aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/bmips/files/drivers/net/ethernet/broadcom/bcm6368-enetsw.c
blob: dc55e3ccb92eb05680d4d41d717a2cd0529d44f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * BCM6368 Ethernet Switch Controller Driver
 *
 * Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
 * Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/of_clk.h>
#include <linux/of_net.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>

/* MTU */
#define ENETSW_TAG_SIZE			6
#define ENETSW_MTU_OVERHEAD		(VLAN_ETH_HLEN + VLAN_HLEN + \
					 ENETSW_TAG_SIZE)

/* default number of descriptor */
#define ENETSW_DEF_RX_DESC		64
#define ENETSW_DEF_TX_DESC		32
#define ENETSW_DEF_CPY_BREAK		128

/* maximum burst len for dma (4 bytes unit) */
#define ENETSW_DMA_MAXBURST		8

/* DMA channels */
#define DMA_CHAN_WIDTH			0x10

/* Controller Configuration Register */
#define DMA_CFG_REG			(0x0)
#define DMA_CFG_EN_SHIFT		0
#define DMA_CFG_EN_MASK			(1 << DMA_CFG_EN_SHIFT)
#define DMA_CFG_FLOWCH_MASK(x)		(1 << ((x >> 1) + 1))

/* Flow Control Descriptor Low Threshold register */
#define DMA_FLOWCL_REG(x)		(0x4 + (x) * 6)

/* Flow Control Descriptor High Threshold register */
#define DMA_FLOWCH_REG(x)		(0x8 + (x) * 6)

/* Flow Control Descriptor Buffer Alloca Threshold register */
#define DMA_BUFALLOC_REG(x)		(0xc + (x) * 6)
#define DMA_BUFALLOC_FORCE_SHIFT	31
#define DMA_BUFALLOC_FORCE_MASK		(1 << DMA_BUFALLOC_FORCE_SHIFT)

/* Channel Configuration register */
#define DMAC_CHANCFG_REG		(0x0)
#define DMAC_CHANCFG_EN_SHIFT		0
#define DMAC_CHANCFG_EN_MASK		(1 << DMAC_CHANCFG_EN_SHIFT)
#define DMAC_CHANCFG_PKTHALT_SHIFT	1
#define DMAC_CHANCFG_PKTHALT_MASK	(1 << DMAC_CHANCFG_PKTHALT_SHIFT)
#define DMAC_CHANCFG_BUFHALT_SHIFT	2
#define DMAC_CHANCFG_BUFHALT_MASK	(1 << DMAC_CHANCFG_BUFHALT_SHIFT)
#define DMAC_CHANCFG_CHAINING_SHIFT	2
#define DMAC_CHANCFG_CHAINING_MASK	(1 << DMAC_CHANCFG_CHAINING_SHIFT)
#define DMAC_CHANCFG_WRAP_EN_SHIFT	3
#define DMAC_CHANCFG_WRAP_EN_MASK	(1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
#define DMAC_CHANCFG_FLOWC_EN_SHIFT	4
#define DMAC_CHANCFG_FLOWC_EN_MASK	(1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)

/* Interrupt Control/Status register */
#define DMAC_IR_REG			(0x4)
#define DMAC_IR_BUFDONE_MASK		(1 << 0)
#define DMAC_IR_PKTDONE_MASK		(1 << 1)
#define DMAC_IR_NOTOWNER_MASK		(1 << 2)

/* Interrupt Mask register */
#define DMAC_IRMASK_REG			(0x8)

/* Maximum Burst Length */
#define DMAC_MAXBURST_REG		(0xc)

/* Ring Start Address register */
#define DMAS_RSTART_REG			(0x0)

/* State Ram Word 2 */
#define DMAS_SRAM2_REG			(0x4)

/* State Ram Word 3 */
#define DMAS_SRAM3_REG			(0x8)

/* State Ram Word 4 */
#define DMAS_SRAM4_REG			(0xc)

struct bcm6368_enetsw_desc {
	u32 len_stat;
	u32 address;
};

