicates that a register is banked.
+ */
+ ptrdiff_t bank_fieldoffsets[2];
+
+ /* Function for making any access checks for this register in addition to
+ * those specified by the 'access' permissions bits. If NULL, no extra
+ * checks required. The access check is performed at runtime, not at
+ * translate time.
+ */
+ CPAccessFn *accessfn;
+ /* Function for handling reads of this register. If NULL, then reads
+ * will be done by loading from the offset into CPUARMState specified
+ * by fieldoffset.
+ */
+ CPReadFn *readfn;
+ /* Function for handling writes of this register. If NULL, then writes
+ * will be done by writing to the offset into CPUARMState specified
+ * by fieldoffset.
+ */
+ CPWriteFn *writefn;
+ /* Function for doing a "raw" read; used when we need to copy
+ * coprocessor state to the kernel for KVM or out for
+ * migration. This only needs to be provided if there is also a
+ * readfn and it has side effects (for instance clear-on-read bits).
+ */
+ CPReadFn *raw_readfn;
+ /* Function for doing a "raw" write; used when we need to copy KVM
+ * kernel coprocessor state into userspace, or for inbound
+ * migration. This only needs to be provided if there is also a
+ * writefn and it masks out "unwritable" bits or has write-one-to-clear
+ * or similar behaviour.
+ */
+ CPWriteFn *raw_writefn;
+ /* Function for resetting the register. If NULL, then reset will be done
+ * by writing resetvalue to the field specified in fieldoffset. If
+ * fieldoffset is 0 then no reset will be done.
+ */
+ CPResetFn *resetfn;
+};
+
+/* Macros which are lvalues for the field in CPUARMState for the
+ * ARMCPRegInfo *ri.
+ */
+#define CPREG_FIELD32(env, ri) \
+ (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
+#define CPREG_FIELD64(env, ri) \
+ (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
+
+#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
+
+void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
+ const ARMCPRegInfo *regs, void *opaque);
+void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
+ const ARMCPRegInfo *regs, void *opaque);
+static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
+{
+ define_arm_cp_regs_with_opaque(cpu, regs, 0);
+}
+static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
+{
+ define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
+}
+const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
+
+/* CPWriteFn that can be used to implement writes-ignored behaviour */
+void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value);
+/* CPReadFn that can be used for read-as-zero behaviour */
+uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
+
+/* CPResetFn that does nothing, for use if no reset is required even
+ * if fieldoffset is non zero.
+ */
+void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
+
+/* Return true if this reginfo struct's field in the cpu state struct
+ * is 64 bits wide.
+ */
+static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
+{
+ return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
+}
+
+static inline bool cp_access_ok(int current_el,
+ const ARMCPRegInfo *ri, int isread)
+{
+ return (ri->access >> ((current_el * 2) + isread)) & 1;
+}
+
+/**
+ * write_list_to_cpustate
+ * @cpu: ARMCPU
+ *
+ * For each register listed in the ARMCPU cpreg_indexes list, write
+ * its value from the cpreg_values list into the ARMCPUState structure.
+ * This updates TCG's working data structures from KVM data or
+ * from incoming migration state.
+ *
+ * Returns: true if all register values were updated correctly,
+ * false if some register was unknown or could not be written.
+ * Note that we do not stop early on failure -- we will attempt
+ * writing all registers in the list.
+ */
+bool write_list_to_cpustate(ARMCPU *cpu);
+
+/**
+ * write_cpustate_to_list:
+ * @cpu: ARMCPU
+ *
+ * For each register listed in the ARMCPU cpreg_indexes list, write
+ * its value from the ARMCPUState structure into the cpreg_values list.
+ * This is used to copy info from TCG's working data structures into
+ * KVM or for outbound migration.
+ *
+ * Returns: true if all register values were read correctly,
+ * false if some register was unknown or could not be read.
+ * Note that we do not stop early on failure -- we will attempt
+ * reading all registers in the list.
+ */
+bool write_cpustate_to_list(ARMCPU *cpu);
+
+/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
+ Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
+ conventional cores (ie. Application or Realtime profile). */
+
+#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
+
+#define ARM_CPUID_TI915T 0x54029152
+#define ARM_CPUID_TI925T 0x54029252
+
+#if defined(CONFIG_USER_ONLY)
+#define TARGET_PAGE_BITS 12
+#else
+/* The ARM MMU allows 1k pages. */
+/* ??? Linux doesn't actually use these, and they're deprecated in recent
+ architecture revisions. Maybe a configure option to disable them. */
+#define TARGET_PAGE_BITS 10
+#endif
+
+#if defined(TARGET_AARCH64)
+# define TARGET_PHYS_ADDR_SPACE_BITS 48
+# define TARGET_VIRT_ADDR_SPACE_BITS 64
+#else
+# define TARGET_PHYS_ADDR_SPACE_BITS 40
+# define TARGET_VIRT_ADDR_SPACE_BITS 32
+#endif
+
+static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
+ unsigned int target_el)
+{
+ CPUARMState *env = cs->env_ptr;
+ unsigned int cur_el = arm_current_el(env);
+ bool secure = arm_is_secure(env);
+ uint32_t scr;
+ uint32_t hcr;
+ bool pstate_unmasked;
+ int8_t unmasked = 0;
+
+ /* Don't take exceptions if they target a lower EL.
