aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/config/expr.c
blob: 30e4f9d69c2fbc2e080022f6fe5db49985207d9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
/*
 * Copyright (C) 2002 Roman Zippel <zippel@linux-m68k.org>
 * Released under the terms of the GNU GPL v2.0.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define LKC_DIRECT_LINK
#include "lkc.h"

#define DEBUG_EXPR	0

struct expr *expr_alloc_symbol(struct symbol *sym)
{
	struct expr *e = malloc(sizeof(*e));
	memset(e, 0, sizeof(*e));
	e->type = E_SYMBOL;
	e->left.sym = sym;
	return e;
}

struct expr *expr_alloc_one(enum expr_type type, struct expr *ce)
{
	struct expr *e = malloc(sizeof(*e));
	memset(e, 0, sizeof(*e));
	e->type = type;
	e->left.expr = ce;
	return e;
}

struct expr *expr_alloc_two(enum expr_type type, struct expr *e1, struct expr *e2)
{
	struct expr *e = malloc(sizeof(*e));
	memset(e, 0, sizeof(*e));
	e->type = type;
	e->left.expr = e1;
	e->right.expr = e2;
	return e;
}

struct expr *expr_alloc_comp(enum expr_type type, struct symbol *s1, struct symbol *s2)
{
	struct expr *e = malloc(sizeof(*e));
	memset(e, 0, sizeof(*e));
	e->type = type;
	e->left.sym = s1;
	e->right.sym = s2;
	return e;
}

struct expr *expr_alloc_and(struct expr *e1, struct expr *e2)
{
	if (!e1)
		return e2;
	return e2 ? expr_alloc_two(E_AND, e1, e2) : e1;
}

struct expr *expr_alloc_or(struct expr *e1, struct expr *e2)
{
	if (!e1)
		return e2;
	return e2 ? expr_alloc_two(E_OR, e1, e2) : e1;
}

struct expr *expr_copy(struct expr *org)
{
	struct expr *e;

	if (!org)
		return NULL;

	e = malloc(sizeof(*org));
	memcpy(e, org, sizeof(*org));
	switch (org->type) {
	case E_SYMBOL:
		e->left = org->left;
		break;
	case E_NOT:
		e->left.expr = expr_copy(org->left.expr);
		break;
	case E_EQUAL:
	case E_UNEQUAL:
		e->left.sym = org->left.sym;
		e->right.sym = org->right.sym;
		break;
	case E_AND:
	case E_OR:
	case E_CHOICE:
		e->left.expr = expr_copy(org->left.expr);
		e->right.expr = expr_copy(org->right.expr);
		break;
	default:
		printf("can't copy type %d\n", e->type);
		free(e);
		e = NULL;
		break;
	}

	return e;
}

void expr_free(struct expr *e)
{
	if (!e)
		return;

	switch (e->type) {
	case E_SYMBOL:
		break;
	case E_NOT:
		expr_free(e->left.expr);
		return;
	case E_EQUAL:
	case E_UNEQUAL:
		break;
	case E_OR:
	case E_AND:
		expr_free(e->left.expr);
		expr_free(e->right.expr);
		break;
	default:
		printf("how to free type %d?\n", e->type);
		break;
	}
	free(e);
}

static int trans_count;

#define e1 (*ep1)
#define e2 (*ep2)

static void __expr_eliminate_eq(enum expr_type type, struct expr **ep1, struct expr **ep2)
{
	if (e1->type == type) {
		__expr_eliminate_eq(type, &e1->left.expr, &e2);
		__expr_eliminate_eq(type, &e1->right.expr, &e2);
		return;
	}
	if (e2->type == type) {
		__expr_eliminate_eq(type, &e1, &e2->left.expr);
		__expr_eliminate_eq(type, &e1, &e2->right.expr);
		return;
	}
	if (e1->type == E_SYMBOL && e2->type == E_SYMBOL &&
	    e1->left.sym == e2->left.sym && (e1->left.sym->flags & (SYMBOL_YES|SYMBOL_NO)))
		return;
	if (!expr_eq(e1, e2))
		return;
	trans_count++;
	expr_free(e1); expr_free(e2);
	switch (type) {
	case E_OR:
		e1 = expr_alloc_symbol(&symbol_no);
		e2 = expr_alloc_symbol(&symbol_no);
		break;
	case E_AND:
		e1 = expr_alloc_symbol(&symbol_yes);
		e2 = expr_alloc_symbol(&symbol_yes);
		break;
	default:
		;
	}
}

void expr_eliminate_eq(struct expr **ep1, struct expr **ep2)
{
	if (!e1 || !e2)
		return;
	switch (e1->type) {
	case E_OR:
	case E_AND:
		__expr_eliminate_eq(e1->type, ep1, ep2);
	default:
		;
	}
	if (e1->type != e2->type) switch (e2->type) {
	case E_OR:
	case E_AND:
		__expr_eliminate_eq(e2->type, ep1, ep2);
	default:
		;
	}
	e1 = expr_eliminate_yn(e1);
	e2 = expr_eliminate_yn(e2);
}

#undef e1
#undef e2

int expr_eq(struct expr *e1, struct expr *e2)
{
	int res, old_count;

	if (e1->type != e2->type)
		return 0;
	switch (e1->type) {
	case E_EQUAL:
	case E_UNEQUAL:
		return e1->left.sym == e2->left.sym && e1->right.sym == e2->right.sym;
	case E_SYMBOL:
		return e1->left.sym == e2->left.sym;
	case E_NOT:
		return expr_eq(e1->left.expr, e2->left.expr);
	case E_AND:
	case E_OR:
		e1 = expr_copy(e1);
		e2 = expr_copy(e2);
		old_count = trans_count;
		expr_eliminate_eq(&e1, &e2);
		res = (e1->type == E_SYMBOL && e2->type == E_SYMBOL &&
		       e1->left.sym == e2->left.sym);
		expr_free(e1);
		expr_free(e2);
		trans_count = old_count;
		return res;
	case E_CHOICE:
	case E_RANGE:
	case E_NONE:
		/* panic */;
	}

	if (DEBUG_EXPR) {
		expr_fprint(e1, stdout);
		printf(" = ");
		expr_fprint(e2, stdout);
		printf(" ?\n");
	}

	return 0;
}

struct expr *expr_eliminate_yn(struct expr *e)
{
	struct expr *tmp;

	if (e) switch (e->type) {
	case E_AND:
		e->left.expr = expr_eliminate_yn(e->left.expr);
		e->right.expr = expr_eliminate_yn(e->right.expr);
		if (e->left.expr->type == E_SYMBOL) {
			if (e->left.expr->left.sym == &symbol_no) {
				expr_free(e->left.expr);
				expr_free(e->right.expr);
				e->type = E_SYMBOL;
				e->left.sym = &symbol_no;
				e->right.expr = NULL;
				return e;
			} else if (e->left.expr->left.sym == &symbol_yes) {
				free(e->left.expr);
				tmp = e->right.expr;
				*e = *(e->right.expr);
				free(tmp);
				return e;
			}
		}
		if (e->right.expr->type == E_SYMBOL) {
			if (e->right.expr->left.sym == &symbol_no) {
				expr_free(e->left.expr);
				expr_free(e->right.expr);
				e->type = E_SYMBOL;
				e->left.sym = &symbol_no;
				e->right.expr = NULL;
				return e;
			} else if (e->right.expr->left.sym == &symbol_yes) {
				free(e->right.expr);
				tmp = e->left.expr;
				*e = *(e->left.expr);
				free(tmp);
				return e;
			}
		}
		break;
	case E_OR:
		e->left.expr = expr_eliminate_yn(e->left.expr);
		e->right.expr = expr_eliminate_yn(e->right.expr);
		if (e->left.expr->type == E_SYMBOL) {
			if (e->left.expr->left.sym == &symbol_no) {
				free(e->left.expr);
				tmp = e->right.expr;
				*e = *(e->right.expr);
				free(tmp);
				return e;
			} else if (e->left.expr->left.sym == &symbol_yes) {
				expr_free(e->left.expr);
				expr_free(e->right.expr);
				e->type = E_SYMBOL;
				e->left.sym = &symbol_yes;
				e->right.expr = NULL;
				return e;
			}
		}
		if (e->right.expr->type == E_SYMBOL) {
			if (e->right.expr->left.sym == &symbol_no) {
				free(e->right.expr);
				tmp = e->left.expr;
				*e = *(e->left.expr);
				free(tmp);
				return e;
			} else if (e->right.expr->left.sym == &symbol_yes) {
				expr_free(e->left.expr);
				expr_free(e->right.expr);
				e->type = E_SYMBOL;
				e->left.sym = &symbol_yes;
				e->right.expr = NULL;
				return e;
			}
		}
		break;
	default:
		;
	}
	return e;
}

/*
 * bool FOO!=n => FOO
 */
struct expr *expr_trans_bool(struct expr *e)
{
	if (!e)
		return NULL;
	switch (e->type) {
	case E_AND:
	case E_OR:
	case E_NOT:
		e->left.expr = expr_trans_bool(e->left.expr);
		e->right.expr = expr_trans_bool(e->right.expr);
		break;
	case E_UNEQUAL:
		// FOO!=n -> FOO
		if (e->left.sym->type == S_TRISTATE) {
			if (e->right.sym == &symbol_no) {
				e->type = E_SYMBOL;
				e->right.sym = NULL;
			}
		}
		break;
	default:
		;
	}
	return e;
}

/*
 * e1 || e2 -> ?
 */
struct expr *expr_join_or(struct expr *e1, struct expr *e2)
{
	struct expr *tmp;
	struct symbol *sym1, *sym2;

	if (expr_eq(e1, e2))
		return expr_copy(e1);
	if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT)
		return NULL;
	if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT)
		return NULL;
	if (e1->type == E_NOT) {
		tmp = e1->left.expr;
		if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL)
			return NULL;
		sym1 = tmp->left.sym;
	} else
		sym1 = e1->left.sym;
	if (e2->type == E_NOT) {
		if (e2->left.expr->type != E_SYMBOL)
			return NULL;
		sym2 = e2->left.expr->left.sym;
	} else
		sym2 = e2->left.sym;
	if (sym1 != sym2)
		return NULL;
	if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE)
		return NULL;
	if (sym1->type == S_TRISTATE) {
		if (e1->type == E_EQUAL && e2->type == E_EQUAL &&
		    ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) ||
		     (e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes))) {
			// (a='y') || (a='m') -> (a!='n')
			return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_no);
		}
		if (e1->type == E_EQUAL && e2->type == E_EQUAL &&
		    ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) ||
		     (e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes))) {
			// (a='y') || (a='n') -> (a!='m')
			return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_mod);
		}
		if (e1->type == E_EQUAL && e2->type == E_EQUAL &&
		    ((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) ||
		     (e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod))) {
			// (a='m') || (a='n') -> (a!='y')
			return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_yes);
		}
	}
	if (sym1->type == S_BOOLEAN && sym1 == sym2) {
		if ((e1->type == E_NOT && e1->left.expr->type == E_SYMBOL && e2->type == E_SYMBOL) ||
		    (e2->type == E_NOT && e2->left.expr->type == E_SYMBOL && e1->type == E_SYMBOL))
			return expr_alloc_symbol(&symbol_yes);
	}

	if (DEBUG_EXPR) {
		printf("optimize (");
		expr_fprint(e1, stdout);
		printf(") || (");
		expr_fprint(e2, stdout);
		printf(")?\n");
	}
	return NULL;
}

struct expr *expr_join_and(struct expr *e1, struct expr *e2)
{
	struct expr *tmp;
	struct symbol *sym1, *sym2;

	if (expr_eq(e1, e2))
		return expr_copy(e1);
	if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT)
		return NULL;
	if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT)
		return NULL;
	if (e1->type == E_NOT) {
		tmp = e1->left.expr;
		if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL)
			return NULL;
		sym1 = tmp->left.sym;
	} else
		sym1 = e1->left.sym;
	if (e2->type == E_NOT) {
		if (e2->left.expr->type != E_SYMBOL)
			return NULL;
		sym2 = e2->left.expr->left.sym;
	} else
		sym2 = e2->left.sym;
	if (sym1 != sym2)
		return NULL;
	if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE)
		return NULL;

	if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_yes) ||
	    (e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_yes))
		// (a) && (a='y') -> (a='y')
		return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes);

	if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_no) ||
	    (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_no))
		// (a) && (a!='n') -> (a)
		return expr_alloc_symbol(sym1);

	if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_mod) ||
	    (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_mod))
		// (a) && (a!='m') -> (a='y')
		return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes);