/* control */
#define DMADESC_LENGTH_SHIFT		16
#define DMADESC_LENGTH_MASK		(0xfff << DMADESC_LENGTH_SHIFT)
#define DMADESC_OWNER_MASK		(1 << 15)
#define DMADESC_EOP_MASK		(1 << 14)
#define DMADESC_SOP_MASK		(1 << 13)
#define DMADESC_ESOP_MASK		(DMADESC_EOP_MASK | DMADESC_SOP_MASK)
#define DMADESC_WRAP_MASK		(1 << 12)
#define DMADESC_USB_NOZERO_MASK 	(1 << 1)
#define DMADESC_USB_ZERO_MASK		(1 << 0)

/* status */
#define DMADESC_UNDER_MASK		(1 << 9)
#define DMADESC_APPEND_CRC		(1 << 8)
#define DMADESC_OVSIZE_MASK		(1 << 4)
#define DMADESC_RXER_MASK		(1 << 2)
#define DMADESC_CRC_MASK		(1 << 1)
#define DMADESC_OV_MASK			(1 << 0)
#define DMADESC_ERR_MASK		(DMADESC_UNDER_MASK | \
					 DMADESC_OVSIZE_MASK | \
					 DMADESC_RXER_MASK | \
					 DMADESC_CRC_MASK | \
					 DMADESC_OV_MASK)

struct bcm6368_enetsw {
	void __iomem *dma_base;
	void __iomem *dma_chan;
	void __iomem *dma_sram;

	struct device **pm;
	struct device_link **link_pm;
	int num_pms;

	struct clk **clock;
	unsigned int num_clocks;

	struct reset_control **reset;
	unsigned int num_resets;

	int copybreak;

	int irq_rx;
	int irq_tx;

	/* hw view of rx & tx dma ring */
	dma_addr_t rx_desc_dma;
	dma_addr_t tx_desc_dma;

	/* allocated size (in bytes) for rx & tx dma ring */
	unsigned int rx_desc_alloc_size;
	unsigned int tx_desc_alloc_size;

	struct napi_struct napi;

	/* dma channel id for rx */
	int rx_chan;

	/* number of dma desc in rx ring */
	int rx_ring_size;

	/* cpu view of rx dma ring */
	struct bcm6368_enetsw_desc *rx_desc_cpu;

	/* current number of armed descriptor given to hardware for rx */
	int rx_desc_count;

	/* next rx descriptor to fetch from hardware */
	int rx_curr_desc;

	/* next dirty rx descriptor to refill */
	int rx_dirty_desc;

	/* size of allocated rx skbs */
	unsigned int rx_skb_size;

	/* list of skb given to hw for rx */
	struct sk_buff **rx_skb;

	/* used when rx skb allocation failed, so we defer rx queue
	 * refill */
	struct timer_list rx_timeout;

	/* lock rx_timeout against rx normal operation */
	spinlock_t rx_lock;

	/* dma channel id for tx */
	int tx_chan;

	/* number of dma desc in tx ring */
	int tx_ring_size;

	/* maximum dma burst size */
	int dma_maxburst;

	/* cpu view of rx dma ring */
	struct bcm6368_enetsw_desc *tx_desc_cpu;

	/* number of available descriptor for tx */
	int tx_desc_count;

	/* next tx descriptor avaiable */
	int tx_curr_desc;

	/* next dirty tx descriptor to reclaim */
	int tx_dirty_desc;

	/* list of skb given to hw for tx */
	struct sk_buff **tx_skb;

	/* lock used by tx reclaim and xmit */
	spinlock_t tx_lock;

	/* network device reference */
	struct net_device *net_dev;

	/* platform device reference */
	struct platform_device *pdev;

	/* dma channel enable mask */
	u32 dma_chan_en_mask;

	/* dma channel interrupt mask */
	u32 dma_chan_int_mask;

	/* dma channel width */
	unsigned int dma_chan_width;

	/* dma descriptor shift value */
	unsigned int dma_desc_shift;
};

static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
{
	__raw_writel(val, priv->dma_base + off);
}

static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
{
	return __raw_readl(priv->dma_chan + off + chan * priv->dma_chan_width);
}

static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val,
				    u32 off, int chan)
{
	__raw_writel(val, priv->dma_chan + off + chan * priv->dma_chan_width);
}

static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
				    u32 off, int chan)
{
	__raw_writel(val, priv->dma_sram + off + chan * priv->dma_chan_width);
}

