aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/danube/files/drivers/net/danube_mii0.c
blob: 354ccc36d1ff67bf784e3a0f25e4eea1b132819c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
/*
 *   drivers/net/danube_mii0.c
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
 *
 *   Copyright (C) 2005 Infineon
 *
 *   Rewrite of Infineon Danube code, thanks to infineon for the support,
 *   software and hardware
 *
 *   Copyright (C) 2007 John Crispin <blogic@openwrt.org> 
 *
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <asm/uaccess.h>
#include <linux/in.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/mm.h>
#include <linux/ethtool.h>
#include <asm/checksum.h>
#include <linux/init.h>
#include <asm/delay.h>
#include <asm/danube/danube.h>
#include <asm/danube/danube_mii0.h>
#include <asm/danube/danube_dma.h>
#include <asm/danube/danube_pmu.h>

static struct net_device danube_mii0_dev;
static unsigned char u_boot_ethaddr[MAX_ADDR_LEN];

void
danube_write_mdio (u32 phy_addr, u32 phy_reg, u16 phy_data)
{
	u32 val = MDIO_ACC_REQUEST |
		((phy_addr & MDIO_ACC_ADDR_MASK) << MDIO_ACC_ADDR_OFFSET) |
		((phy_reg & MDIO_ACC_REG_MASK) << MDIO_ACC_REG_OFFSET) |
		phy_data;

	while (readl(DANUBE_PPE32_MDIO_ACC) & MDIO_ACC_REQUEST);
	writel(val, DANUBE_PPE32_MDIO_ACC);
}

unsigned short
danube_read_mdio (u32 phy_addr, u32 phy_reg)
{
	u32 val = MDIO_ACC_REQUEST | MDIO_ACC_READ |
		((phy_addr & MDIO_ACC_ADDR_MASK) << MDIO_ACC_ADDR_OFFSET) |
		((phy_reg & MDIO_ACC_REG_MASK) << MDIO_ACC_REG_OFFSET);

	writel(val, DANUBE_PPE32_MDIO_ACC);
	while (readl(DANUBE_PPE32_MDIO_ACC) & MDIO_ACC_REQUEST){};
	val = readl(DANUBE_PPE32_MDIO_ACC) & MDIO_ACC_VAL_MASK;

	return val;
}

int
danube_switch_open (struct net_device *dev)
{
	struct switch_priv* priv = (struct switch_priv*)dev->priv;
	struct dma_device_info* dma_dev = priv->dma_device;
	int i;

	for (i = 0; i < dma_dev->max_rx_chan_num; i++)
	{
		if ((dma_dev->rx_chan[i])->control == DANUBE_DMA_CH_ON)
			(dma_dev->rx_chan[i])->open(dma_dev->rx_chan[i]);
	}

	netif_start_queue(dev);

	return 0;
}

int
switch_release (struct net_device *dev){
	struct switch_priv* priv = (struct switch_priv*)dev->priv;
	struct dma_device_info* dma_dev = priv->dma_device;
	int i;

	for (i = 0; i < dma_dev->max_rx_chan_num; i++)
		dma_dev->rx_chan[i]->close(dma_dev->rx_chan[i]);

	netif_stop_queue(dev);

	return 0;
}

int
switch_hw_receive (struct net_device* dev,struct dma_device_info* dma_dev)
{
	struct switch_priv *priv = (struct switch_priv*)dev->priv;
	unsigned char* buf = NULL;
	struct sk_buff *skb = NULL;
	int len = 0;

	len = dma_device_read(dma_dev, &buf, (void**)&skb);

	if (len >= ETHERNET_PACKET_DMA_BUFFER_SIZE)
	{
		printk("packet too large %d\n",len);
		goto switch_hw_receive_err_exit;
	}