	if (sym1->type == S_TRISTATE) {
		if (e1->type == E_EQUAL && e2->type == E_UNEQUAL) {
			// (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b'
			sym2 = e1->right.sym;
			if ((e2->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST))
				return sym2 != e2->right.sym ? expr_alloc_comp(E_EQUAL, sym1, sym2)
							     : expr_alloc_symbol(&symbol_no);
		}
		if (e1->type == E_UNEQUAL && e2->type == E_EQUAL) {
			// (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b'
			sym2 = e2->right.sym;
			if ((e1->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST))
				return sym2 != e1->right.sym ? expr_alloc_comp(E_EQUAL, sym1, sym2)
							     : expr_alloc_symbol(&symbol_no);
		}
		if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL &&
			   ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) ||
			    (e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes)))
			// (a!='y') && (a!='n') -> (a='m')
			return expr_alloc_comp(E_EQUAL, sym1, &symbol_mod);

		if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL &&
			   ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) ||
			    (e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes)))
			// (a!='y') && (a!='m') -> (a='n')
			return expr_alloc_comp(E_EQUAL, sym1, &symbol_no);

		if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL &&
			   ((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) ||
			    (e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod)))
			// (a!='m') && (a!='n') -> (a='m')
			return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes);

		if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_mod) ||
		    (e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_mod) ||
		    (e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_yes) ||
		    (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_yes))
			return NULL;
	}

	if (DEBUG_EXPR) {
		printf("optimize (");
		expr_fprint(e1, stdout);
		printf(") && (");
		expr_fprint(e2, stdout);
		printf(")?\n");
	}
	return NULL;
}

static void expr_eliminate_dups1(enum expr_type type, struct expr **ep1, struct expr **ep2)
{
#define e1 (*ep1)
#define e2 (*ep2)
	struct expr *tmp;

	if (e1->type == type) {
		expr_eliminate_dups1(type, &e1->left.expr, &e2);
		expr_eliminate_dups1(type, &e1->right.expr, &e2);
		return;
	}
	if (e2->type == type) {
		expr_eliminate_dups1(type, &e1, &e2->left.expr);
		expr_eliminate_dups1(type, &e1, &e2->right.expr);
		return;
	}
	if (e1 == e2)
		return;

	switch (e1->type) {
	case E_OR: case E_AND:
		expr_eliminate_dups1(e1->type, &e1, &e1);
	default:
		;
	}

	switch (type) {
	case E_OR:
		tmp = expr_join_or(e1, e2);
		if (tmp) {
			expr_free(e1); expr_free(e2);
			e1 = expr_alloc_symbol(&symbol_no);
			e2 = tmp;
			trans_count++;
		}
		break;
	case E_AND:
		tmp = expr_join_and(e1, e2);
		if (tmp) {
			expr_free(e1); expr_free(e2);
			e1 = expr_alloc_symbol(&symbol_yes);
			e2 = tmp;
			trans_count++;
		}
		break;
	default:
		;
	}
#undef e1
#undef e2
}

static void expr_eliminate_dups2(enum expr_type type, struct expr **ep1, struct expr **ep2)
{
#define e1 (*ep1)
#define e2 (*ep2)
	struct expr *tmp, *tmp1, *tmp2;

	if (e1->type == type) {
		expr_eliminate_dups2(type, &e1->left.expr, &e2);
		expr_eliminate_dups2(type, &e1->right.expr, &e2);
		return;
	}
	if (e2->type == type) {
		expr_eliminate_dups2(type, &e1, &e2->left.expr);
		expr_eliminate_dups2(type, &e1, &e2->right.expr);
	}
	if (e1 == e2)
		return;

	switch (e1->type) {
	case E_OR:
		expr_eliminate_dups2(e1->type, &e1, &e1);
		// (FOO || BAR) && (!FOO && !BAR) -> n
		tmp1 = expr_transform(expr_alloc_one(E_NOT, expr_copy(e1)));
		tmp2 = expr_copy(e2);
		tmp = expr_extract_eq_and(&tmp1, &tmp2);
		if (expr_is_yes(tmp1)) {
			expr_free(e1);
			e1 = expr_alloc_symbol(&symbol_no);
			trans_count++;
		}
		expr_free(tmp2);
		expr_free(tmp1);
		expr_free(tmp);
		break;
	case E_AND:
		expr_eliminate_dups2(e1->type, &e1, &e1);
		// (FOO && BAR) || (!FOO || !BAR) -> y
		tmp1 = expr_transform(expr_alloc_one(E_NOT, expr_copy(e1)));
		tmp2 = expr_copy(e2);
		tmp = expr_extract_eq_or(&tmp1, &tmp2);
		if (expr_is_no(tmp1)) {
			expr_free(e1);
			e1 = expr_alloc_symbol(&symbol_yes);
			trans_count++;
		}
		expr_free(tmp2);
		expr_free(tmp1);
		expr_free(tmp);
		break;
	default:
		;
	}
#undef e1
#undef e2
}

struct expr *expr_eliminate_dups(struct expr *e)
{
	int oldcount;
	if (!e)
		return e;

	oldcount = trans_count;
	while (1) {
		trans_count = 0;
		switch (e->type) {
		case E_OR: case E_AND:
			expr_eliminate_dups1(e->type, &e, &e);
			expr_eliminate_dups2(e->type, &e, &e);
		default:
			;
		}
		if (!trans_count)
			break;
		e = expr_eliminate_yn(e);
	}
	trans_count = oldcount;
	return e;
}

struct expr *expr_transform(struct expr *e)
{
	struct expr *tmp;

	if (!e)
		return NULL;
	switch (e->type) {
	case E_EQUAL:
	case E_UNEQUAL:
	case E_SYMBOL:
	case E_CHOICE:
		break;
	default:
		e->left.expr = expr_transform(e->left.expr);
		e->right.expr = expr_transform(e->right.expr);
	}

	switch (e->type) {
	case E_EQUAL:
		if (e->left.sym->type != S_BOOLEAN)
			break;
		if (e->right.sym == &symbol_no) {
			e->type = E_NOT;
			e->left.expr = expr_alloc_symbol(e->left.sym);
			e->right.sym = NULL;
			break;
		}
		if (e->right.sym == &symbol_mod) {
			printf("boolean symbol %s tested for 'm'? test forced to 'n'\n", e->left.sym->name);
			e->type = E_SYMBOL;
			e->left.sym = &symbol_no;
			e->right.sym = NULL;
			break;
		}
		if (e->right.sym == &symbol_yes) {
			e->type = E_SYMBOL;
			e->right.sym = NULL;
			break;
		}
		break;
	case E_UNEQUAL:
		if (e->left.sym->type != S_BOOLEAN)
			break;
		if (e->right.sym == &symbol_no) {
			e->type = E_SYMBOL;
			e->right.sym = NULL;
			break;
		}
		if (e->right.sym == &symbol_mod) {
			printf("boolean symbol %s tested for 'm'? test forced to 'y'\n", e->left.sym->name);
			e->type = E_SYMBOL;
			e->left.sym = &symbol_yes;
			e->right.sym = NULL;
			break;
		}
		if (e->right.sym == &symbol_yes) {
			e->type = E_NOT;
			e->left.expr = expr_alloc_symbol(e->left.sym);
			e->right.sym = NULL;
			break;
		}
		break;
	case E_NOT:
		switch (e->left.expr->type) {
		case E_NOT:
			// !!a -> a
			tmp = e->left.expr->left.expr;
			free(e->left.expr);
			free(e);
			e = tmp;
			e = expr_transform(e);
			break;
		case E_EQUAL:
		case E_UNEQUAL:
			// !a='x' -> a!='x'
			tmp = e->left.expr;
			free(e);
			e = tmp;
			e->type = e->type == E_EQUAL ? E_UNEQUAL : E_EQUAL;
			break;
		case E_OR:
			// !(a || b) -> !a && !b
			tmp = e->left.expr;
			e->type = E_AND;
			e->right.expr = expr_alloc_one(E_NOT, tmp->right.expr);
			tmp->type = E_NOT;
			tmp->right.expr = NULL;
			e = expr_transform(e);
			break;
		case E_AND:
			// !(a && b) -> !a || !b
			tmp = e->left.expr;
			e->type = E_OR;
			e->right.expr = expr_alloc_one(E_NOT, tmp->right.expr);
			tmp->type = E_NOT;
			tmp->right.expr = NULL;
			e = expr_transform(e);
			break;
		case E_SYMBOL:
			if (e->left.expr->left.sym == &symbol_yes) {
				// !'y' -> 'n'
				tmp = e->left.expr;
				free(e);
				e = tmp;
				e->type = E_SYMBOL;
				e->left.sym = &symbol_no;
				break;
			}
			if (e->left.expr->left.sym == &symbol_mod) {
				// !'m' -> 'm'
				tmp = e->left.expr;
				free(e);
				e = tmp;
				e->type = E_SYMBOL;
				e->left.sym = &symbol_mod;
				break;
			}
			if (e->left.expr->left.sym == &symbol_no) {
				// !'n' -> 'y'
				tmp = e->left.expr;
				free(e);
				e = tmp;
				e->type = E_SYMBOL;
				e->left.sym = &symbol_yes;
				break;
			}
			break;
		default:
			;
		}
		break;
	default:
		;
	}
	return e;
}

int expr_contains_symbol(struct expr *dep, struct symbol *sym)
{
	if (!dep)
		return 0;

	switch (dep->type) {
	case E_AND:
	case E_OR:
		return expr_contains_symbol(dep->left.expr, sym) ||
		       expr_contains_symbol(dep->right.expr, sym);
	case E_SYMBOL:
		return dep->left.sym == sym;
	case E_EQUAL:
	case E_UNEQUAL:
		return dep->left.sym == sym ||
		       dep->right.sym == sym;
	case E_NOT:
		return expr_contains_symbol(dep->left.expr, sym);
	default:
		;
	}
	return 0;
}

bool expr_depends_symbol(struct expr *dep, struct symbol *sym)
{
	if (!dep)
		return false;

	switch (dep->type) {
	case E_AND:
		return expr_depends_symbol(dep->left.expr, sym) ||
		       expr_depends_symbol(dep->right.expr, sym);
	case E_SYMBOL:
		return dep->left.sym == sym;
	case E_EQUAL:
		if (dep->left.sym == sym) {
			if (dep->right.sym == &symbol_yes || dep->right.sym == &symbol_mod)
				return true;
		}
		break;
	case E_UNEQUAL:
		if (dep->left.sym == sym) {
			if (dep->right.sym == &symbol_no)
				return true;
		}
		break;
	default:
		;
	}
 	return false;
}

struct expr *expr_extract_eq_and(struct expr **ep1, struct expr **ep2)
{
	struct expr *tmp = NULL;
	expr_extract_eq(E_AND, &tmp, ep1, ep2);
	if (tmp) {
		*ep1 = expr_eliminate_yn(*ep1);
		*ep2 = expr_eliminate_yn(*ep2);
	}
	return tmp;
}

struct expr *expr_extract_eq_or(struct expr **ep1, struct expr **ep2)
{
	struct expr *tmp = NULL;
	expr_extract_eq(E_OR, &tmp, ep1, ep2);
	if (tmp) {
		*ep1 = expr_eliminate_yn(*ep1);
		*ep2 = expr_eliminate_yn(*ep2);
	}
	return tmp;
}

void expr_extract_eq(enum expr_type type, struct expr **ep, struct expr **ep1, struct expr **ep2)
{
#define e1 (*ep1)
#define e2 (*ep2)
	if (e1->type == type) {
		expr_extract_eq(type, ep, &e1->left.expr, &e2);
		expr_extract_eq(type, ep, &e1->right.expr, &e2);
		return;
	}
	if (e2->type == type) {
		expr_extract_eq(type, ep, ep1, &e2->left.expr);
		expr_extract_eq(type, ep, ep1, &e2->right.expr);
		return;
	}
	if (expr_eq(e1, e2)) {
		*ep = *ep ? expr_alloc_two(type, *ep, e1) : e1;
		expr_free(e2);
		if (type == E_AND) {
			e1 = expr_alloc_symbol(&symbol_yes);
			e2 = expr_alloc_symbol(&symbol_yes);
		} else if (type == E_OR) {
			e1 = expr_alloc_symbol(&symbol_no);
			e2 = expr_alloc_symbol(&symbol_no);
		}
	}
#undef e1
#undef e2
}

struct expr *expr_trans_compare(struct expr *e, enum expr_type type, struct symbol *sym)
{
	struct expr *e1, *e2;