/*
 * refill rx queue
 */
static int bcm6368_enetsw_refill_rx(struct net_device *dev)
{
	struct bcm6368_enetsw *priv;

	priv = netdev_priv(dev);

	while (priv->rx_desc_count < priv->rx_ring_size) {
		struct bcm6368_enetsw_desc *desc;
		struct sk_buff *skb;
		dma_addr_t p;
		int desc_idx;
		u32 len_stat;

		desc_idx = priv->rx_dirty_desc;
		desc = &priv->rx_desc_cpu[desc_idx];

		if (!priv->rx_skb[desc_idx]) {
			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
			if (!skb)
				break;
			priv->rx_skb[desc_idx] = skb;
			p = dma_map_single(&priv->pdev->dev, skb->data,
					   priv->rx_skb_size,
					   DMA_FROM_DEVICE);
			desc->address = p;
		}

		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
		len_stat |= DMADESC_OWNER_MASK;
		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
			len_stat |= (DMADESC_WRAP_MASK >>
				     priv->dma_desc_shift);
			priv->rx_dirty_desc = 0;
		} else {
			priv->rx_dirty_desc++;
		}
		wmb();
		desc->len_stat = len_stat;

		priv->rx_desc_count++;

		/* tell dma engine we allocated one buffer */
		dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
	}

	/* If rx ring is still empty, set a timer to try allocating
	 * again at a later time. */
	if (priv->rx_desc_count == 0 && netif_running(dev)) {
		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
		priv->rx_timeout.expires = jiffies + HZ;
		add_timer(&priv->rx_timeout);
	}

	return 0;
}

/*
 * timer callback to defer refill rx queue in case we're OOM
 */
static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
{
	struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
	struct net_device *dev = priv->net_dev;

	spin_lock(&priv->rx_lock);
	bcm6368_enetsw_refill_rx(dev);
	spin_unlock(&priv->rx_lock);
}

/*
 * extract packet from rx queue
 */
static int bcm6368_enetsw_receive_queue(struct net_device *dev, int budget)
{
	struct bcm6368_enetsw *priv;
	struct device *kdev;
	int processed;

	priv = netdev_priv(dev);
	kdev = &priv->pdev->dev;
	processed = 0;

	/* don't scan ring further than number of refilled
	 * descriptor */
	if (budget > priv->rx_desc_count)
		budget = priv->rx_desc_count;

	do {
		struct bcm6368_enetsw_desc *desc;
		struct sk_buff *skb;
		int desc_idx;
		u32 len_stat;
		unsigned int len;

		desc_idx = priv->rx_curr_desc;
		desc = &priv->rx_desc_cpu[desc_idx];

		/* make sure we actually read the descriptor status at
		 * each loop */
		rmb();

		len_stat = desc->len_stat;

		/* break if dma ownership belongs to hw */
		if (len_stat & DMADESC_OWNER_MASK)
			break;

		processed++;
		priv->rx_curr_desc++;
		if (priv->rx_curr_desc == priv->rx_ring_size)
			priv->rx_curr_desc = 0;
		priv->rx_desc_count--;

		/* if the packet does not have start of packet _and_
		 * end of packet flag set, then just recycle it */
		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift))
		    != (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
			dev->stats.rx_dropped++;
			continue;
		}

		/* valid packet */
		skb = priv->rx_skb[desc_idx];
		len = (len_stat & DMADESC_LENGTH_MASK)
		      >> DMADESC_LENGTH_SHIFT;
		/* don't include FCS */
		len -= 4;

		if (len < priv->copybreak) {
			struct sk_buff *nskb;

			nskb = napi_alloc_skb(&priv->napi, len);
			if (!nskb) {
				/* forget packet, just rearm desc */
				dev->stats.rx_dropped++;
				continue;
			}