	/* remove CRC */
	len -= 4;
	if (skb == NULL )
	{
		printk("cannot restore pointer\n");
		goto switch_hw_receive_err_exit;
	}

	if (len > (skb->end - skb->tail))
	{
		printk("BUG, len:%d end:%p tail:%p\n", (len+4), skb->end, skb->tail);
		goto switch_hw_receive_err_exit;
	}

	skb_put(skb, len);
	skb->dev = dev;
	skb->protocol = eth_type_trans(skb, dev);
	netif_rx(skb);

	priv->stats.rx_packets++;
	priv->stats.rx_bytes += len;

	return 0;

switch_hw_receive_err_exit:
	if (len == 0)
	{
		if(skb)
			dev_kfree_skb_any(skb);
		priv->stats.rx_errors++;
		priv->stats.rx_dropped++;

		return -EIO;
	} else {
		return len;
	}
}

int
switch_hw_tx (char *buf, int len, struct net_device *dev)
{
	int ret = 0;
	struct switch_priv *priv = dev->priv;
	struct dma_device_info* dma_dev = priv->dma_device;

	ret = dma_device_write(dma_dev, buf, len, priv->skb);

	return ret;
}

int
switch_tx (struct sk_buff *skb, struct net_device *dev)
{
	int len;
	char *data;
	struct switch_priv *priv = dev->priv;
	struct dma_device_info* dma_dev = priv->dma_device;

	len = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
	data = skb->data;
	priv->skb = skb;
	dev->trans_start = jiffies;
	// TODO we got more than 1 dma channel, so we should do something intelligent
	// here to select one
	dma_dev->current_tx_chan = 0;

	wmb();

	if (switch_hw_tx(data, len, dev) != len)
	{
		dev_kfree_skb_any(skb);
		priv->stats.tx_errors++;
		priv->stats.tx_dropped++;
	} else {
		priv->stats.tx_packets++;
		priv->stats.tx_bytes+=len;
	}

	return 0;
}

void
switch_tx_timeout (struct net_device *dev)
{
	int i;
	struct switch_priv* priv = (struct switch_priv*)dev->priv;

	priv->stats.tx_errors++;

	for (i = 0; i < priv->dma_device->max_tx_chan_num; i++)
	{
		priv->dma_device->tx_chan[i]->disable_irq(priv->dma_device->tx_chan[i]);
	}

	netif_wake_queue(dev);

	return;
}

int
dma_intr_handler (struct dma_device_info* dma_dev, int status)
{
	int i;

	switch (status)
	{
	case RCV_INT:
		switch_hw_receive(&danube_mii0_dev, dma_dev);
		break;

	case TX_BUF_FULL_INT:
		printk("tx buffer full\n");
		netif_stop_queue(&danube_mii0_dev);
		for (i = 0; i < dma_dev->max_tx_chan_num; i++)
		{
			if ((dma_dev->tx_chan[i])->control==DANUBE_DMA_CH_ON)
				dma_dev->tx_chan[i]->enable_irq(dma_dev->tx_chan[i]);
		}
		break;

	case TRANSMIT_CPT_INT:
		for (i = 0; i < dma_dev->max_tx_chan_num; i++)
			dma_dev->tx_chan[i]->disable_irq(dma_dev->tx_chan[i]);

		netif_wake_queue(&danube_mii0_dev);
		break;
	}

	return 0;
}

unsigned char*
danube_etop_dma_buffer_alloc (int len, int *byte_offset, void **opt)
{
	unsigned char *buffer = NULL;
	struct sk_buff *skb = NULL;

	skb = dev_alloc_skb(ETHERNET_PACKET_DMA_BUFFER_SIZE);
	if (skb == NULL)
		return NULL;

	buffer = (unsigned char*)(skb->data);
	skb_reserve(skb, 2);
	*(int*)opt = (int)skb;
	*byte_offset = 2;

	return buffer;
}

void
danube_etop_dma_buffer_free (unsigned char *dataptr, void *opt)
{
	struct sk_buff *skb = NULL;

	if(opt == NULL)
	{
		kfree(dataptr);
	} else {
		skb = (struct sk_buff*)opt;
		dev_kfree_skb_any(skb);
	}
}

static struct net_device_stats*
danube_get_stats (struct net_device *dev)
{
	return (struct net_device_stats *)dev->priv;
}

static int
switch_init (struct net_device *dev)
{
	u64 retval = 0;
	int i;
	struct switch_priv *priv;

	ether_setup(dev);

	printk("%s up\n", dev->name);