+ * This check should catch any exceptions that would not be taken but left
+ * pending.
+ */
+ if (cur_el > target_el) {
+ return false;
+ }
+
+ switch (excp_idx) {
+ case EXCP_FIQ:
+ /* If FIQs are routed to EL3 or EL2 then there are cases where we
+ * override the CPSR.F in determining if the exception is masked or
+ * not. If neither of these are set then we fall back to the CPSR.F
+ * setting otherwise we further assess the state below.
+ */
+ hcr = (env->cp15.hcr_el2 & HCR_FMO);
+ scr = (env->cp15.scr_el3 & SCR_FIQ);
+
+ /* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit
+ * masks FIQ interrupts when taken in non-secure state. If SCR.FW is
+ * set then FIQs can be masked by CPSR.F when non-secure but only
+ * when FIQs are only routed to EL3.
+ */
+ scr &= !((env->cp15.scr_el3 & SCR_FW) && !hcr);
+ pstate_unmasked = !(env->daif & PSTATE_F);
+ break;
+
+ case EXCP_IRQ:
+ /* When EL3 execution state is 32-bit, if HCR.IMO is set then we may
+ * override the CPSR.I masking when in non-secure state. The SCR.IRQ
+ * setting has already been taken into consideration when setting the
+ * target EL, so it does not have a further affect here.
+ */
+ hcr = (env->cp15.hcr_el2 & HCR_IMO);
+ scr = false;
+ pstate_unmasked = !(env->daif & PSTATE_I);
+ break;
+
+ case EXCP_VFIQ:
+ if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
+ /* VFIQs are only taken when hypervized and non-secure. */
+ return false;
+ }
+ return !(env->daif & PSTATE_F);
+ case EXCP_VIRQ:
+ if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
+ /* VIRQs are only taken when hypervized and non-secure. */
+ return false;
+ }
+ return !(env->daif & PSTATE_I);
+ default:
+ g_assert_not_reached();
+ }
+
+ /* Use the target EL, current execution state and SCR/HCR settings to
+ * determine whether the corresponding CPSR bit is used to mask the
+ * interrupt.
+ */
+ if ((target_el > cur_el) && (target_el != 1)) {
+ if (arm_el_is_aa64(env, 3) || ((scr || hcr) && (!secure))) {
+ unmasked = 1;
+ }
+ }
+
+ /* The PSTATE bits only mask the interrupt if we have not overriden the
+ * ability above.
+ */
+ return unmasked || pstate_unmasked;
+}
+
+#define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
+
+#define cpu_exec cpu_arm_exec
+#define cpu_gen_code cpu_arm_gen_code
+#define cpu_signal_handler cpu_arm_signal_handler
+#define cpu_list arm_cpu_list
+
+/* ARM has the following "translation regimes" (as the ARM ARM calls them):
+ *
+ * If EL3 is 64-bit:
+ * + NonSecure EL1 & 0 stage 1
+ * + NonSecure EL1 & 0 stage 2
+ * + NonSecure EL2
+ * + Secure EL1 & EL0
+ * + Secure EL3
+ * If EL3 is 32-bit:
+ * + NonSecure PL1 & 0 stage 1
+ * + NonSecure PL1 & 0 stage 2
+ * + NonSecure PL2
+ * + Secure PL0 & PL1
+ * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
+ *
+ * For QEMU, an mmu_idx is not quite the same as a translation regime because:
+ * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
+ * may differ in access permissions even if the VA->PA map is the same
+ * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
+ * translation, which means that we have one mmu_idx that deals with two
+ * concatenated translation regimes [this sort of combined s1+2 TLB is
+ * architecturally permitted]
+ * 3. we don't need to allocate an mmu_idx to translations that we won't be
+ * handling via the TLB. The only way to do a stage 1 translation without
+ * the immediate stage 2 translation is via the ATS or AT system insns,
+ * which can be slow-pathed and always do a page table walk.
+ * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
+ * translation regimes, because they map reasonably well to each other
+ * and they can't both be active at the same time.
+ * This gives us the following list of mmu_idx values:
+ *
+ * NS EL0 (aka NS PL0) stage 1+2
+ * NS EL1 (aka NS PL1) stage 1+2
+ * NS EL2 (aka NS PL2)
+ * S EL3 (aka S PL1)
+ * S EL0 (aka S PL0)
+ * S EL1 (not used if EL3 is 32 bit)
+ * NS EL0+1 stage 2
+ *
+ * (The last of these is an mmu_idx because we want to be able to use the TLB
+ * for the accesses done as part of a stage 1 page table walk, rather than
+ * having to walk the stage 2 page table over and over.)