			dma_sync_single_for_cpu(kdev, desc->address,
						len, DMA_FROM_DEVICE);
			memcpy(nskb->data, skb->data, len);
			dma_sync_single_for_device(kdev, desc->address,
						   len, DMA_FROM_DEVICE);
			skb = nskb;
		} else {
			dma_unmap_single(&priv->pdev->dev, desc->address,
					 priv->rx_skb_size, DMA_FROM_DEVICE);
			priv->rx_skb[desc_idx] = NULL;
		}

		skb_put(skb, len);
		skb->protocol = eth_type_trans(skb, dev);
		dev->stats.rx_packets++;
		dev->stats.rx_bytes += len;
		netif_receive_skb(skb);
	} while (--budget > 0);

	if (processed || !priv->rx_desc_count) {
		bcm6368_enetsw_refill_rx(dev);

		/* kick rx dma */
		dmac_writel(priv, priv->dma_chan_en_mask,
			    DMAC_CHANCFG_REG, priv->rx_chan);
	}

	return processed;
}

/*
 * try to or force reclaim of transmitted buffers
 */
static int bcm6368_enetsw_tx_reclaim(struct net_device *dev, int force)
{
	struct bcm6368_enetsw *priv;
	int released;

	priv = netdev_priv(dev);
	released = 0;

	while (priv->tx_desc_count < priv->tx_ring_size) {
		struct bcm6368_enetsw_desc *desc;
		struct sk_buff *skb;

		/* We run in a bh and fight against start_xmit, which
		 * is called with bh disabled */
		spin_lock(&priv->tx_lock);

		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];

		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
			spin_unlock(&priv->tx_lock);
			break;
		}

		/* ensure other field of the descriptor were not read
		 * before we checked ownership */
		rmb();

		skb = priv->tx_skb[priv->tx_dirty_desc];
		priv->tx_skb[priv->tx_dirty_desc] = NULL;
		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
				 DMA_TO_DEVICE);

		priv->tx_dirty_desc++;
		if (priv->tx_dirty_desc == priv->tx_ring_size)
			priv->tx_dirty_desc = 0;
		priv->tx_desc_count++;

		spin_unlock(&priv->tx_lock);

		if (desc->len_stat & DMADESC_UNDER_MASK)
			dev->stats.tx_errors++;

		dev_kfree_skb(skb);
		released++;
	}

	if (netif_queue_stopped(dev) && released)
		netif_wake_queue(dev);

	return released;
}

/*
 * poll func, called by network core
 */
static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
{
	struct bcm6368_enetsw *priv;
	struct net_device *dev;
	int rx_work_done;

	priv = container_of(napi, struct bcm6368_enetsw, napi);
	dev = priv->net_dev;

	/* ack interrupts */
	dmac_writel(priv, priv->dma_chan_int_mask,
			 DMAC_IR_REG, priv->rx_chan);
	dmac_writel(priv, priv->dma_chan_int_mask,
			 DMAC_IR_REG, priv->tx_chan);

	/* reclaim sent skb */
	bcm6368_enetsw_tx_reclaim(dev, 0);

	spin_lock(&priv->rx_lock);
	rx_work_done = bcm6368_enetsw_receive_queue(dev, budget);
	spin_unlock(&priv->rx_lock);

	if (rx_work_done >= budget) {
		/* rx queue is not yet empty/clean */
		return rx_work_done;
	}

	/* no more packet in rx/tx queue, remove device from poll
	 * queue */
	napi_complete_done(napi, rx_work_done);

	/* restore rx/tx interrupt */
	dmac_writel(priv, priv->dma_chan_int_mask,
			 DMAC_IRMASK_REG, priv->rx_chan);
	dmac_writel(priv, priv->dma_chan_int_mask,
			 DMAC_IRMASK_REG, priv->tx_chan);

	return rx_work_done;
}

/*
 * rx/tx dma interrupt handler
 */
static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
{
	struct net_device *dev;
	struct bcm6368_enetsw *priv;

	dev = dev_id;
	priv = netdev_priv(dev);

	/* mask rx/tx interrupts */
	dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
	dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);

	napi_schedule(&priv->napi);

	return IRQ_HANDLED;
}

/*
 * tx request callback
 */
static netdev_tx_t
bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct bcm6368_enetsw *priv;
	struct bcm6368_enetsw_desc *desc;
	u32 len_stat;
	netdev_tx_t ret;

	priv = netdev_priv(dev);