	if (!e) {
		e = expr_alloc_symbol(sym);
		if (type == E_UNEQUAL)
			e = expr_alloc_one(E_NOT, e);
		return e;
	}
	switch (e->type) {
	case E_AND:
		e1 = expr_trans_compare(e->left.expr, E_EQUAL, sym);
		e2 = expr_trans_compare(e->right.expr, E_EQUAL, sym);
		if (sym == &symbol_yes)
			e = expr_alloc_two(E_AND, e1, e2);
		if (sym == &symbol_no)
			e = expr_alloc_two(E_OR, e1, e2);
		if (type == E_UNEQUAL)
			e = expr_alloc_one(E_NOT, e);
		return e;
	case E_OR:
		e1 = expr_trans_compare(e->left.expr, E_EQUAL, sym);
		e2 = expr_trans_compare(e->right.expr, E_EQUAL, sym);
		if (sym == &symbol_yes)
			e = expr_alloc_two(E_OR, e1, e2);
		if (sym == &symbol_no)
			e = expr_alloc_two(E_AND, e1, e2);
		if (type == E_UNEQUAL)
			e = expr_alloc_one(E_NOT, e);
		return e;
	case E_NOT:
		return expr_trans_compare(e->left.expr, type == E_EQUAL ? E_UNEQUAL : E_EQUAL, sym);
	case E_UNEQUAL:
	case E_EQUAL:
		if (type == E_EQUAL) {
			if (sym == &symbol_yes)
				return expr_copy(e);
			if (sym == &symbol_mod)
				return expr_alloc_symbol(&symbol_no);
			if (sym == &symbol_no)
				return expr_alloc_one(E_NOT, expr_copy(e));
		} else {
			if (sym == &symbol_yes)
				return expr_alloc_one(E_NOT, expr_copy(e));
			if (sym == &symbol_mod)
				return expr_alloc_symbol(&symbol_yes);
			if (sym == &symbol_no)
				return expr_copy(e);
		}
		break;
	case E_SYMBOL:
		return expr_alloc_comp(type, e->left.sym, sym);
	case E_CHOICE:
	case E_RANGE:
	case E_NONE:
		/* panic */;
	}
	return NULL;
}

tristate expr_calc_value(struct expr *e)
{
	tristate val1, val2;
	const char *str1, *str2;

	if (!e)
		return yes;

	switch (e->type) {
	case E_SYMBOL:
		sym_calc_value(e->left.sym);
		return e->left.sym->curr.tri;
	case E_AND:
		val1 = expr_calc_value(e->left.expr);
		val2 = expr_calc_value(e->right.expr);
		return E_AND(val1, val2);
	case E_OR:
		val1 = expr_calc_value(e->left.expr);
		val2 = expr_calc_value(e->right.expr);
		return E_OR(val1, val2);
	case E_NOT:
		val1 = expr_calc_value(e->left.expr);
		return E_NOT(val1);
	case E_EQUAL:
		sym_calc_value(e->left.sym);
		sym_calc_value(e->right.sym);
		str1 = sym_get_string_value(e->left.sym);
		str2 = sym_get_string_value(e->right.sym);
		return !strcmp(str1, str2) ? yes : no;
	case E_UNEQUAL:
		sym_calc_value(e->left.sym);
		sym_calc_value(e->right.sym);
		str1 = sym_get_string_value(e->left.sym);
		str2 = sym_get_string_value(e->right.sym);
		return !strcmp(str1, str2) ? no : yes;
	default:
		printf("expr_calc_value: %d?\n", e->type);
		return no;
	}
}

int expr_compare_type(enum expr_type t1, enum expr_type t2)
{
#if 0
	return 1;
#else
	if (t1 == t2)
		return 0;
	switch (t1) {
	case E_EQUAL:
	case E_UNEQUAL:
		if (t2 == E_NOT)
			return 1;
	case E_NOT:
		if (t2 == E_AND)
			return 1;
	case E_AND:
		if (t2 == E_OR)
			return 1;
	case E_OR:
		if (t2 == E_CHOICE)
			return 1;
	case E_CHOICE:
		if (t2 == 0)
			return 1;
	default:
		return -1;
	}
	printf("[%dgt%d?]", t1, t2);
	return 0;
#endif
}

void expr_print(struct expr *e, void (*fn)(void *, const char *), void *data, int prevtoken)
{
	if (!e) {
		fn(data, "y");
		return;
	}

	if (expr_compare_type(prevtoken, e->type) > 0)
		fn(data, "(");
	switch (e->type) {
	case E_SYMBOL:
		if (e->left.sym->name)
			fn(data, e->left.sym->name);
		else
			fn(data, "<choice>");
		break;
	case E_NOT:
		fn(data, "!");
		expr_print(e->left.expr, fn, data, E_NOT);
		break;
	case E_EQUAL:
		fn(data, e->left.sym->name);
		fn(data, "=");
		fn(data, e->right.sym->name);
		break;
	case E_UNEQUAL:
		fn(data, e->left.sym->name);
		fn(data, "!=");
		fn(data, e->right.sym->name);
		break;
	case E_OR:
		expr_print(e->left.expr, fn, data, E_OR);
		fn(data, " || ");
		expr_print(e->right.expr, fn, data, E_OR);
		break;
	case E_AND:
		expr_print(e->left.expr, fn, data, E_AND);
		fn(data, " && ");
		expr_print(e->right.expr, fn, data, E_AND);
		break;
	case E_CHOICE:
		fn(data, e->right.sym->name);
		if (e->left.expr) {
			fn(data, " ^ ");
			expr_print(e->left.expr, fn, data, E_CHOICE);
		}
		break;
	case E_RANGE:
		fn(data, "[");
		fn(data, e->left.sym->name);
		fn(data, " ");
		fn(data, e->right.sym->name);
		fn(data, "]");
		break;
	default:
	  {
		char buf[32];
		sprintf(buf, "<unknown type %d>", e->type);
		fn(data, buf);
		break;
	  }
	}
	if (expr_compare_type(prevtoken, e->type) > 0)
		fn(data, ")");
}

static void expr_print_file_helper(void *data, const char *str)
{
	fwrite(str, strlen(str), 1, data);
}

void expr_fprint(struct expr *e, FILE *out)
{
	expr_print(e, expr_print_file_helper, out, E_NONE);
}

static void expr_print_gstr_helper(void *data, const char *str)
{
	str_append((struct gstr*)data, str);
}

