summaryrefslogtreecommitdiffstats
path: root/movement/watch_faces/complication/planetary_time_face.c
blob: 56a18cf2289aa7b734d2fbd781e0f638b41cfb79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/*
 * MIT License
 *
 * Copyright (c) 2023 Tobias Raayoni Last / @randogoth
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "sunriset.h"
#include "watch.h"
#include "watch_utility.h"
#include "planetary_time_face.h"

#if __EMSCRIPTEN__
#include <emscripten.h>
#endif

// STATIC FUNCTIONS AND CONSTANTS /////////////////////////////////////////////

/** @brief Planetary rulers in the Chaldean order from slowest to fastest
 *  @details Planetary rulers in the Chaldean order from slowest to fastest: 
 *  Jupiter, Mars, Sun, Venus, Mercury, Moon
 */
static const char planets[7][3] = {"Sa", "Ju", "Ma", "So", "Ve", "Me", "Lu"}; // Latin
static const char planetes[7][3] = {"Ch", "Ze", "Ar", "He", "Af", "Hr", "Se"}; // Greek

/** @brief Ruler of each weekday for easy lookup
 */
static const uint8_t plindex[7] = {3, 6, 2, 5, 1, 4, 0}; // day ruler index

/** @brief Astrological symbol for each planet
 */
static void _planetary_icon(uint8_t planet) {

    watch_clear_pixel(0, 13);
    watch_clear_pixel(0, 14);
    watch_clear_pixel(1, 13);
    watch_clear_pixel(1, 14);
    watch_clear_pixel(1, 15);
    watch_clear_pixel(2, 13);
    watch_clear_pixel(2, 14);
    watch_clear_pixel(2, 15);

    switch (planet) {
        case 0: // Saturn
            watch_set_pixel(0, 14);
            watch_set_pixel(2, 14);
            watch_set_pixel(1, 15);
            watch_set_pixel(2, 13);
            break;
        case 1: // Jupiter
            watch_set_pixel(0, 14);
            watch_set_pixel(1, 15);
            watch_set_pixel(1, 14);
            break;
        case 2: // Mars
            watch_set_pixel(2, 14);
            watch_set_pixel(2, 15);
            watch_set_pixel(1, 15);
            watch_set_pixel(2, 13);
            watch_set_pixel(1, 13);\
            break;
        case 3: // Sol
            watch_set_pixel(0, 14);
            watch_set_pixel(2, 14);
            watch_set_pixel(1, 13);
            watch_set_pixel(2, 13);
            watch_set_pixel(0, 13);
            watch_set_pixel(2, 15);
            break;
        case 4: // Venus
            watch_set_pixel(0, 14);
            watch_set_pixel(0, 13);
            watch_set_pixel(1, 13);
            watch_set_pixel(1, 15);
            watch_set_pixel(1, 14);
            break;
        case 5: // Mercury
            watch_set_pixel(0, 14);
            watch_set_pixel(1, 13);
            watch_set_pixel(1, 14);
            watch_set_pixel(1, 15);
            watch_set_pixel(2, 15);
            break;
        case 6: // Luna
            watch_set_pixel(2, 14);
            watch_set_pixel(2, 15);
            watch_set_pixel(2, 13);
            break;
    }
}

/** @details solar phase can be a day phase between sunrise and sunset or an alternating night phase.
 *  This function calculates the start and end of the current phase based on a given geographic location.
 */
static void _planetary_solar_phase(movement_settings_t *settings, planetary_time_state_t *state) {
    uint8_t phase;
    double sunrise, sunset;
    uint32_t now_epoch, sunrise_epoch, sunset_epoch, midnight_epoch;
    movement_location_t movement_location = (movement_location_t) watch_get_backup_data(1);

    // check if we have a location. If not, display error
    if (movement_location.reg == 0) {
        watch_display_string("    no Loc", 0);
        state->no_location = true;
        return;
    }

    // location detected
    state->no_location = false;

    watch_date_time date_time = watch_rtc_get_date_time(); // the current local date / time
    watch_date_time utc_now = watch_utility_date_time_convert_zone(date_time, movement_timezone_offsets[settings->bit.time_zone] * 60, 0); // the current date / time in UTC
    watch_date_time scratch_time; // scratchpad, contains different values at different times
    watch_date_time midnight;
    scratch_time.reg = midnight.reg = utc_now.reg;
    midnight.unit.hour = midnight.unit.minute = midnight.unit.second = 0; // start of the day at midnight