	dev->open = danube_switch_open;
	dev->stop = switch_release;
	dev->hard_start_xmit = switch_tx;
	dev->get_stats = danube_get_stats;
	dev->tx_timeout = switch_tx_timeout;
	dev->watchdog_timeo = 10 * HZ;
	dev->priv = kmalloc(sizeof(struct switch_priv), GFP_KERNEL);

	if (dev->priv == NULL)
		return -ENOMEM;

	memset(dev->priv, 0, sizeof(struct switch_priv));
	priv = dev->priv;

	priv->dma_device = dma_device_reserve("PPE");

	if (!priv->dma_device){
		BUG();
		return -ENODEV;
	}

	priv->dma_device->buffer_alloc = &danube_etop_dma_buffer_alloc;
	priv->dma_device->buffer_free = &danube_etop_dma_buffer_free;
	priv->dma_device->intr_handler = &dma_intr_handler;
	priv->dma_device->max_rx_chan_num = 4;

	for (i = 0; i < priv->dma_device->max_rx_chan_num; i++)
	{
		priv->dma_device->rx_chan[i]->packet_size = ETHERNET_PACKET_DMA_BUFFER_SIZE;
		priv->dma_device->rx_chan[i]->control = DANUBE_DMA_CH_ON;
	}

	for (i = 0; i < priv->dma_device->max_tx_chan_num; i++)
	{
		if(i == 0)
			priv->dma_device->tx_chan[i]->control = DANUBE_DMA_CH_ON;
		else
			priv->dma_device->tx_chan[i]->control = DANUBE_DMA_CH_OFF;
	}

	dma_device_register(priv->dma_device);

	/*read the mac address from the mac table and put them into the mac table.*/
	for (i = 0; i < 6; i++)
	{
		retval += u_boot_ethaddr[i];
	}

	//TODO
	/* ethaddr not set in u-boot ? */
	if (retval == 0)
	{
		printk("use default MAC address\n");
		dev->dev_addr[0] = 0x00;
		dev->dev_addr[1] = 0x11;
		dev->dev_addr[2] = 0x22;
		dev->dev_addr[3] = 0x33;
		dev->dev_addr[4] = 0x44;
		dev->dev_addr[5] = 0x55;
	} else {
		for (i = 0; i < 6; i++)
			dev->dev_addr[i] = u_boot_ethaddr[i];
	}

	return 0;
}

static void
danube_sw_chip_init (int mode)
{
	danube_pmu_enable(DANUBE_PMU_PWDCR_DMA);
	danube_pmu_enable(DANUBE_PMU_PWDCR_PPE);

	if(mode == REV_MII_MODE)
		writel((readl(DANUBE_PPE32_CFG) & PPE32_MII_MASK) | PPE32_MII_REVERSE, DANUBE_PPE32_CFG);
	else if(mode == MII_MODE)
		writel((readl(DANUBE_PPE32_CFG) & PPE32_MII_MASK) | PPE32_MII_NORMAL, DANUBE_PPE32_CFG);

	writel(PPE32_PLEN_UNDER | PPE32_PLEN_OVER, DANUBE_PPE32_IG_PLEN_CTRL);

	writel(PPE32_CGEN, DANUBE_PPE32_ENET_MAC_CFG);

	wmb();
}

int __init
switch_init_module(void)
{
	int result = 0;

	danube_mii0_dev.init = switch_init;

	strcpy(danube_mii0_dev.name, "eth%d");
	SET_MODULE_OWNER(dev);

	result = register_netdev(&danube_mii0_dev);
	if (result)
	{
		printk("error %i registering device \"%s\"\n", result, danube_mii0_dev.name);
		goto out;
	}

	/* danube eval kit connects the phy/switch in REV mode */
	danube_sw_chip_init(REV_MII_MODE);
	printk("danube MAC driver loaded!\n");

out:
	return result;
}

static void __exit
switch_cleanup(void)
{
	struct switch_priv *priv = (struct switch_priv*)danube_mii0_dev.priv;

	printk("danube_mii0 cleanup\n");

	dma_device_unregister(priv->dma_device);
	dma_device_release(priv->dma_device);
	kfree(priv->dma_device);
	kfree(danube_mii0_dev.priv);
	unregister_netdev(&danube_mii0_dev);

	return;
}

module_init(switch_init_module);
module_exit(switch_cleanup);