void expr_gstr_print(struct expr *e, struct gstr *gs)
{
	expr_print(e, expr_print_gstr_helper, gs, E_NONE);
}
39;HIGH, 0 ns,0 ns,0 ns); CONSTANT DefSchedAnd : SchedType := (TIME'HIGH, 0 ns,0 ns, TIME'HIGH,0 ns); -- Constrained array declarations (common sizes used by primitives) SUBTYPE SchedArray2 IS SchedArray(1 DOWNTO 0); SUBTYPE SchedArray3 IS SchedArray(2 DOWNTO 0); SUBTYPE SchedArray4 IS SchedArray(3 DOWNTO 0); SUBTYPE SchedArray8 IS SchedArray(7 DOWNTO 0); SUBTYPE TimeArray2 IS VitalTimeArray(1 DOWNTO 0); SUBTYPE TimeArray3 IS VitalTimeArray(2 DOWNTO 0); SUBTYPE TimeArray4 IS VitalTimeArray(3 DOWNTO 0); SUBTYPE TimeArray8 IS VitalTimeArray(7 DOWNTO 0); SUBTYPE GlitchArray2 IS GlitchDataArrayType(1 DOWNTO 0); SUBTYPE GlitchArray3 IS GlitchDataArrayType(2 DOWNTO 0); SUBTYPE GlitchArray4 IS GlitchDataArrayType(3 DOWNTO 0); SUBTYPE GlitchArray8 IS GlitchDataArrayType(7 DOWNTO 0); SUBTYPE EdgeArray2 IS EdgeArray(1 DOWNTO 0); SUBTYPE EdgeArray3 IS EdgeArray(2 DOWNTO 0); SUBTYPE EdgeArray4 IS EdgeArray(3 DOWNTO 0); SUBTYPE EdgeArray8 IS EdgeArray(7 DOWNTO 0); CONSTANT DefSchedArray2 : SchedArray2 := (OTHERS=> (0 ns, 0 ns, 0 ns, 0 ns, 0 ns)); TYPE stdlogic_table IS ARRAY(std_ulogic, std_ulogic) OF std_ulogic; CONSTANT InitialEdge : LogicToLevelT := ( '1'|'H' => 'R', '0'|'L' => 'F', OTHERS => 'x' ); CONSTANT LogicToEdge : LogicToEdgeT := ( -- previous, current -- old \ new: U X 0 1 Z W L H - 'U' => ( 'U', 'x', 'F', 'R', 'x', 'x', 'F', 'R', 'x' ), 'X' => ( 'x', 'X', 'F', 'R', 'x', 'X', 'F', 'R', 'X' ), '0' => ( 'r', 'r', '0', '/', 'r', 'r', '0', '/', 'r' ), '1' => ( 'f', 'f', '\', '1', 'f', 'f', '\', '1', 'f' ), 'Z' => ( 'x', 'X', 'F', 'R', 'X', 'x', 'F', 'R', 'x' ), 'W' => ( 'x', 'X', 'F', 'R', 'x', 'X', 'F', 'R', 'X' ), 'L' => ( 'r', 'r', '0', '/', 'r', 'r', '0', '/', 'r' ), 'H' => ( 'f', 'f', '\', '1', 'f', 'f', '\', '1', 'f' ), '-' => ( 'x', 'X', 'F', 'R', 'x', 'X', 'F', 'R', 'X' ) ); CONSTANT LogicToLevel : LogicToLevelT := ( '1'|'H' => '1', '0'|'L' => '0', 'U' => 'U', OTHERS => 'X' ); -- ----------------------------------- -- 3-state logic tables -- ----------------------------------- CONSTANT BufIf0_Table : stdlogic_table := -- enable data value ( '1'|'H' => ( OTHERS => 'Z' ), '0'|'L' => ( '1'|'H' => '1', '0'|'L' => '0', 'U' => 'U', OTHERS => 'X' ), 'U' => ( OTHERS => 'U' ), OTHERS => ( OTHERS => 'X' ) ); CONSTANT BufIf1_Table : stdlogic_table := -- enable data value ( '0'|'L' => ( OTHERS => 'Z' ), '1'|'H' => ( '1'|'H' => '1', '0'|'L' => '0', 'U' => 'U', OTHERS => 'X' ), 'U' => ( OTHERS => 'U' ), OTHERS => ( OTHERS => 'X' ) ); CONSTANT InvIf0_Table : stdlogic_table := -- enable data value ( '1'|'H' => ( OTHERS => 'Z' ), '0'|'L' => ( '1'|'H' => '0', '0'|'L' => '1', 'U' => 'U', OTHERS => 'X' ), 'U' => ( OTHERS => 'U' ), OTHERS => ( OTHERS => 'X' ) ); CONSTANT InvIf1_Table : stdlogic_table := -- enable data value ( '0'|'L' => ( OTHERS => 'Z' ), '1'|'H' => ( '1'|'H' => '0', '0'|'L' => '1', 'U' => 'U', OTHERS => 'X' ), 'U' => ( OTHERS => 'U' ), OTHERS => ( OTHERS => 'X' ) ); TYPE To_StateCharType IS ARRAY (VitalStateSymbolType) OF CHARACTER; CONSTANT To_StateChar : To_StateCharType := ( '/', '\', 'P', 'N', 'r', 'f', 'p', 'n', 'R', 'F', '^', 'v', 'E', 'A', 'D', '*', 'X', '0', '1', '-', 'B', 'Z', 'S' ); TYPE To_TruthCharType IS ARRAY (VitalTruthSymbolType) OF CHARACTER; CONSTANT To_TruthChar : To_TruthCharType := ( 'X', '0', '1', '-', 'B', 'Z' ); TYPE TruthTableOutMapType IS ARRAY (VitalTruthSymbolType) OF std_ulogic; CONSTANT TruthTableOutMap : TruthTableOutMapType := -- 'X', '0', '1', '-', 'B', 'Z' ( 'X', '0', '1', 'X', '-', 'Z' ); TYPE StateTableOutMapType IS ARRAY (VitalStateSymbolType) OF std_ulogic; -- does conversion to X01Z or '-' if invalid CONSTANT StateTableOutMap : StateTableOutMapType := -- '/' '\' 'P' 'N' 'r' 'f' 'p' 'n' 'R' 'F' '^' 'v' -- 'E' 'A' 'D' '*' 'X' '0' '1' '-' 'B' 'Z' 'S' ( '-','-','-','-','-','-','-','-','-','-','-','-', '-','-','-','-','X','0','1','X','-','Z','W'); -- ------------------------------------------------------------------------ TYPE ValidTruthTableInputType IS ARRAY (VitalTruthSymbolType) OF BOOLEAN; -- checks if a symbol IS valid for the stimulus portion of a truth table CONSTANT ValidTruthTableInput : ValidTruthTableInputType := -- 'X' '0' '1' '-' 'B' 'Z' ( TRUE, TRUE, TRUE, TRUE, TRUE, FALSE ); TYPE TruthTableMatchType IS ARRAY (X01, VitalTruthSymbolType) OF BOOLEAN; -- checks if an input matches th corresponding truth table symbol -- use: TruthTableMatch(input_converted_to_X01, truth_table_stimulus_symbol) CONSTANT TruthTableMatch : TruthTableMatchType := ( -- X, 0, 1, - B Z ( TRUE, FALSE, FALSE, TRUE, FALSE, FALSE ), -- X ( FALSE, TRUE, FALSE, TRUE, TRUE, FALSE ), -- 0 ( FALSE, FALSE, TRUE, TRUE, TRUE, FALSE ) -- 1 ); -- ------------------------------------------------------------------------ TYPE ValidStateTableInputType IS ARRAY (VitalStateSymbolType) OF BOOLEAN; CONSTANT ValidStateTableInput : ValidStateTableInputType := -- '/', '\', 'P', 'N', 'r', 'f', ( TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, -- 'p', 'n', 'R', 'F', '^', 'v', TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, -- 'E', 'A', 'D', '*', TRUE, TRUE, TRUE, TRUE, -- 'X', '0', '1', '-', 'B', 'Z', TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, -- 'S' TRUE ); CONSTANT ValidStateTableState : ValidStateTableInputType := -- '/', '\', 'P', 'N', 'r', 'f', ( FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, -- 'p', 'n', 'R', 'F', '^', 'v', FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, -- 'E', 'A', 'D', '*', FALSE, FALSE, FALSE, FALSE, -- 'X', '0', '1', '-', 'B', 'Z', TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, -- 'S' FALSE ); TYPE StateTableMatchType IS ARRAY (X01,X01,VitalStateSymbolType) OF BOOLEAN; -- last value, present value, table symbol CONSTANT StateTableMatch : StateTableMatchType := ( ( -- X (lastvalue) -- / \ P N r f -- p n R F ^ v -- E A D * -- X 0 1 - B Z S (FALSE,FALSE,FALSE,FALSE,FALSE,FALSE, FALSE,FALSE,FALSE,FALSE,FALSE,FALSE, FALSE,FALSE,FALSE,FALSE, TRUE, FALSE,FALSE,TRUE, FALSE,FALSE,FALSE), (FALSE,FALSE,FALSE,TRUE, FALSE,FALSE, FALSE,FALSE,FALSE,TRUE, FALSE,TRUE, TRUE, FALSE,TRUE, TRUE, FALSE,TRUE, FALSE,TRUE, TRUE, FALSE,FALSE), (FALSE,FALSE,TRUE, FALSE,FALSE,FALSE, FALSE,FALSE,TRUE, FALSE,TRUE, FALSE, TRUE, TRUE, FALSE,TRUE, FALSE,FALSE,TRUE, TRUE, TRUE, FALSE,FALSE) ), (-- 0 (lastvalue) -- / \ P N r f -- p n R F ^ v -- E A D * -- X 0 1 - B Z S (FALSE,FALSE,FALSE,FALSE,TRUE, FALSE, TRUE, FALSE,TRUE, FALSE,FALSE,FALSE, FALSE,TRUE, FALSE,TRUE, TRUE, FALSE,FALSE,TRUE, FALSE,FALSE,FALSE), (FALSE,FALSE,FALSE,FALSE,FALSE,FALSE, FALSE,FALSE,FALSE,FALSE,FALSE,FALSE, FALSE,FALSE,FALSE,FALSE, FALSE,TRUE, FALSE,TRUE, TRUE, FALSE,TRUE ), (TRUE, FALSE,TRUE, FALSE,FALSE,FALSE, TRUE, FALSE,TRUE, FALSE,FALSE,FALSE, FALSE,FALSE,FALSE,TRUE, FALSE,FALSE,TRUE, TRUE, TRUE, FALSE,FALSE) ), (-- 1 (lastvalue) -- / \ P N r f -- p n R F ^ v -- E A D * -- X 0 1 - B Z S (FALSE,FALSE,FALSE,FALSE,FALSE,TRUE , FALSE,TRUE, FALSE,TRUE, FALSE,FALSE, FALSE,FALSE,TRUE, TRUE, TRUE, FALSE,FALSE,TRUE, FALSE,FALSE,FALSE), (FALSE,TRUE, FALSE,TRUE, FALSE,FALSE, FALSE,TRUE, FALSE,TRUE, FALSE,FALSE, FALSE,FALSE,FALSE,TRUE, FALSE,TRUE, FALSE,TRUE, TRUE, FALSE,FALSE), (FALSE,FALSE,FALSE,FALSE,FALSE,FALSE, FALSE,FALSE,FALSE,FALSE,FALSE,FALSE, FALSE,FALSE,FALSE,FALSE, FALSE,FALSE,TRUE, TRUE, TRUE, FALSE,TRUE ) ) ); TYPE Logic_UX01Z_Table IS ARRAY (std_ulogic) OF UX01Z; ---------------------------------------------------------- -- table name : cvt_to_x01z -- parameters : std_ulogic -- some logic value -- returns : UX01Z -- state value of logic value -- purpose : to convert state-strength to state only ---------------------------------------------------------- CONSTANT cvt_to_ux01z : Logic_UX01Z_Table := ('U','X','0','1','Z','X','0','1','X' ); TYPE LogicCvtTableType IS ARRAY (std_ulogic) OF CHARACTER; CONSTANT LogicCvtTable : LogicCvtTableType := ( 'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-'); -------------------------------------------------------------------- -- LOCAL Utilities -------------------------------------------------------------------- -- ------------------------------------------------------------------------ -- FUNCTION NAME : MINIMUM -- -- PARAMETERS : in1, in2 - integer, time -- -- DESCRIPTION : return smaller of in1 and in2 -- ------------------------------------------------------------------------ FUNCTION Minimum ( CONSTANT in1, in2 : INTEGER ) RETURN INTEGER IS BEGIN IF (in1 < in2) THEN RETURN in1; END IF; RETURN in2; END; -- ------------------------------------------------------------------------ FUNCTION Minimum ( CONSTANT t1,t2 : IN TIME ) RETURN TIME IS BEGIN IF ( t1 < t2 ) THEN RETURN (t1); ELSE RETURN (t2); END IF; END Minimum; -- ------------------------------------------------------------------------ -- FUNCTION NAME : MAXIMUM -- -- PARAMETERS : in1, in2 - integer, time -- -- DESCRIPTION : return larger of in1 and in2 -- ------------------------------------------------------------------------ FUNCTION Maximum ( CONSTANT in1, in2 : INTEGER ) RETURN INTEGER IS BEGIN IF (in1 > in2) THEN RETURN in1; END IF; RETURN in2; END; ----------------------------------------------------------------------- FUNCTION Maximum ( CONSTANT t1,t2 : IN TIME ) RETURN TIME IS BEGIN IF ( t1 > t2 ) THEN RETURN (t1); ELSE RETURN (t2); END IF; END Maximum; ----------------------------------------------------------------------- FUNCTION GlitchMinTime ( CONSTANT Time1, Time2 : IN TIME ) RETURN TIME IS BEGIN IF ( Time1 >= NOW ) THEN IF ( Time2 >= NOW ) THEN RETURN Minimum ( Time1, Time2); ELSE RETURN Time1; END IF; ELSE IF ( Time2 >= NOW ) THEN RETURN Time2; ELSE RETURN 0 ns; END IF; END IF; END; -------------------------------------------------------------------- -- Error Message Types and Tables -------------------------------------------------------------------- TYPE VitalErrorType IS ( ErrNegDel, ErrInpSym, ErrOutSym, ErrStaSym, ErrVctLng, ErrTabWidSml, ErrTabWidLrg, ErrTabResSml, ErrTabResLrg ); TYPE VitalErrorSeverityType IS ARRAY (VitalErrorType) OF SEVERITY_LEVEL; CONSTANT VitalErrorSeverity : VitalErrorSeverityType := ( ErrNegDel => WARNING, ErrInpSym => ERROR, ErrOutSym => ERROR, ErrStaSym => ERROR, ErrVctLng => ERROR, ErrTabWidSml => ERROR, ErrTabWidLrg => WARNING, ErrTabResSml => WARNING, ErrTabResLrg => WARNING ); CONSTANT MsgNegDel : STRING := "Negative delay. New output value not scheduled. Output signal is: "; CONSTANT MsgInpSym : STRING := "Illegal symbol in the input portion of a Truth/State table."; CONSTANT MsgOutSym : STRING := "Illegal symbol in the output portion of a Truth/State table."; CONSTANT MsgStaSym : STRING := "Illegal symbol in the state portion of a State table."; CONSTANT MsgVctLng : STRING := "Vector (array) lengths not equal. "; CONSTANT