    // get location coordinate
    int16_t lat_centi = (int16_t)movement_location.bit.latitude;
    int16_t lon_centi = (int16_t)movement_location.bit.longitude;
    double lat = (double)lat_centi / 100.0;
    double lon = (double)lon_centi / 100.0;

    // save UTC offset
    state->utc_offset = ((double)movement_timezone_offsets[settings->bit.time_zone]) / 60.0;

    // get UNIX epoch time
    now_epoch = watch_utility_date_time_to_unix_time(utc_now, 0);
    midnight_epoch = watch_utility_date_time_to_unix_time(midnight, 0);

    // calculate sunrise and sunset of current day in decimal hours after midnight
    sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
    
    // calculate sunrise and sunset UNIX timestamps
    sunrise_epoch = midnight_epoch + sunrise * 3600;
    sunset_epoch = midnight_epoch + sunset * 3600;

    // by default we assume it is daytime (phase 1) between sunrise and sunset
    phase = 1;
    state->night = false;
    state->phase_start = sunrise_epoch;
    state->phase_end = sunset_epoch;

    // night time calculations
    if ( now_epoch < sunrise_epoch && now_epoch < sunset_epoch ) phase = 0; // morning before dawn
    if ( now_epoch > sunrise_epoch && now_epoch >= sunset_epoch ) phase = 2; // evening after dusk

    // phase 0: we are before sunrise
    if ( phase == 0) {
        // go back to yesterday and calculate sunset
        midnight_epoch -= 86400;
        scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch, 0);
        sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
        sunset_epoch = midnight_epoch + sunset * 3600;
        // we are still in yesterday's night hours
        state->night = true;
        state->phase_start = sunset_epoch;
        state->phase_end = sunrise_epoch;
    }

    // phase 2: we are after sunset
    if ( phase == 2) {
        // skip to tomorrow and calculate sunrise
        midnight_epoch += 86400;
        scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch, 0);
        sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
        sunrise_epoch = midnight_epoch + sunrise * 3600;
        // we are still in yesterday's night hours
        state->night = true;
        state->phase_start = sunset_epoch;
        state->phase_end = sunrise_epoch;
    }

    // calculate the duration of a planetary second during this solar phase 
    // and convert to Hertz so we can call a faster tick rate
    state->freq = (1 / ((double)( state->phase_end - state->phase_start ) / 43200));
}

/** @details A planetary hour is one of exactly twelve hours of a solar phase. Its length varies.
 *  This function calculates the current planetary hour and divides it up into relative minutes and seconds.
 *  It also calculates the current planetary ruler of the hour and of the day.
 */
static void _planetary_time(movement_event_t event, movement_settings_t *settings, planetary_time_state_t *state) {
    char buf[14];
    char ruler[3];
    double night_hour_count = 0.0;
    uint8_t weekday, planet, planetary_hour;
    double hour_duration, current_hour, current_minute, current_second;

        watch_set_colon();

    // get current time and convert to UTC
    state->scratch = watch_utility_date_time_convert_zone(watch_rtc_get_date_time(), movement_timezone_offsets[settings->bit.time_zone] * 60, 0); 

    // when current phase ends calculate the next phase
    if ( watch_utility_date_time_to_unix_time(state->scratch, 0) >= state->phase_end ) {
        _planetary_solar_phase(settings, state);
        return;
    }

    if (settings->bit.clock_mode_24h) watch_set_indicator(WATCH_INDICATOR_24H);

    // PM for night hours, otherwise the night hours are counted from 13
    if ( state->night ) {
        if (settings->bit.clock_mode_24h) night_hour_count = 12;
        else watch_set_indicator(WATCH_INDICATOR_PM);
    }

    // calculate the duration of a planetary hour during this solar phase
    hour_duration = (( state->phase_end - state->phase_start)) / 12.0;

    // which planetary hour are we in?