	/* lock against tx reclaim */
	spin_lock(&priv->tx_lock);

	/* make sure the tx hw queue is not full, should not happen
	 * since we stop queue before it's the case */
	if (unlikely(!priv->tx_desc_count)) {
		netif_stop_queue(dev);
		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
			"available?\n");
		ret = NETDEV_TX_BUSY;
		goto out_unlock;
	}

	/* pad small packets */
	if (skb->len < 64) {
		int needed = 64 - skb->len;
		char *data;

		if (unlikely(skb_tailroom(skb) < needed)) {
			struct sk_buff *nskb;

			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
			if (!nskb) {
				ret = NETDEV_TX_BUSY;
				goto out_unlock;
			}
			dev_kfree_skb(skb);
			skb = nskb;
		}
		data = skb_put_zero(skb, needed);
	}

	/* point to the next available desc */
	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
	priv->tx_skb[priv->tx_curr_desc] = skb;

	/* fill descriptor */
	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
				       DMA_TO_DEVICE);

	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
		    DMADESC_APPEND_CRC | DMADESC_OWNER_MASK;

	priv->tx_curr_desc++;
	if (priv->tx_curr_desc == priv->tx_ring_size) {
		priv->tx_curr_desc = 0;
		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
	}
	priv->tx_desc_count--;

	/* dma might be already polling, make sure we update desc
	 * fields in correct order */
	wmb();
	desc->len_stat = len_stat;
	wmb();

	/* kick tx dma */
	dmac_writel(priv, priv->dma_chan_en_mask, DMAC_CHANCFG_REG,
		    priv->tx_chan);

	/* stop queue if no more desc available */
	if (!priv->tx_desc_count)
		netif_stop_queue(dev);

	dev->stats.tx_bytes += skb->len;
	dev->stats.tx_packets++;
	ret = NETDEV_TX_OK;

out_unlock:
	spin_unlock(&priv->tx_lock);
	return ret;
}

/*
 * disable dma in given channel
 */
static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
{
	int limit;

	dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);

	limit = 1000;
	do {
		u32 val;

		val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
		if (!(val & DMAC_CHANCFG_EN_MASK))
			break;
		udelay(1);
	} while (limit--);
}

static int bcm6368_enetsw_open(struct net_device *dev)
{
	struct bcm6368_enetsw *priv;
	struct device *kdev;
	int i, ret;
	unsigned int size;
	void *p;
	u32 val;

	priv = netdev_priv(dev);
	kdev = &priv->pdev->dev;

	/* mask all interrupts and request them */
	dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
	dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);

	ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
			  0, dev->name, dev);
	if (ret)
		goto out_freeirq;

	if (priv->irq_tx != -1) {
		ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
				  0, dev->name, dev);
		if (ret)
			goto out_freeirq_rx;
	}

	/* allocate rx dma ring */
	size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
	if (!p) {
		dev_err(kdev, "cannot allocate rx ring %u\n", size);
		ret = -ENOMEM;
		goto out_freeirq_tx;
	}

	memset(p, 0, size);
	priv->rx_desc_alloc_size = size;
	priv->rx_desc_cpu = p;

	/* allocate tx dma ring */
	size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
	if (!p) {
		dev_err(kdev, "cannot allocate tx ring\n");
		ret = -ENOMEM;
		goto out_free_rx_ring;
	}

	memset(p, 0, size);
	priv->tx_desc_alloc_size = size;
	priv->tx_desc_cpu = p;

	priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
			       GFP_KERNEL);
	if (!priv->tx_skb) {
		dev_err(kdev, "cannot allocate rx skb queue\n");
		ret = -ENOMEM;
		goto out_free_tx_ring;
	}

	priv->tx_desc_count = priv->tx_ring_size;
	priv->tx_dirty_desc = 0;
	priv->tx_curr_desc = 0;
	spin_lock_init(&priv->tx_lock);