MsgTabWidSml : STRING := "Width of the Truth/State table is too small."; CONSTANT MsgTabWidLrg : STRING := "Width of Truth/State table is too large. Extra elements are ignored."; CONSTANT MsgTabResSml : STRING := "Result of Truth/State table has too many elements."; CONSTANT MsgTabResLrg : STRING := "Result of Truth/State table has too few elements."; CONSTANT MsgUnknown : STRING := "Unknown error message."; -------------------------------------------------------------------- -- LOCAL Utilities -------------------------------------------------------------------- FUNCTION VitalMessage ( CONSTANT ErrorId : IN VitalErrorType ) RETURN STRING IS BEGIN CASE ErrorId IS WHEN ErrNegDel => RETURN MsgNegDel; WHEN ErrInpSym => RETURN MsgInpSym; WHEN ErrOutSym => RETURN MsgOutSym; WHEN ErrStaSym => RETURN MsgStaSym; WHEN ErrVctLng => RETURN MsgVctLng; WHEN ErrTabWidSml => RETURN MsgTabWidSml; WHEN ErrTabWidLrg => RETURN MsgTabWidLrg; WHEN ErrTabResSml => RETURN MsgTabResSml; WHEN ErrTabResLrg => RETURN MsgTabResLrg; WHEN OTHERS => RETURN MsgUnknown; END CASE; END; PROCEDURE VitalError ( CONSTANT Routine : IN STRING; CONSTANT ErrorId : IN VitalErrorType ) IS BEGIN ASSERT FALSE REPORT Routine & ": " & VitalMessage(ErrorId) SEVERITY VitalErrorSeverity(ErrorId); END; PROCEDURE VitalError ( CONSTANT Routine : IN STRING; CONSTANT ErrorId : IN VitalErrorType; CONSTANT Info : IN STRING ) IS BEGIN ASSERT FALSE REPORT Routine & ": " & VitalMessage(ErrorId) & Info SEVERITY VitalErrorSeverity(ErrorId); END; PROCEDURE VitalError ( CONSTANT Routine : IN STRING; CONSTANT ErrorId : IN VitalErrorType; CONSTANT Info : IN CHARACTER ) IS BEGIN ASSERT FALSE REPORT Routine & ": " & VitalMessage(ErrorId) & Info SEVERITY VitalErrorSeverity(ErrorId); END; --------------------------------------------------------------------------- PROCEDURE ReportGlitch ( CONSTANT GlitchRoutine : IN STRING; CONSTANT OutSignalName : IN STRING; CONSTANT PreemptedTime : IN TIME; CONSTANT PreemptedValue : IN std_ulogic; CONSTANT NewTime : IN TIME; CONSTANT NewValue : IN std_ulogic; CONSTANT Index : IN INTEGER := 0; CONSTANT IsArraySignal : IN BOOLEAN := FALSE; CONSTANT MsgSeverity : IN SEVERITY_LEVEL := WARNING ) IS VARIABLE StrPtr1, StrPtr2, StrPtr3, StrPtr4, StrPtr5 : LINE; BEGIN Write (StrPtr1, PreemptedTime ); Write (StrPtr2, NewTime); Write (StrPtr3, LogicCvtTable(PreemptedValue)); Write (StrPtr4, LogicCvtTable(NewValue)); IF IsArraySignal THEN Write (StrPtr5, STRING'( "(" ) ); Write (StrPtr5, Index); Write (StrPtr5, STRING'( ")" ) ); ELSE Write (StrPtr5, STRING'( " " ) ); END IF; -- Issue Report only if Preemted value has not been -- removed from event queue ASSERT PreemptedTime > NewTime REPORT GlitchRoutine & ": GLITCH Detected on port " & OutSignalName & StrPtr5.ALL & "; Preempted Future Value := " & StrPtr3.ALL & " @ " & StrPtr1.ALL & "; Newly Scheduled Value := " & StrPtr4.ALL & " @ " & StrPtr2.ALL & ";" SEVERITY MsgSeverity; DEALLOCATE(StrPtr1); DEALLOCATE(StrPtr2); DEALLOCATE(StrPtr3); DEALLOCATE(StrPtr4); DEALLOCATE(StrPtr5); RETURN; END ReportGlitch; --------------------------------------------------------------------------- -- Procedure : VitalGlitchOnEvent -- : -- Parameters : OutSignal ........ signal being driven -- : OutSignalName..... name of the driven signal -- : GlitchData........ internal data required by the procedure -- : NewValue.......... new value being assigned -- : NewDelay.......... Delay accompanying the assignment -- : (Note: for vectors, this is an array) -- : GlitchMode........ Glitch generation mode -- : MessagePlusX, MessageOnly, -- : XOnly, NoGlitch ) -- : GlitchDelay....... if <= 0 ns , then there will be no Glitch -- : if > NewDelay, then there is no Glitch, -- : otherwise, this is the time when a FORCED -- : generation of a glitch will occur. ---------------------------------------------------------------------------- PROCEDURE VitalGlitchOnEvent ( SIGNAL OutSignal : OUT std_logic; CONSTANT OutSignalName : IN STRING; VARIABLE GlitchData : INOUT GlitchDataType; CONSTANT NewValue : IN std_logic; CONSTANT NewDelay : IN TIME := 0 ns; CONSTANT GlitchMode : IN VitalGlitchModeType := MessagePlusX; CONSTANT GlitchDelay : IN TIME := -1 ns; -- IR#223 CONSTANT MsgSeverity : IN SEVERITY_LEVEL := WARNING ) IS -- ------------------------------------------------------------------------ VARIABLE NoGlitchDet : BOOLEAN := FALSE; VARIABLE OldGlitch : BOOLEAN := FALSE; VARIABLE Dly : TIME := NewDelay; BEGIN -- If nothing to schedule, just return IF NewDelay < 0 ns THEN IF (NewValue /= GlitchData.SchedValue) THEN VitalError ( "VitalGlitchOnEvent", ErrNegDel, OutSignalName ); END IF; ELSE -- If nothing currently scheduled IF GlitchData.SchedTime <= NOW THEN GlitchData.CurrentValue := GlitchData.SchedValue; IF (GlitchDelay <= 0 ns) THEN IF (NewValue = GlitchData.SchedValue) THEN RETURN; END IF; NoGlitchDet := TRUE; END IF; -- Transaction currently scheduled - if glitch already happened ELSIF GlitchData.GlitchTime <= NOW THEN GlitchData.CurrentValue := 'X'; OldGlitch := TRUE; IF (GlitchData.SchedValue = NewValue) THEN dly := Minimum( GlitchData.SchedTime-NOW, NewDelay ); END IF; -- Transaction currently scheduled (no glitch if same value) ELSIF (GlitchData.SchedValue = NewValue) AND (GlitchData.SchedTime = GlitchData.GlitchTime) AND (GlitchDelay <= 0 ns) THEN NoGlitchDet := TRUE; Dly := Minimum( GlitchData.SchedTime-NOW, NewDelay ); END IF; GlitchData.SchedTime := NOW+Dly; IF OldGlitch THEN OutSignal <= NewValue AFTER Dly; ELSIF NoGlitchDet THEN GlitchData.GlitchTime := NOW+Dly; OutSignal <= NewValue AFTER Dly; ELSE -- new glitch GlitchData.GlitchTime := GlitchMinTime ( GlitchData.GlitchTime, NOW+GlitchDelay ); IF (GlitchMode = MessagePlusX) OR (GlitchMode = MessageOnly) THEN ReportGlitch ( "VitalGlitchOnEvent", OutSignalName, GlitchData.GlitchTime, GlitchData.SchedValue, (Dly + NOW), NewValue, MsgSeverity=>MsgSeverity ); END IF; IF (GlitchMode = MessagePlusX) OR (GlitchMode = XOnly) THEN OutSignal <= 'X' AFTER GlitchData.GlitchTime-NOW; OutSignal <= TRANSPORT NewValue AFTER Dly; ELSE OutSignal <= NewValue AFTER Dly; END IF; END IF; GlitchData.SchedValue := NewValue; END IF; RETURN; END; ---------------------------------------------------------------------------- PROCEDURE VitalGlitchOnEvent ( SIGNAL OutSignal : OUT std_logic_vector; CONSTANT OutSignalName : IN STRING; VARIABLE GlitchData : INOUT GlitchDataArrayType; CONSTANT NewValue : IN std_logic_vector; CONSTANT NewDelay : IN VitalTimeArray; CONSTANT GlitchMode : IN VitalGlitchModeType := MessagePlusX; CONSTANT GlitchDelay : IN VitalTimeArray; CONSTANT MsgSeverity : IN SEVERITY_LEVEL := WARNING ) IS ALIAS GlDataAlias : GlitchDataArrayType(1 TO GlitchData'LENGTH) IS GlitchData; ALIAS NewValAlias : std_logic_vector(1 TO NewValue'LENGTH) IS NewValue; ALIAS GlDelayAlias : VitalTimeArray(1 TO GlitchDelay'LENGTH) IS GlitchDelay; ALIAS NewDelAlias : VitalTimeArray(1 TO NewDelay'LENGTH) IS NewDelay; VARIABLE Index : INTEGER := OutSignal'LEFT; VARIABLE Direction : INTEGER; VARIABLE NoGlitchDet : BOOLEAN; VARIABLE OldGlitch : BOOLEAN; VARIABLE Dly, GlDly : TIME; BEGIN IF (OutSignal'LEFT > OutSignal'RIGHT) THEN Direction := -1; ELSE Direction := 1; END IF; IF ( (OutSignal'LENGTH /= GlitchData'LENGTH) OR (OutSignal'LENGTH /= NewValue'LENGTH) OR (OutSignal'LENGTH /= NewDelay'LENGTH) OR (OutSignal'LENGTH /= GlitchDelay'LENGTH) ) THEN VitalError ( "VitalGlitchOnEvent", ErrVctLng, OutSignalName ); RETURN; END IF; -- a call to the scalar function cannot be made since the actual -- name associated with a signal parameter must be locally static FOR n IN 1 TO OutSignal'LENGTH LOOP NoGlitchDet := FALSE; OldGlitch := FALSE; Dly := NewDelAlias(n); -- If nothing to schedule, just skip to next loop iteration IF NewDelAlias(n) < 0 ns THEN IF (NewValAlias(n) /= GlDataAlias(n).SchedValue) THEN VitalError ( "VitalGlitchOnEvent", ErrNegDel, OutSignalName ); END IF; ELSE -- If nothing currently scheduled (i.e. last scheduled -- transaction already occurred) IF GlDataAlias(n).SchedTime <= NOW THEN GlDataAlias(n).CurrentValue := GlDataAlias(n).SchedValue; IF (GlDelayAlias(n) <= 0 ns) THEN -- Next iteration if no change in value IF (NewValAlias(n) = GlDataAlias(n).SchedValue) THEN Index := Index + Direction; NEXT; END IF; -- since last transaction already occurred there is no glitch NoGlitchDet := TRUE; END IF; -- Transaction currently scheduled - if glitch already happened ELSIF GlDataAlias(n).GlitchTime <= NOW THEN GlDataAlias(n).CurrentValue := 'X'; OldGlitch := TRUE; IF (GlDataAlias(n).SchedValue = NewValAlias(n)) THEN dly := Minimum( GlDataAlias(n).SchedTime-NOW, NewDelAlias(n) ); END IF; -- Transaction currently scheduled ELSIF (GlDataAlias(n).SchedValue = NewValAlias(n)) AND (GlDataAlias(n).SchedTime = GlDataAlias(n).GlitchTime) AND (GlDelayAlias(n) <= 0 ns) THEN NoGlitchDet := TRUE; Dly := Minimum( GlDataAlias(n).SchedTime-NOW, NewDelAlias(n) ); END IF; -- update last scheduled transaction GlDataAlias(n).SchedTime := NOW+Dly; IF OldGlitch THEN OutSignal(Index) <= NewValAlias(n) AFTER Dly; ELSIF NoGlitchDet THEN -- if no glitch then update last glitch time -- and OutSignal(actual_index) GlDataAlias(n).GlitchTime := NOW+Dly; OutSignal(Index) <= NewValAlias(n) AFTER Dly; ELSE -- new glitch GlDataAlias(n).GlitchTime := GlitchMinTime ( GlDataAlias(n).GlitchTime, NOW+GlDelayAlias(n) ); IF (GlitchMode = MessagePlusX) OR (GlitchMode = MessageOnly) THEN ReportGlitch ( "VitalGlitchOnEvent", OutSignalName, GlDataAlias(n).GlitchTime, GlDataAlias(n).SchedValue, (Dly + NOW), NewValAlias(n), Index, TRUE, MsgSeverity ); END IF; IF (GlitchMode = MessagePlusX) OR (GlitchMode = XOnly) THEN GlDly := GlDataAlias(n).GlitchTime - NOW; OutSignal(Index) <= 'X' AFTER GlDly; OutSignal(Index) <= TRANSPORT NewValAlias(n) AFTER Dly; ELSE OutSignal(Index) <= NewValAlias(n) AFTER Dly; END IF; END IF; -- glitch / no-glitch GlDataAlias(n).SchedValue := NewValAlias(n); END IF; -- NewDelAlias(n) < 0 ns Index := Index + Direction; END LOOP; RETURN; END; --------------------------------------------------------------------------- -- ------------------------------------------------------------------------ -- PROCEDURE NAME : TruthOutputX01Z -- -- PARAMETERS : table_out - output of table -- X01Zout - output converted to X01Z -- err - true if illegal character is encountered -- -- -- DESCRIPTION : converts the output of a truth table to a valid -- std_ulogic -- ------------------------------------------------------------------------ PROCEDURE TruthOutputX01Z ( CONSTANT TableOut : IN VitalTruthSymbolType; VARIABLE X01Zout : OUT std_ulogic; VARIABLE Err : OUT BOOLEAN ) IS VARIABLE TempOut : std_ulogic; BEGIN Err := FALSE; TempOut := TruthTableOutMap(TableOut); IF (TempOut = '-') THEN Err := TRUE; TempOut := 'X'; VitalError ( "VitalTruthTable", ErrOutSym, To_TruthChar(TableOut)); END