+ *
+ * Our enumeration includes at the end some entries which are not "true"
+ * mmu_idx values in that they don't have corresponding TLBs and are only
+ * valid for doing slow path page table walks.
+ *
+ * The constant names here are patterned after the general style of the names
+ * of the AT/ATS operations.
+ * The values used are carefully arranged to make mmu_idx => EL lookup easy.
+ */
+typedef enum ARMMMUIdx {
+ ARMMMUIdx_S12NSE0 = 0,
+ ARMMMUIdx_S12NSE1 = 1,
+ ARMMMUIdx_S1E2 = 2,
+ ARMMMUIdx_S1E3 = 3,
+ ARMMMUIdx_S1SE0 = 4,
+ ARMMMUIdx_S1SE1 = 5,
+ ARMMMUIdx_S2NS = 6,
+ /* Indexes below here don't have TLBs and are used only for AT system
+ * instructions or for the first stage of an S12 page table walk.
+ */
+ ARMMMUIdx_S1NSE0 = 7,
+ ARMMMUIdx_S1NSE1 = 8,
+} ARMMMUIdx;
+
+#define MMU_USER_IDX 0
+
+/* Return the exception level we're running at if this is our mmu_idx */
+static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
+{
+ assert(mmu_idx < ARMMMUIdx_S2NS);
+ return mmu_idx & 3;
+}
+
+/* Determine the current mmu_idx to use for normal loads/stores */
+static inline int cpu_mmu_index(CPUARMState *env)
+{
+ int el = arm_current_el(env);
+
+ if (el < 2 && arm_is_secure_below_el3(env)) {
+ return ARMMMUIdx_S1SE0 + el;
+ }
+ return el;
+}
+
+/* Return the Exception Level targeted by debug exceptions;
+ * currently always EL1 since we don't implement EL2 or EL3.
+ */
+static inline int arm_debug_target_el(CPUARMState *env)
+{
+ return 1;
+}
+
+static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
+{
+ if (arm_current_el(env) == arm_debug_target_el(env)) {
+ if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
+ || (env->daif & PSTATE_D)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
+{
+ if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
+ return aa64_generate_debug_exceptions(env);
+ }
+ return arm_current_el(env) != 2;
+}
+
+/* Return true if debugging exceptions are currently enabled.
+ * This corresponds to what in ARM ARM pseudocode would be
+ * if UsingAArch32() then
+ * return AArch32.GenerateDebugExceptions()
+ * else
+ * return AArch64.GenerateDebugExceptions()
+ * We choose to push the if() down into this function for clarity,
+ * since the pseudocode has it at all callsites except for the one in
+ * CheckSoftwareStep(), where it is elided because both branches would
+ * always return the same value.
+ *
+ * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
+ * don't yet implement those exception levels or their associated trap bits.
+ */
+static inline bool arm_generate_debug_exceptions(CPUARMState *env)
+{
+ if (env->aarch64) {
+ return aa64_generate_debug_exceptions(env);
+ } else {
+ return aa32_generate_debug_exceptions(env);
+ }
+}
+
+/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
+ * implicitly means this always returns false in pre-v8 CPUs.)
+ */
+static inline bool arm_singlestep_active(CPUARMState *env)
+{
+ return extract32(env->cp15.mdscr_el1, 0, 1)
+ && arm_el_is_aa64(env, arm_debug_target_el(env))
+ && arm_generate_debug_exceptions(env);
+}
+
+#include "exec/cpu-all.h"
+
+/* Bit usage in the TB flags field: bit 31 indicates whether we are
+ * in 32 or 64 bit mode. The meaning of the other bits depends on that.
+ * We put flags which are shared between 32 and 64 bit mode at the top
+ * of the word, and flags which apply to only one mode at the bottom.
+ */
+#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
+#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
+#define ARM_TBFLAG_MMUIDX_SHIFT 28
+#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
+#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
+#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
+#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
+#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
+/* Target EL if we take a floating-point-disabled exception */
+#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
+#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
+
+/* Bit usage when in AArch32 state: */
+#define ARM_TBFLAG_THUMB_SHIFT 0
+#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
+#define ARM_TBFLAG_VECLEN_SHIFT 1
+#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
+#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
+#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
+#define ARM_TBFLAG_VFPEN_SHIFT 7
+#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
+#define ARM_TBFLAG_CONDEXEC_SHIFT 8
+#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
+#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
+#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
+/* We store the bottom two bits of the CPAR as TB flags and handle
+ * checks on the other bits at runtime
+ */
+#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
+#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
+/* Indicates whether cp register reads and writes by guest code should access
+ * the secure or nonsecure bank of banked registers; note that this is not
+ * the same thing as the current security state of the processor!