	/* init & fill rx ring with skbs */
	priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
			       GFP_KERNEL);
	if (!priv->rx_skb) {
		dev_err(kdev, "cannot allocate rx skb queue\n");
		ret = -ENOMEM;
		goto out_free_tx_skb;
	}

	priv->rx_desc_count = 0;
	priv->rx_dirty_desc = 0;
	priv->rx_curr_desc = 0;

	/* initialize flow control buffer allocation */
	dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
		   DMA_BUFALLOC_REG(priv->rx_chan));

	if (bcm6368_enetsw_refill_rx(dev)) {
		dev_err(kdev, "cannot allocate rx skb queue\n");
		ret = -ENOMEM;
		goto out;
	}

	/* write rx & tx ring addresses */
	dmas_writel(priv, priv->rx_desc_dma,
		    DMAS_RSTART_REG, priv->rx_chan);
	dmas_writel(priv, priv->tx_desc_dma,
		    DMAS_RSTART_REG, priv->tx_chan);

	/* clear remaining state ram for rx & tx channel */
	dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
	dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
	dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
	dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
	dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
	dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);

	/* set dma maximum burst len */
	dmac_writel(priv, priv->dma_maxburst,
		    DMAC_MAXBURST_REG, priv->rx_chan);
	dmac_writel(priv, priv->dma_maxburst,
		    DMAC_MAXBURST_REG, priv->tx_chan);

	/* set flow control low/high threshold to 1/3 / 2/3 */
	val = priv->rx_ring_size / 3;
	dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
	val = (priv->rx_ring_size * 2) / 3;
	dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));

	/* all set, enable mac and interrupts, start dma engine and
	 * kick rx dma channel
	 */
	wmb();
	dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
	dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
		    DMAC_CHANCFG_REG, priv->rx_chan);

	/* watch "packet transferred" interrupt in rx and tx */
	dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
		    DMAC_IR_REG, priv->rx_chan);
	dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
		    DMAC_IR_REG, priv->tx_chan);

	/* make sure we enable napi before rx interrupt  */
	napi_enable(&priv->napi);

	dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
		    DMAC_IRMASK_REG, priv->rx_chan);
	dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
		    DMAC_IRMASK_REG, priv->tx_chan);

	netif_carrier_on(dev);
	netif_start_queue(dev);

	return 0;

out:
	for (i = 0; i < priv->rx_ring_size; i++) {
		struct bcm6368_enetsw_desc *desc;

		if (!priv->rx_skb[i])
			continue;

		desc = &priv->rx_desc_cpu[i];
		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
				 DMA_FROM_DEVICE);
		kfree_skb(priv->rx_skb[i]);
	}
	kfree(priv->rx_skb);

out_free_tx_skb:
	kfree(priv->tx_skb);

out_free_tx_ring:
	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
			  priv->tx_desc_cpu, priv->tx_desc_dma);

out_free_rx_ring:
	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
			  priv->rx_desc_cpu, priv->rx_desc_dma);

out_freeirq_tx:
	if (priv->irq_tx != -1)
		free_irq(priv->irq_tx, dev);

out_freeirq_rx:
	free_irq(priv->irq_rx, dev);

out_freeirq:
	return ret;
}

static int bcm6368_enetsw_stop(struct net_device *dev)
{
	struct bcm6368_enetsw *priv;
	struct device *kdev;
	int i;

	priv = netdev_priv(dev);
	kdev = &priv->pdev->dev;

	netif_stop_queue(dev);
	napi_disable(&priv->napi);
	del_timer_sync(&priv->rx_timeout);

	/* mask all interrupts */
	dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
	dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);

	/* disable dma & mac */
	bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
	bcm6368_enetsw_disable_dma(priv, priv->rx_chan);

	/* force reclaim of all tx buffers */
	bcm6368_enetsw_tx_reclaim(dev, 1);

	/* free the rx skb ring */
	for (i = 0; i < priv->rx_ring_size; i++) {
		struct bcm6368_enetsw_desc *desc;

		if (!priv->rx_skb[i])
			continue;

		desc = &priv->rx_desc_cpu[i];
		dma_unmap_single_attrs(kdev, desc->address, priv->rx_skb_size,
				       DMA_FROM_DEVICE,
				       DMA_ATTR_SKIP_CPU_SYNC);
		kfree_skb(priv->rx_skb[i]);
	}