IF; X01Zout := TempOut; END; -- ------------------------------------------------------------------------ -- PROCEDURE NAME : StateOutputX01Z -- -- PARAMETERS : table_out - output of table -- prev_out - previous output value -- X01Zout - output cojnverted to X01Z -- err - true if illegal character is encountered -- -- DESCRIPTION : converts the output of a state table to a -- valid std_ulogic -- ------------------------------------------------------------------------ PROCEDURE StateOutputX01Z ( CONSTANT TableOut : IN VitalStateSymbolType; CONSTANT PrevOut : IN std_ulogic; VARIABLE X01Zout : OUT std_ulogic; VARIABLE Err : OUT BOOLEAN ) IS VARIABLE TempOut : std_ulogic; BEGIN Err := FALSE; TempOut := StateTableOutMap(TableOut); IF (TempOut = '-') THEN Err := TRUE; TempOut := 'X'; VitalError ( "VitalStateTable", ErrOutSym, To_StateChar(TableOut)); ELSIF (TempOut = 'W') THEN TempOut := To_X01Z(PrevOut); END IF; X01Zout := TempOut; END; -- ------------------------------------------------------------------------ -- PROCEDURE NAME: StateMatch -- -- PARAMETERS : symbol - symbol from state table -- in2 - input from VitalStateTble procedure -- to state table -- in2LastValue - previous value of input -- state - false if the symbol is from the input -- portion of the table, -- true if the symbol is from the state -- portion of the table -- Err - true if symbol is not a valid input symbol -- ReturnValue - true if match occurred -- -- DESCRIPTION : This procedure sets ReturnValue to true if in2 matches -- symbol (from the state table). If symbol is an edge -- value edge is set to true and in2 and in2LastValue are -- checked against symbol. Err is set to true if symbol -- is an invalid value for the input portion of the state -- table. -- -- ------------------------------------------------------------------------ PROCEDURE StateMatch ( CONSTANT Symbol : IN VitalStateSymbolType; CONSTANT in2 : IN std_ulogic; CONSTANT in2LastValue : IN std_ulogic; CONSTANT State : IN BOOLEAN; VARIABLE Err : OUT BOOLEAN; VARIABLE ReturnValue : OUT BOOLEAN ) IS BEGIN IF (State) THEN IF (NOT ValidStateTableState(Symbol)) THEN VitalError ( "VitalStateTable", ErrStaSym, To_StateChar(Symbol)); Err := TRUE; ReturnValue := FALSE; ELSE Err := FALSE; ReturnValue := StateTableMatch(in2LastValue, in2, Symbol); END IF; ELSE IF (NOT ValidStateTableInput(Symbol) ) THEN VitalError ( "VitalStateTable", ErrInpSym, To_StateChar(Symbol)); Err := TRUE; ReturnValue := FALSE; ELSE ReturnValue := StateTableMatch(in2LastValue, in2, Symbol); Err := FALSE; END IF; END IF; END; -- ----------------------------------------------------------------------- -- FUNCTION NAME: StateTableLookUp -- -- PARAMETERS : StateTable - state table -- PresentDataIn - current inputs -- PreviousDataIn - previous inputs and states -- NumStates - number of state variables -- PresentOutputs - current state and current outputs -- -- DESCRIPTION : This function is used to find the output of the -- StateTable corresponding to a given set of inputs. -- -- ------------------------------------------------------------------------ FUNCTION StateTableLookUp ( CONSTANT StateTable : VitalStateTableType; CONSTANT PresentDataIn : std_logic_vector; CONSTANT PreviousDataIn : std_logic_vector; CONSTANT NumStates : NATURAL; CONSTANT PresentOutputs : std_logic_vector ) RETURN std_logic_vector IS CONSTANT InputSize : INTEGER := PresentDataIn'LENGTH; CONSTANT NumInputs : INTEGER := InputSize + NumStates - 1; CONSTANT TableEntries : INTEGER := StateTable'LENGTH(1); CONSTANT TableWidth : INTEGER := StateTable'LENGTH(2); CONSTANT OutSize : INTEGER := TableWidth - InputSize - NumStates; VARIABLE Inputs : std_logic_vector(0 TO NumInputs); VARIABLE PrevInputs : std_logic_vector(0 TO NumInputs) := (OTHERS => 'X'); VARIABLE ReturnValue : std_logic_vector(0 TO (OutSize-1)) := (OTHERS => 'X'); VARIABLE Temp : std_ulogic; VARIABLE Match : BOOLEAN; VARIABLE Err : BOOLEAN := FALSE; -- This needs to be done since the TableLookup arrays must be -- ascending starting with 0 VARIABLE TableAlias : VitalStateTableType(0 TO TableEntries - 1, 0 TO TableWidth - 1) := StateTable; BEGIN Inputs(0 TO InputSize-1) := PresentDataIn; Inputs(InputSize TO NumInputs) := PresentOutputs(0 TO NumStates - 1); PrevInputs(0 TO InputSize - 1) := PreviousDataIn(0 TO InputSize - 1); ColLoop: -- Compare each entry in the table FOR i IN TableAlias'RANGE(1) LOOP RowLoop: -- Check each element of the entry FOR j IN 0 TO InputSize + NumStates LOOP IF (j = InputSize + NumStates) THEN -- a match occurred FOR k IN 0 TO Minimum(OutSize, PresentOutputs'LENGTH)-1 LOOP StateOutputX01Z ( TableAlias(i, TableWidth - k - 1), PresentOutputs(PresentOutputs'LENGTH - k - 1), Temp, Err); ReturnValue(OutSize - k - 1) := Temp; IF (Err) THEN ReturnValue := (OTHERS => 'X'); RETURN ReturnValue; END IF; END LOOP; RETURN ReturnValue; END IF; StateMatch ( TableAlias(i,j), Inputs(j), PrevInputs(j), j >= InputSize, Err, Match); EXIT RowLoop WHEN NOT(Match); EXIT ColLoop WHEN Err; END LOOP RowLoop; END LOOP ColLoop; ReturnValue := (OTHERS => 'X'); RETURN ReturnValue; END; -------------------------------------------------------------------- -- to_ux01z ------------------------------------------------------------------- FUNCTION To_UX01Z ( s : std_ulogic ) RETURN UX01Z IS BEGIN RETURN cvt_to_ux01z (s); END; --------------------------------------------------------------------------- -- Function : GetEdge -- Purpose : Converts transitions on a given input signal into a -- enumeration value representing the transition or level -- of the signal. -- -- previous "value" current "value" := "edge" -- --------------------------------------------------------- -- '1' | 'H' '1' | 'H' '1' level, no edge -- '0' | 'L' '1' | 'H' '/' rising edge -- others '1' | 'H' 'R' rising from X -- -- '1' | 'H' '0' | 'L' '\' falling egde -- '0' | 'L' '0' | 'L' '0' level, no edge -- others '0' | 'L' 'F' falling from X -- -- 'X' | 'W' | '-' 'X' | 'W' | '-' 'X' unknown (X) level -- 'Z' 'Z' 'X' unknown (X) level -- 'U' 'U' 'U' 'U' level -- -- '1' | 'H' others 'f' falling to X -- '0' | 'L' others 'r' rising to X -- 'X' | 'W' | '-' 'U' | 'Z' 'x' unknown (X) edge -- 'Z' 'X' | 'W' | '-' | 'U' 'x' unknown (X) edge -- 'U' 'X' | 'W' | '-' | 'Z' 'x' unknown (X) edge -- --------------------------------------------------------------------------- FUNCTION GetEdge ( SIGNAL s : IN std_logic ) RETURN EdgeType IS BEGIN IF (s'EVENT) THEN RETURN LogicToEdge ( s'LAST_VALUE, s ); ELSE RETURN LogicToLevel ( s ); END IF; END; --------------------------------------------------------------------------- PROCEDURE GetEdge ( SIGNAL s : IN std_logic_vector; VARIABLE LastS : INOUT std_logic_vector; VARIABLE Edge : OUT EdgeArray ) IS ALIAS sAlias : std_logic_vector ( 1 TO s'LENGTH ) IS s; ALIAS LastSAlias : std_logic_vector ( 1 TO LastS'LENGTH ) IS LastS; ALIAS EdgeAlias : EdgeArray ( 1 TO Edge'LENGTH ) IS Edge; BEGIN IF s'LENGTH /= LastS'LENGTH OR s'LENGTH /= Edge'LENGTH THEN VitalError ( "GetEdge", ErrVctLng, "s, LastS, Edge" ); END IF; FOR n IN 1 TO s'LENGTH LOOP EdgeAlias(n) := LogicToEdge( LastSAlias(n), sAlias(n) ); LastSAlias(n) := sAlias(n); END LOOP; END; --------------------------------------------------------------------------- FUNCTION ToEdge ( Value : IN std_logic ) RETURN EdgeType IS BEGIN RETURN LogicToLevel( Value ); END; -- Note: This function will likely be replaced by S'DRIVING_VALUE in VHDL'92 ---------------------------------------------------------------------------- IMPURE FUNCTION CurValue ( CONSTANT GlitchData : IN GlitchDataType ) RETURN std_logic IS BEGIN IF NOW >= GlitchData.SchedTime THEN RETURN GlitchData.SchedValue; ELSIF NOW >= GlitchData.GlitchTime THEN RETURN 'X'; ELSE RETURN GlitchData.CurrentValue; END IF; END; --------------------------------------------------------------------------- IMPURE FUNCTION CurValue ( CONSTANT GlitchData : IN GlitchDataArrayType ) RETURN std_logic_vector IS VARIABLE Result : std_logic_vector(GlitchData'RANGE); BEGIN FOR n IN GlitchData'RANGE LOOP IF NOW >= GlitchData(n).SchedTime THEN Result(n) := GlitchData(n).SchedValue; ELSIF NOW >= GlitchData(n).GlitchTime THEN Result(n) := 'X'; ELSE Result(n) := GlitchData(n).CurrentValue; END IF; END LOOP; RETURN Result; END; --------------------------------------------------------------------------- -- function calculation utilities --------------------------------------------------------------------------- --------------------------------------------------------------------------- -- Function : VitalSame -- Returns : VitalSame compares the state (UX01) of two logic value. A -- value of 'X' is returned if the values are different. The -- common value is returned if the values are equal. -- Purpose : When the result of a logic model may be either of two -- separate input values (eg. when the select on a MUX is 'X'), -- VitalSame may be used to determine if the result needs to -- be 'X'. -- Arguments : See the declarations below... --------------------------------------------------------------------------- FUNCTION VitalSame ( CONSTANT a, b : IN std_ulogic ) RETURN std_ulogic IS BEGIN IF To_UX01(a) = To_UX01(b) THEN RETURN To_UX01(a); ELSE RETURN 'X'; END IF; END; --------------------------------------------------------------------------- -- delay selection utilities --------------------------------------------------------------------------- --------------------------------------------------------------------------- -- Procedure : BufPath, InvPath -- -- Purpose : BufPath and InvPath compute output change times, based on -- a change on an input port. The computed output change times -- returned in the composite parameter 'schd'. -- -- BufPath and InpPath are used together with the delay path -- selection functions (GetSchedDelay, VitalAND, VitalOR... ) -- The 'schd' value from each of the input ports of a model are -- combined by the delay selection functions (VitalAND, -- VitalOR, ...). The GetSchedDelay procedure converts the -- combined output changes times to the single delay (delta -- time) value for scheduling the output change (passed to -- VitalGlitchOnEvent). -- -- The values in 'schd' are: (absolute times) -- inp0 : time of output change due to input change to 0 -- inp1 : time of output change due to input change to 1 -- inpX : time of output change due to input change to X -- glch0 : time of output glitch due to input change to 0 -- glch1 : time of output glitch due to input change to 1 -- -- The output times are computed from the model INPUT value -- and not the final value. For this reason, 'BufPath' should -- be used to compute the output times for a non-inverting -- delay paths and 'InvPath' should be used to compute the -- ouput times for inverting delay paths. Delay paths which -- include both non-inverting and paths require