+ */
+#define ARM_TBFLAG_NS_SHIFT 19
+#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
+
+/* Bit usage when in AArch64 state: currently we have no A64 specific bits */
+
+/* some convenience accessor macros */
+#define ARM_TBFLAG_AARCH64_STATE(F) \
+ (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
+#define ARM_TBFLAG_MMUIDX(F) \
+ (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
+#define ARM_TBFLAG_SS_ACTIVE(F) \
+ (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
+#define ARM_TBFLAG_PSTATE_SS(F) \
+ (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
+#define ARM_TBFLAG_FPEXC_EL(F) \
+ (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
+#define ARM_TBFLAG_THUMB(F) \
+ (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
+#define ARM_TBFLAG_VECLEN(F) \
+ (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
+#define ARM_TBFLAG_VECSTRIDE(F) \
+ (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
+#define ARM_TBFLAG_VFPEN(F) \
+ (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
+#define ARM_TBFLAG_CONDEXEC(F) \
+ (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
+#define ARM_TBFLAG_BSWAP_CODE(F) \
+ (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
+#define ARM_TBFLAG_XSCALE_CPAR(F) \
+ (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
+#define ARM_TBFLAG_NS(F) \
+ (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
+
+/* Return the exception level to which FP-disabled exceptions should
+ * be taken, or 0 if FP is enabled.
+ */
+static inline int fp_exception_el(CPUARMState *env)
+{
+ int fpen;
+ int cur_el = arm_current_el(env);
+
+ /* CPACR and the CPTR registers don't exist before v6, so FP is
+ * always accessible
+ */
+ if (!arm_feature(env, ARM_FEATURE_V6)) {
+ return 0;
+ }
+
+ /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
+ * 0, 2 : trap EL0 and EL1/PL1 accesses
+ * 1 : trap only EL0 accesses
+ * 3 : trap no accesses
+ */
+ fpen = extract32(env->cp15.cpacr_el1, 20, 2);
+ switch (fpen) {
+ case 0:
+ case 2:
+ if (cur_el == 0 || cur_el == 1) {
+ /* Trap to PL1, which might be EL1 or EL3 */
+ if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
+ return 3;
+ }
+ return 1;
+ }
+ if (cur_el == 3 && !is_a64(env)) {
+ /* Secure PL1 running at EL3 */
+ return 3;
+ }
+ break;
+ case 1:
+ if (cur_el == 0) {
+ return 1;
+ }
+ break;
+ case 3:
+ break;
+ }
+
+ /* For the CPTR registers we don't need to guard with an ARM_FEATURE
+ * check because zero bits in the registers mean "don't trap".
+ */
+
+ /* CPTR_EL2 : present in v7VE or v8 */
+ if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
+ && !arm_is_secure_below_el3(env)) {
+ /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
+ return 2;
+ }
+
+ /* CPTR_EL3 : present in v8 */
+ if (extract32(env->cp15.cptr_el[3], 10, 1)) {
+ /* Trap all FP ops to EL3 */
+ return 3;
+ }
+
+ return 0;
+}
+
+static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
+ target_ulong *cs_base, int *flags)
+{
+ if (is_a64(env)) {
+ *pc = env->pc;
+ *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
+ } else {
+ *pc = env->regs[15];
+ *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
+ | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
+ | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
+ | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
+ | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
+ if (!(access_secure_reg(env))) {
+ *flags |= ARM_TBFLAG_NS_MASK;
+ }
+ if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
+ || arm_el_is_aa64(env, 1)) {
+ *flags |= ARM_TBFLAG_VFPEN_MASK;
+ }
+ *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
+ << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
+ }
+
+ *flags |= (cpu_mmu_index(env) << ARM_TBFLAG_MMUIDX_SHIFT);
+ /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
+ * states defined in the ARM ARM for software singlestep:
+ * SS_ACTIVE PSTATE.SS State
+ * 0 x Inactive (the TB flag for SS is always 0)
+ * 1 0 Active-pending
+ * 1 1 Active-not-pending
+ */
+ if (arm_singlestep_active(env)) {
+ *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
+ if (is_a64(env)) {
+ if (env->pstate & PSTATE_SS) {
+ *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
+ }
+ } else {
+ if (env->uncached_cpsr & PSTATE_SS) {
+ *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
+ }
+ }
+ }
+ *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
+
+ *cs_base = 0;
+}
+
+#include "exec/exec-all.h"
+
+enum {
+ QEMU_PSCI_CONDUIT_DISABLED = 0,
+ QEMU_PSCI_CONDUIT_SMC = 1,
+ QEMU_PSCI_CONDUIT_HVC = 2,
+};
+
+#endif