	/* free remaining allocated memory */
	kfree(priv->rx_skb);
	kfree(priv->tx_skb);
	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
			  priv->rx_desc_cpu, priv->rx_desc_dma);
	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
			  priv->tx_desc_cpu, priv->tx_desc_dma);
	if (priv->irq_tx != -1)
		free_irq(priv->irq_tx, dev);
	free_irq(priv->irq_rx, dev);

	return 0;
}

static const struct net_device_ops bcm6368_enetsw_ops = {
	.ndo_open = bcm6368_enetsw_open,
	.ndo_stop = bcm6368_enetsw_stop,
	.ndo_start_xmit = bcm6368_enetsw_start_xmit,
};

static int bcm6368_enetsw_probe(struct platform_device *pdev)
{
	struct bcm6368_enetsw *priv;
	struct device *dev = &pdev->dev;
	struct device_node *node = dev->of_node;
	struct net_device *ndev;
	struct resource *res;
	const void *mac;
	unsigned i;
	int ret;

	ndev = alloc_etherdev(sizeof(*priv));
	if (!ndev)
		return -ENOMEM;

	priv = netdev_priv(ndev);

	priv->num_pms = of_count_phandle_with_args(node, "power-domains",
						   "#power-domain-cells");
	if (priv->num_pms > 1) {
		priv->pm = devm_kcalloc(dev, priv->num_pms,
					sizeof(struct device *), GFP_KERNEL);
		if (!priv->pm)
			return -ENOMEM;

		priv->link_pm = devm_kcalloc(dev, priv->num_pms,
					     sizeof(struct device_link *),
					     GFP_KERNEL);
		if (!priv->link_pm)
			return -ENOMEM;

		for (i = 0; i < priv->num_pms; i++) {
			priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
			if (IS_ERR(priv->pm[i])) {
				dev_err(dev, "error getting pm %d\n", i);
				return -EINVAL;
			}

			priv->link_pm[i] = device_link_add(dev, priv->pm[i],
				DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
				DL_FLAG_RPM_ACTIVE);
		}
	}

	pm_runtime_enable(dev);
	pm_runtime_no_callbacks(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		pm_runtime_disable(dev);
		dev_info(dev, "PM prober defer: ret=%d\n", ret);
		return -EPROBE_DEFER;
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
	priv->dma_base = devm_ioremap_resource(dev, res);
	if (IS_ERR(priv->dma_base))
		return PTR_ERR(priv->dma_base);

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
					   "dma-channels");
	priv->dma_chan = devm_ioremap_resource(dev, res);
	if (IS_ERR(priv->dma_chan))
		return PTR_ERR(priv->dma_chan);

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
	priv->dma_sram = devm_ioremap_resource(dev, res);
	if (IS_ERR(priv->dma_sram))
		return PTR_ERR(priv->dma_sram);

	priv->irq_rx = platform_get_irq_byname(pdev, "rx");
	if (!priv->irq_rx)
		return -ENODEV;

	priv->irq_tx = platform_get_irq_byname(pdev, "tx");
	if (!priv->irq_tx)
		return -ENODEV;
	else if (priv->irq_tx < 0)
		priv->irq_tx = -1;

	if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
		return -ENODEV;

	if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
		return -ENODEV;

	priv->rx_ring_size = ENETSW_DEF_RX_DESC;
	priv->tx_ring_size = ENETSW_DEF_TX_DESC;

	priv->dma_maxburst = ENETSW_DMA_MAXBURST;

	priv->copybreak = ENETSW_DEF_CPY_BREAK;

	priv->dma_chan_en_mask = DMAC_CHANCFG_EN_MASK;
	priv->dma_chan_int_mask = DMAC_IR_PKTDONE_MASK;
	priv->dma_chan_width = DMA_CHAN_WIDTH;