usage of both -- 'BufPath' and 'InvPath'. (IE this is needed for the -- select->output path of a MUX -- See the VitalMUX model). -- -- -- Parameters : schd....... Computed output result times. (INOUT parameter -- modified only on input edges) -- Iedg....... Input port edge/level value. -- tpd....... Propagation delays from this input -- --------------------------------------------------------------------------- PROCEDURE BufPath ( VARIABLE Schd : INOUT SchedType; CONSTANT Iedg : IN EdgeType; CONSTANT tpd : IN VitalDelayType01 ) IS BEGIN CASE Iedg IS WHEN '0'|'1' => NULL; -- no edge: no timing update WHEN '/'|'R' => Schd.inp0 := TIME'HIGH; Schd.inp1 := NOW + tpd(tr01); Schd.Glch1 := Schd.inp1; Schd.InpX := Schd.inp1; WHEN '\'|'F' => Schd.inp1 := TIME'HIGH; Schd.inp0 := NOW + tpd(tr10); Schd.Glch0 := Schd.inp0; Schd.InpX := Schd.inp0; WHEN 'r' => Schd.inp1 := TIME'HIGH; Schd.inp0 := TIME'HIGH; Schd.InpX := NOW + tpd(tr01); WHEN 'f' => Schd.inp0 := TIME'HIGH; Schd.inp1 := TIME'HIGH; Schd.InpX := NOW + tpd(tr10); WHEN 'x' => Schd.inp1 := TIME'HIGH; Schd.inp0 := TIME'HIGH; -- update for X->X change Schd.InpX := NOW + Minimum(tpd(tr10),tpd(tr01)); WHEN OTHERS => NULL; -- no timing change END CASE; END; PROCEDURE BufPath ( VARIABLE Schd : INOUT SchedArray; CONSTANT Iedg : IN EdgeArray; CONSTANT tpd : IN VitalDelayArrayType01 ) IS BEGIN FOR n IN Schd'RANGE LOOP CASE Iedg(n) IS WHEN '0'|'1' => NULL; -- no edge: no timing update WHEN '/'|'R' => Schd(n).inp0 := TIME'HIGH; Schd(n).inp1 := NOW + tpd(n)(tr01); Schd(n).Glch1 := Schd(n).inp1; Schd(n).InpX := Schd(n).inp1; WHEN '\'|'F' => Schd(n).inp1 := TIME'HIGH; Schd(n).inp0 := NOW + tpd(n)(tr10); Schd(n).Glch0 := Schd(n).inp0; Schd(n).InpX := Schd(n).inp0; WHEN 'r' => Schd(n).inp1 := TIME'HIGH; Schd(n).inp0 := TIME'HIGH; Schd(n).InpX := NOW + tpd(n)(tr01); WHEN 'f' => Schd(n).inp0 := TIME'HIGH; Schd(n).inp1 := TIME'HIGH; Schd(n).InpX := NOW + tpd(n)(tr10); WHEN 'x' => Schd(n).inp1 := TIME'HIGH; Schd(n).inp0 := TIME'HIGH; -- update for X->X change Schd(n).InpX := NOW + Minimum ( tpd(n)(tr10), tpd(n)(tr01) ); WHEN OTHERS => NULL; -- no timing change END CASE; END LOOP; END; PROCEDURE InvPath ( VARIABLE Schd : INOUT SchedType; CONSTANT Iedg : IN EdgeType; CONSTANT tpd : IN VitalDelayType01 ) IS BEGIN CASE Iedg IS WHEN '0'|'1' => NULL; -- no edge: no timing update WHEN '/'|'R' => Schd.inp0 := TIME'HIGH; Schd.inp1 := NOW + tpd(tr10); Schd.Glch1 := Schd.inp1; Schd.InpX := Schd.inp1; WHEN '\'|'F' => Schd.inp1 := TIME'HIGH; Schd.inp0 := NOW + tpd(tr01); Schd.Glch0 := Schd.inp0; Schd.InpX := Schd.inp0; WHEN 'r' => Schd.inp1 := TIME'HIGH; Schd.inp0 := TIME'HIGH; Schd.InpX := NOW + tpd(tr10); WHEN 'f' => Schd.inp0 := TIME'HIGH; Schd.inp1 := TIME'HIGH; Schd.InpX := NOW + tpd(tr01); WHEN 'x' => Schd.inp1 := TIME'HIGH; Schd.inp0 := TIME'HIGH; -- update for X->X change Schd.InpX := NOW + Minimum(tpd(tr10),tpd(tr01)); WHEN OTHERS => NULL; -- no timing change END CASE; END; PROCEDURE InvPath ( VARIABLE Schd : INOUT SchedArray; CONSTANT Iedg : IN EdgeArray; CONSTANT tpd : IN VitalDelayArrayType01 ) IS BEGIN FOR n IN Schd'RANGE LOOP CASE Iedg(n) IS WHEN '0'|'1' => NULL; -- no edge: no timing update WHEN '/'|'R' => Schd(n).inp0 := TIME'HIGH; Schd(n).inp1 := NOW + tpd(n)(tr10); Schd(n).Glch1 := Schd(n).inp1; Schd(n).InpX := Schd(n).inp1; WHEN '\'|'F' => Schd(n).inp1 := TIME'HIGH; Schd(n).inp0 := NOW + tpd(n)(tr01); Schd(n).Glch0 := Schd(n).inp0; Schd(n).InpX := Schd(n).inp0; WHEN 'r' => Schd(n).inp1 := TIME'HIGH; Schd(n).inp0 := TIME'HIGH; Schd(n).InpX := NOW + tpd(n)(tr10); WHEN 'f' => Schd(n).inp0 := TIME'HIGH; Schd(n).inp1 := TIME'HIGH; Schd(n).InpX := NOW + tpd(n)(tr01); WHEN 'x' => Schd(n).inp1 := TIME'HIGH; Schd(n).inp0 := TIME'HIGH; -- update for X->X change Schd(n).InpX := NOW + Minimum ( tpd(n)(tr10), tpd(n)(tr01) ); WHEN OTHERS => NULL; -- no timing change END CASE; END LOOP; END; --------------------------------------------------------------------------- -- Procedure : BufEnab, InvEnab -- -- Purpose : BufEnab and InvEnab compute output change times, from a -- change on an input enable port for a 3-state driver. The -- computed output change times are returned in the composite -- parameters 'schd1', 'schd0'. -- -- BufEnab and InpEnab are used together with the delay path -- selection functions (GetSchedDelay, VitalAND, VitalOR... ) -- The 'schd' value from each of the non-enable input ports of -- a model (See BufPath, InvPath) are combined using the delay -- selection functions (VitalAND, VitalOR, ...). The -- GetSchedDelay procedure combines the output times on the -- enable path with the output times from the data path(s) and -- computes the single delay (delta time) value for scheduling -- the output change (passed to VitalGlitchOnEvent) -- -- The values in 'schd*' are: (absolute times) -- inp0 : time of output change due to input change to 0 -- inp1 : time of output change due to input change to 1 -- inpX : time of output change due to input change to X -- glch0 : time of output glitch due to input change to 0 -- glch1 : time of output glitch due to input change to 1 -- -- 'schd1' contains output times for 1->Z, Z->1 transitions. -- 'schd0' contains output times for 0->Z, Z->0 transitions. -- -- 'BufEnab' is used for computing the output times for an -- high asserted enable (output 'Z' for enable='0'). -- 'InvEnab' is used for computing the output times for an -- low asserted enable (output 'Z' for enable='1'). -- -- Note: separate 'schd1', 'schd0' parameters are generated -- so that the combination of the delay paths from -- multiple enable signals may be combined using the -- same functions/operators used in combining separate -- data paths. (See exampe 2 below) -- -- -- Parameters : schd1...... Computed output result times for 1->Z, Z->1 -- transitions. This parameter is modified only on -- input edge values (events). -- schd0...... Computed output result times for 0->Z, 0->1 -- transitions. This parameter is modified only on -- input edge values (events). -- Iedg....... Input port edge/level value. -- tpd....... Propagation delays for the enable -> output path. -- --------------------------------------------------------------------------- PROCEDURE BufEnab ( VARIABLE Schd1 : INOUT SchedType; VARIABLE Schd0 : INOUT SchedType; CONSTANT Iedg : IN EdgeType; CONSTANT tpd : IN VitalDelayType01Z ) IS BEGIN CASE Iedg IS WHEN '0'|'1' => NULL; -- no edge: no timing update WHEN '/'|'R' => Schd1.inp0 := TIME'HIGH; Schd1.inp1 := NOW + tpd(trz1); Schd1.Glch1 := Schd1.inp1; Schd1.InpX := Schd1.inp1; Schd0.inp0 := TIME'HIGH; Schd0.inp1 := NOW + tpd(trz0); Schd0.Glch1 := Schd0.inp1; Schd0.InpX := Schd0.inp1; WHEN '\'|'F' => Schd1.inp1 := TIME'HIGH; Schd1.inp0 := NOW + tpd(tr1z); Schd1.Glch0 := Schd1.inp0; Schd1.InpX := Schd1.inp0; Schd0.inp1 := TIME'HIGH; Schd0.inp0 := NOW + tpd(tr0z); Schd0.Glch0 := Schd0.inp0; Schd0.InpX := Schd0.inp0; WHEN 'r' => Schd1.inp1 := TIME'HIGH; Schd1.inp0 := TIME'HIGH; Schd1.InpX := NOW + tpd(trz1); Schd0.inp1 := TIME'HIGH; Schd0.inp0 := TIME'HIGH; Schd0.InpX := NOW + tpd(trz0); WHEN 'f' => Schd1.inp0 := TIME'HIGH; Schd1.inp1 := TIME'HIGH; Schd1.InpX := NOW + tpd(tr1z); Schd0.inp0 := TIME'HIGH; Schd0.inp1 := TIME'HIGH; Schd0.InpX := NOW + tpd(tr0z); WHEN 'x' => Schd1.inp0 := TIME'HIGH; Schd1.inp1 := TIME'HIGH; Schd1.InpX := NOW + Minimum(tpd(tr10),tpd(tr01)); Schd0.inp0 := TIME'HIGH; Schd0.inp1 := TIME'HIGH; Schd0.InpX := NOW + Minimum(tpd(tr10),tpd(tr01)); WHEN OTHERS => NULL; -- no timing change END CASE; END; PROCEDURE InvEnab ( VARIABLE Schd1 : INOUT SchedType; VARIABLE Schd0 : INOUT SchedType; CONSTANT Iedg : IN EdgeType; CONSTANT tpd : IN VitalDelayType01Z ) IS BEGIN CASE Iedg IS WHEN '0'|'1' => NULL; -- no edge: no timing update WHEN '/'|'R' => Schd1.inp0 := TIME'HIGH; Schd1.inp1 := NOW + tpd(tr1z); Schd1.Glch1 := Schd1.inp1; Schd1.InpX := Schd1.inp1; Schd0.inp0 := TIME'HIGH; Schd0.inp1 := NOW + tpd(tr0z); Schd0.Glch1 := Schd0.inp1; Schd0.InpX := Schd0.inp1; WHEN '\'|'F' => Schd1.inp1 := TIME'HIGH; Schd1.inp0 := NOW + tpd(trz1); Schd1.Glch0 := Schd1.inp0; Schd1.InpX := Schd1.inp0; Schd0.inp1 := TIME'HIGH; Schd0.inp0 := NOW + tpd(trz0); Schd0.Glch0 := Schd0.inp0; Schd0.InpX := Schd0.inp0; WHEN 'r' => Schd1.inp1 := TIME'HIGH; Schd1.inp0 := TIME'HIGH; Schd1.InpX := NOW + tpd(tr1z); Schd0.inp1 := TIME'HIGH; Schd0.inp0 := TIME'HIGH; Schd0.InpX := NOW + tpd(tr0z); WHEN 'f' => Schd1.inp0 := TIME'HIGH; Schd1.inp1 := TIME'HIGH; Schd1.InpX := NOW + tpd(trz1); Schd0.inp0 := TIME'HIGH; Schd0.inp1 := TIME'HIGH; Schd0.InpX := NOW + tpd(trz0); WHEN 'x' => Schd1.inp0 := TIME'HIGH; Schd1.inp1 := TIME'HIGH; Schd1.InpX := NOW + Minimum(tpd(tr10),tpd(tr01)); Schd0.inp0 := TIME'HIGH; Schd0.inp1 := TIME'HIGH; Schd0.InpX := NOW + Minimum(tpd(tr10),tpd(tr01)); WHEN OTHERS => NULL; -- no timing change END CASE; END; --------------------------------------------------------------------------- -- Procedure : GetSchedDelay -- -- Purpose : GetSchedDelay computes the final delay (incremental) for -- for scheduling an output signal. The delay is computed -- from the absolute output times in the 'NewSched' parameter. -- (See BufPath, InvPath). -- -- Computation of the output delay for non-3_state outputs -- consists of selection the appropriate output time based -- on the new output value 'NewValue' and subtracting 'NOW' -- to convert to an incremental delay value. -- -- The Computation of the output delay for 3_state output -- also includes combination of the enable path delay with -- the date path delay. -- -- Parameters : NewDelay... Returned output delay value. -- GlchDelay.. Returned output delay for the start of a glitch. -- NewValue... New output value. -- CurValue... Current value of the output. -- NewSched... Composite containing the combined absolute -- output times from the data inputs. -- EnSched1... Composite containing the combined absolute -- output times from the enable input(s). -- (for a 3_state output transitions 1->Z, Z->1) -- EnSched0... Composite containing the combined absolute -- output times from the enable input(s). -- (for a 3_state output transitions 0->Z, Z->0) -- --------------------------------------------------------------------------- PROCEDURE GetSchedDelay ( VARIABLE NewDelay : OUT TIME; VARIABLE GlchDelay : OUT TIME; CONSTANT NewValue : IN std_ulogic; CONSTANT CurValue : IN std_ulogic; CONSTANT NewSched : IN SchedType ) IS VARIABLE Tim, Glch : TIME; BEGIN CASE To_UX01(NewValue) IS WHEN '0' => Tim := NewSched.inp0; Glch := NewSched.Glch1; WHEN '1' => Tim := NewSched.inp1; Glch := NewSched.Glch0; WHEN OTHERS => Tim := NewSched.InpX; Glch := -1 ns; END CASE; IF (CurValue /= NewValue) THEN Glch := -1 ns; END IF; NewDelay := Tim - NOW; IF Glch < 0 ns THEN GlchDelay := Glch; ELSE GlchDelay := Glch - NOW; END IF; -- glch < 0 ns END; PROCEDURE GetSchedDelay ( VARIABLE