    // RTC only provides full second precision, so we have to manually add subseconds with each tick
    current_hour = ((( watch_utility_date_time_to_unix_time(state->scratch, 0) ) + event.subsecond * 0.11111111) - state->phase_start ) / hour_duration;
    planetary_hour = floor(current_hour) + ( state->night ? 12 : 0 );
    current_hour  += night_hour_count; //adjust for 24hr display
    current_minute = modf(current_hour, &current_hour) * 60.0;
    current_second = modf(current_minute, &current_minute) * 60.0;

    // the day changes after sunrise, so if we are at night it is yesterday's planetary day
    // hence we take the datetime object of when the last solar phase started as the current day
    // and then fill in the hours and minutes
    state->scratch = watch_utility_date_time_from_unix_time(state->phase_start, 0);
    state->scratch.unit.hour = floor(current_hour);
    state->scratch.unit.minute = floor(current_minute);
    state->scratch.unit.second = (uint8_t)floor(current_second) % 60;

    // what weekday is it (0 - 6)
    weekday = watch_utility_get_iso8601_weekday_number(state->scratch.unit.year, state->scratch.unit.month, state->scratch.unit.day) - 1;

    // planetary ruler of the hour or the day
    if ( state->day_ruler ) planet = plindex[weekday];
    else planet = ( plindex[weekday] + planetary_hour ) % 7;

    // latin or greek ruler names or astrological symbol
    if ( state->ruler == 0 ) strncpy(ruler, planets[planet], 3);
    if ( state->ruler == 1 ) strncpy(ruler, planetes[planet], 3);
    if ( state->ruler == 2 ) strncpy(ruler, "  ", 3);
    
    // display planetary time with ruler of the hour or ruler of the day
    if ( state->day_ruler ) sprintf(buf, "%s d%2d%02d%02d", ruler, state->scratch.unit.hour, state->scratch.unit.minute, state->scratch.unit.second);
    else sprintf(buf, "%s h%2d%02d%02d", ruler, state->scratch.unit.hour, state->scratch.unit.minute, state->scratch.unit.second);
    
    watch_display_string(buf, 0);

    if ( state->ruler == 2 ) _planetary_icon(planet);

}

// PUBLIC WATCH FACE FUNCTIONS ////////////////////////////////////////////////

void planetary_time_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) {
    (void) watch_face_index;
    (void) settings;
    if (*context_ptr == NULL) {
        *context_ptr = malloc(sizeof(planetary_time_state_t));
        memset(*context_ptr, 0, sizeof(planetary_time_state_t));
    }
}

void planetary_time_face_activate(movement_settings_t *settings, void *context) {
    (void) settings;
    if (watch_tick_animation_is_running()) watch_stop_tick_animation();

#if __EMSCRIPTEN__
    int16_t browser_lat = EM_ASM_INT({ return lat; });
    int16_t browser_lon = EM_ASM_INT({ return lon; });
    if ((watch_get_backup_data(1) == 0) && (browser_lat || browser_lon)) {
        movement_location_t browser_loc;
        browser_loc.bit.latitude = browser_lat;
        browser_loc.bit.longitude = browser_lon;
        watch_store_backup_data(browser_loc.reg, 1);
    }
#endif

    planetary_time_state_t *state = (planetary_time_state_t *)context;
    
    // calculate phase
    _planetary_solar_phase(settings, state);
}

bool planetary_time_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
    planetary_time_state_t *state = (planetary_time_state_t *)context;

    switch (event.event_type) {
        case EVENT_ACTIVATE:
            _planetary_time(event, settings, state);
            if ( state->freq > 1 )
                // for hours with shorter seconds let's increase the tick to not skip seconds in the display
                movement_request_tick_frequency( 8 );
            break;
        case EVENT_TICK:
            _planetary_time(event, settings, state);
            break;
        case EVENT_LIGHT_BUTTON_UP:
            state->ruler = (state->ruler + 1) % 3;
            break;
        case EVENT_ALARM_BUTTON_UP:
            // Just in case you have need for another button.
            state->day_ruler = !state->day_ruler;
            break;
        case EVENT_LOW_ENERGY_UPDATE:
            watch_start_tick_animation(500);
            break;
        default:
            return movement_default_loop_handler(event, settings);
    }

    return true;
}

void planetary_time_face_resign(movement_settings_t *settings, void *context) {
    (void) settings;
    (void) context;
    movement_request_tick_frequency( 1 );
}