	mac = of_get_mac_address(node);
	if (!IS_ERR_OR_NULL(mac)) {
		memcpy(ndev->dev_addr, mac, ETH_ALEN);
		dev_info(dev, "mtd mac %pM\n", ndev->dev_addr);
	} else {
		random_ether_addr(ndev->dev_addr);
		dev_info(dev, "random mac %pM\n", ndev->dev_addr);
	}

	priv->rx_skb_size = ALIGN(ndev->mtu + ENETSW_MTU_OVERHEAD,
				  priv->dma_maxburst * 4);

	priv->num_clocks = of_clk_get_parent_count(node);
	if (priv->num_clocks) {
		priv->clock = devm_kcalloc(dev, priv->num_clocks,
					   sizeof(struct clk *), GFP_KERNEL);
		if (!priv->clock)
			return -ENOMEM;
	}
	for (i = 0; i < priv->num_clocks; i++) {
		priv->clock[i] = of_clk_get(node, i);
		if (IS_ERR(priv->clock[i])) {
			dev_err(dev, "error getting clock %d\n", i);
			return -EINVAL;
		}

		ret = clk_prepare_enable(priv->clock[i]);
		if (ret) {
			dev_err(dev, "error enabling clock %d\n", i);
			return ret;
		}
	}

	priv->num_resets = of_count_phandle_with_args(node, "resets",
						      "#reset-cells");
	if (priv->num_resets) {
		priv->reset = devm_kcalloc(dev, priv->num_resets,
					   sizeof(struct reset_control *),
					   GFP_KERNEL);
		if (!priv->reset)
			return -ENOMEM;
	}
	for (i = 0; i < priv->num_resets; i++) {
		priv->reset[i] = devm_reset_control_get_by_index(dev, i);
		if (IS_ERR(priv->reset[i])) {
			dev_err(dev, "error getting reset %d\n", i);
			return -EINVAL;
		}

		ret = reset_control_reset(priv->reset[i]);
		if (ret) {
			dev_err(dev, "error performing reset %d\n", i);
			return ret;
		}
	}

	spin_lock_init(&priv->rx_lock);

	timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);

	/* register netdevice */
	ndev->netdev_ops = &bcm6368_enetsw_ops;
	ndev->min_mtu = ETH_ZLEN;
	ndev->mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
	ndev->max_mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
	netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
	SET_NETDEV_DEV(ndev, dev);

	ret = register_netdev(ndev);
	if (ret)
		goto out_disable_clk;

	netif_carrier_off(ndev);
	platform_set_drvdata(pdev, ndev);
	priv->pdev = pdev;
	priv->net_dev = ndev;

	return 0;

out_disable_clk:
	for (i = 0; i < priv->num_resets; i++)
		reset_control_assert(priv->reset[i]);

	for (i = 0; i < priv->num_clocks; i++)
		clk_disable_unprepare(priv->clock[i]);

	return ret;
}

static int bcm6368_enetsw_remove(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct bcm6368_enetsw *priv = netdev_priv(ndev);
	unsigned int i;

	unregister_netdev(ndev);

	pm_runtime_put_sync(dev);
	for (i = 0; priv->pm && i < priv->num_pms; i++) {
		dev_pm_domain_detach(priv->pm[i], true);
		device_link_del(priv->link_pm[i]);
	}

	for (i = 0; i < priv->num_resets; i++)
		reset_control_assert(priv->reset[i]);

	for (i = 0; i < priv->num_clocks; i++)
		clk_disable_unprepare(priv->clock[i]);

	free_netdev(ndev);

	return 0;
}

static const struct of_device_id bcm6368_enetsw_of_match[] = {
	{ .compatible = "brcm,bcm6318-enetsw", },
	{ .compatible = "brcm,bcm6328-enetsw", },
	{ .compatible = "brcm,bcm6362-enetsw", },
	{ .compatible = "brcm,bcm6368-enetsw", },
	{ .compatible = "brcm,bcm63268-enetsw", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm6368_mdio_ids);

static struct platform_driver bcm6368_enetsw_driver = {
	.driver = {
		.name = "bcm6368-enetsw",
		.of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
	},
	.probe	= bcm6368_enetsw_probe,
	.remove	= bcm6368_enetsw_remove,
};
module_platform_driver(bcm6368_enetsw_driver);