NewDelay : OUT VitalTimeArray; VARIABLE GlchDelay : OUT VitalTimeArray; CONSTANT NewValue : IN std_logic_vector; CONSTANT CurValue : IN std_logic_vector; CONSTANT NewSched : IN SchedArray ) IS VARIABLE Tim, Glch : TIME; ALIAS NewDelayAlias : VitalTimeArray( NewDelay'LENGTH DOWNTO 1) IS NewDelay; ALIAS GlchDelayAlias : VitalTimeArray(GlchDelay'LENGTH DOWNTO 1) IS GlchDelay; ALIAS NewSchedAlias : SchedArray( NewSched'LENGTH DOWNTO 1) IS NewSched; ALIAS NewValueAlias : std_logic_vector ( NewValue'LENGTH DOWNTO 1 ) IS NewValue; ALIAS CurValueAlias : std_logic_vector ( CurValue'LENGTH DOWNTO 1 ) IS CurValue; BEGIN FOR n IN NewDelay'LENGTH DOWNTO 1 LOOP CASE To_UX01(NewValueAlias(n)) IS WHEN '0' => Tim := NewSchedAlias(n).inp0; Glch := NewSchedAlias(n).Glch1; WHEN '1' => Tim := NewSchedAlias(n).inp1; Glch := NewSchedAlias(n).Glch0; WHEN OTHERS => Tim := NewSchedAlias(n).InpX; Glch := -1 ns; END CASE; IF (CurValueAlias(n) /= NewValueAlias(n)) THEN Glch := -1 ns; END IF; NewDelayAlias(n) := Tim - NOW; IF Glch < 0 ns THEN GlchDelayAlias(n) := Glch; ELSE GlchDelayAlias(n) := Glch - NOW; END IF; -- glch < 0 ns END LOOP; RETURN; END; PROCEDURE GetSchedDelay ( VARIABLE NewDelay : OUT TIME; VARIABLE GlchDelay : OUT TIME; CONSTANT NewValue : IN std_ulogic; CONSTANT CurValue : IN std_ulogic; CONSTANT NewSched : IN SchedType; CONSTANT EnSched1 : IN SchedType; CONSTANT EnSched0 : IN SchedType ) IS SUBTYPE v2 IS std_logic_vector(0 TO 1); VARIABLE Tim, Glch : TIME; BEGIN CASE v2'(To_X01Z(CurValue) & To_X01Z(NewValue)) IS WHEN "00" => Tim := Maximum (NewSched.inp0, EnSched0.inp1); Glch := GlitchMinTime(NewSched.Glch1,EnSched0.Glch0); WHEN "01" => Tim := Maximum (NewSched.inp1, EnSched1.inp1); Glch := EnSched1.Glch0; WHEN "0Z" => Tim := EnSched0.inp0; Glch := NewSched.Glch1; WHEN "0X" => Tim := Maximum (NewSched.InpX, EnSched1.InpX); Glch := 0 ns; WHEN "10" => Tim := Maximum (NewSched.inp0, EnSched0.inp1); Glch := EnSched0.Glch0; WHEN "11" => Tim := Maximum (NewSched.inp1, EnSched1.inp1); Glch := GlitchMinTime(NewSched.Glch0,EnSched1.Glch0); WHEN "1Z" => Tim := EnSched1.inp0; Glch := NewSched.Glch0; WHEN "1X" => Tim := Maximum (NewSched.InpX, EnSched0.InpX); Glch := 0 ns; WHEN "Z0" => Tim := Maximum (NewSched.inp0, EnSched0.inp1); IF NewSched.Glch0 > NOW THEN Glch := Maximum(NewSched.Glch1,EnSched1.inp1); ELSE Glch := 0 ns; END IF; WHEN "Z1" => Tim := Maximum (NewSched.inp1, EnSched1.inp1); IF NewSched.Glch1 > NOW THEN Glch := Maximum(NewSched.Glch0,EnSched0.inp1); ELSE Glch := 0 ns; END IF; WHEN "ZX" => Tim := Maximum (NewSched.InpX, EnSched1.InpX); Glch := 0 ns; WHEN "ZZ" => Tim := Maximum (EnSched1.InpX, EnSched0.InpX); Glch := 0 ns; WHEN "X0" => Tim := Maximum (NewSched.inp0, EnSched0.inp1); Glch := 0 ns; WHEN "X1" => Tim := Maximum (NewSched.inp1, EnSched1.inp1); Glch := 0 ns; WHEN "XZ" => Tim := Maximum (EnSched1.InpX, EnSched0.InpX); Glch := 0 ns; WHEN OTHERS => Tim := Maximum (NewSched.InpX, EnSched1.InpX); Glch := 0 ns; END CASE; NewDelay := Tim - NOW; IF Glch < 0 ns THEN GlchDelay := Glch; ELSE GlchDelay := Glch - NOW; END IF; -- glch < 0 ns END; --------------------------------------------------------------------------- -- Operators and Functions for combination (selection) of path delays -- > These functions support selection of the "appripriate" path delay -- dependent on the logic function. -- > These functions only "select" from the possable output times. No -- calculation (addition) of delays is performed. -- > See description of 'BufPath', 'InvPath' and 'GetSchedDelay' -- > See primitive PROCEDURE models for examples. --------------------------------------------------------------------------- FUNCTION "not" ( CONSTANT a : IN SchedType ) RETURN SchedType IS VARIABLE z : SchedType; BEGIN z.inp1 := a.inp0 ; z.inp0 := a.inp1 ; z.InpX := a.InpX ; z.Glch1 := a.Glch0; z.Glch0 := a.Glch1; RETURN (z); END; FUNCTION "and" ( CONSTANT a, b : IN SchedType ) RETURN SchedType IS VARIABLE z : SchedType; BEGIN z.inp1 := Maximum ( a.inp1 , b.inp1 ); z.inp0 := Minimum ( a.inp0 , b.inp0 ); z.InpX := GlitchMinTime ( a.InpX , b.InpX ); z.Glch1 := Maximum ( a.Glch1, b.Glch1 ); z.Glch0 := GlitchMinTime ( a.Glch0, b.Glch0 ); RETURN (z); END; FUNCTION "or" ( CONSTANT a, b : IN SchedType ) RETURN SchedType IS VARIABLE z : SchedType; BEGIN z.inp0 := Maximum ( a.inp0 , b.inp0 ); z.inp1 := Minimum ( a.inp1 , b.inp1 ); z.InpX := GlitchMinTime ( a.InpX , b.InpX ); z.Glch0 := Maximum ( a.Glch0, b.Glch0 ); z.Glch1 := GlitchMinTime ( a.Glch1, b.Glch1 ); RETURN (z); END; IMPURE FUNCTION "nand" ( CONSTANT a, b : IN SchedType ) RETURN SchedType IS VARIABLE z : SchedType; BEGIN z.inp0 := Maximum ( a.inp1 , b.inp1 ); z.inp1 := Minimum ( a.inp0 , b.inp0 ); z.InpX := GlitchMinTime ( a.InpX , b.InpX ); z.Glch0 := Maximum ( a.Glch1, b.Glch1 ); z.Glch1 := GlitchMinTime ( a.Glch0, b.Glch0 ); RETURN (z); END; IMPURE FUNCTION "nor" ( CONSTANT a, b : IN SchedType ) RETURN SchedType IS VARIABLE z : SchedType; BEGIN z.inp1 := Maximum ( a.inp0 , b.inp0 ); z.inp0 := Minimum ( a.inp1 , b.inp1 ); z.InpX := GlitchMinTime ( a.InpX , b.InpX ); z.Glch1 := Maximum ( a.Glch0, b.Glch0 ); z.Glch0 := GlitchMinTime ( a.Glch1, b.Glch1 ); RETURN (z); END; -- ------------------------------------------------------------------------ -- Delay Calculation for 2-bit Logical gates. -- ------------------------------------------------------------------------ IMPURE FUNCTION VitalXOR2 ( CONSTANT ab,ai, bb,bi : IN SchedType ) RETURN SchedType IS VARIABLE z : SchedType; BEGIN -- z = (a AND b) NOR (a NOR b) z.inp1 := Maximum ( Minimum (ai.inp0 , bi.inp0 ), Minimum (ab.inp1 , bb.inp1 ) ); z.inp0 := Minimum ( Maximum (ai.inp1 , bi.inp1 ), Maximum (ab.inp0 , bb.inp0 ) ); z.InpX := Maximum ( Maximum (ai.InpX , bi.InpX ), Maximum (ab.InpX , bb.InpX ) ); z.Glch1 := Maximum (GlitchMinTime (ai.Glch0, bi.Glch0), GlitchMinTime (ab.Glch1, bb.Glch1) ); z.Glch0 := GlitchMinTime ( Maximum (ai.Glch1, bi.Glch1), Maximum (ab.Glch0, bb.Glch0) ); RETURN (z); END; IMPURE FUNCTION VitalXNOR2 ( CONSTANT ab,ai, bb,bi : IN SchedType ) RETURN SchedType IS VARIABLE z : SchedType; BEGIN -- z = (a AND b) OR (a NOR b) z.inp0 := Maximum ( Minimum (ab.inp0 , bb.inp0 ), Minimum (ai.inp1 , bi.inp1 ) ); z.inp1 := Minimum ( Maximum (ab.inp1 , bb.inp1 ), Maximum (ai.inp0 , bi.inp0 ) ); z.InpX := Maximum ( Maximum (ab.InpX , bb.InpX ), Maximum (ai.InpX , bi.InpX ) ); z.Glch0 := Maximum (GlitchMinTime (ab.Glch0, bb.Glch0), GlitchMinTime (ai.Glch1, bi.Glch1) ); z.Glch1 := GlitchMinTime ( Maximum (ab.Glch1, bb.Glch1), Maximum (ai.Glch0, bi.Glch0) ); RETURN (z); END; -- ------------------------------------------------------------------------ -- Delay Calculation for 3-bit Logical gates. -- ------------------------------------------------------------------------ IMPURE FUNCTION VitalXOR3 ( CONSTANT ab,ai, bb,bi, cb,ci : IN SchedType ) RETURN SchedType IS BEGIN RETURN VitalXOR2 ( VitalXOR2 (ab,ai, bb,bi), VitalXOR2 (ai,ab, bi,bb), cb, ci ); END; IMPURE FUNCTION VitalXNOR3 ( CONSTANT ab,ai, bb,bi, cb,ci : IN SchedType ) RETURN SchedType IS BEGIN RETURN VitalXNOR2 ( VitalXOR2 ( ab,ai, bb,bi ), VitalXOR2 ( ai,ab, bi,bb ), cb, ci ); END; -- ------------------------------------------------------------------------ -- Delay Calculation for 4-bit Logical gates. -- ------------------------------------------------------------------------ IMPURE FUNCTION VitalXOR4 ( CONSTANT ab,ai, bb,bi, cb,ci, db,di : IN SchedType ) RETURN SchedType IS BEGIN RETURN VitalXOR2 ( VitalXOR2 ( ab,ai, bb,bi ), VitalXOR2 ( ai,ab, bi,bb ), VitalXOR2 ( cb,ci, db,di ), VitalXOR2 ( ci,cb, di,db ) ); END; IMPURE FUNCTION VitalXNOR4 ( CONSTANT ab,ai, bb,bi, cb,ci, db,di : IN SchedType ) RETURN SchedType IS BEGIN RETURN VitalXNOR2 ( VitalXOR2 ( ab,ai, bb,bi ), VitalXOR2 ( ai,ab, bi,bb ), VitalXOR2 ( cb,ci, db,di ), VitalXOR2 ( ci,cb, di,db ) ); END; -- ------------------------------------------------------------------------ -- Delay Calculation for N-bit Logical gates. -- ------------------------------------------------------------------------ -- Note: index range on datab,datai assumed to be 1 TO length. -- This is enforced by internal only usage of this Function IMPURE FUNCTION VitalXOR ( CONSTANT DataB, DataI : IN SchedArray ) RETURN SchedType IS CONSTANT Leng : INTEGER := DataB'LENGTH; BEGIN IF Leng = 2 THEN RETURN VitalXOR2 ( DataB(1),DataI(1), DataB(2),DataI(2) ); ELSE RETURN VitalXOR2 ( VitalXOR ( DataB(1 TO Leng-1), DataI(1 TO Leng-1) ), VitalXOR ( DataI(1 TO Leng-1), DataB(1 TO Leng-1) ), DataB(Leng),DataI(Leng) ); END IF; END; -- Note: index range on datab,datai assumed to be 1 TO length. -- This is enforced by internal only usage of this Function IMPURE FUNCTION VitalXNOR ( CONSTANT DataB, DataI : IN SchedArray ) RETURN SchedType IS CONSTANT Leng : INTEGER := DataB'LENGTH; BEGIN IF Leng = 2 THEN RETURN VitalXNOR2 ( DataB(1),DataI(1), DataB(2),DataI(2) ); ELSE RETURN VitalXNOR2 ( VitalXOR ( DataB(1 TO Leng-1), DataI(1 TO Leng-1) ), VitalXOR ( DataI(1 TO Leng-1), DataB(1 TO Leng-1) ), DataB(Leng),DataI(Leng) ); END IF; END; -- ------------------------------------------------------------------------ -- Multiplexor -- MUX .......... result := data(dselect) -- MUX2 .......... 2-input mux; result := data0 when (dselect = '0'), -- data1 when (dselect = '1'), -- 'X' when (dselect = 'X') and (data0 /= data1) -- MUX4 .......... 4-input mux; result := data(dselect) -- MUX8 .......... 8-input mux; result := data(dselect) -- ------------------------------------------------------------------------ FUNCTION VitalMUX2 ( CONSTANT d1, d0 : IN SchedType; CONSTANT sb, SI : IN SchedType ) RETURN SchedType IS BEGIN RETURN (d1 AND sb) OR (d0 AND (NOT SI) ); END; -- FUNCTION VitalMUX4 ( CONSTANT Data : IN SchedArray4; CONSTANT sb : IN SchedArray2; CONSTANT SI : IN SchedArray2 ) RETURN SchedType IS BEGIN RETURN ( sb(1) AND VitalMUX2(Data(3),Data(2), sb(0), SI(0)) ) OR ( (NOT SI(1)) AND VitalMUX2(Data(1),Data(0), sb(0), SI(0)) ); END; FUNCTION VitalMUX8 ( CONSTANT Data : IN SchedArray8; CONSTANT sb : IN SchedArray3; CONSTANT SI : IN SchedArray3 ) RETURN SchedType IS BEGIN RETURN ( ( sb(2)) AND VitalMUX4 (Data(7 DOWNTO 4), sb(1 DOWNTO 0), SI(1 DOWNTO 0) ) ) OR ( (NOT SI(2)) AND VitalMUX4 (Data(3 DOWNTO 0), sb(1 DOWNTO 0), SI(1 DOWNTO 0) ) ); END; -- FUNCTION VInterMux ( CONSTANT Data : IN SchedArray; CONSTANT sb : IN SchedArray; CONSTANT SI : IN SchedArray ) RETURN SchedType IS CONSTANT sMsb : INTEGER := sb'LENGTH; CONSTANT dMsbHigh : INTEGER := Data'LENGTH; CONSTANT dMsbLow : INTEGER := Data'LENGTH/2; BEGIN IF sb'LENGTH = 1 THEN RETURN VitalMUX2( Data(2), Data(1), sb(1), SI(1) ); ELSIF sb'LENGTH = 2 THEN RETURN VitalMUX4( Data, sb, SI ); ELSIF sb'LENGTH = 3 THEN RETURN VitalMUX8( Data, sb, SI ); ELSIF sb'LENGTH > 3 THEN RETURN (( sb(sMsb)) AND VInterMux( Data(dMsbLow DOWNTO 1), sb(sMsb-1 DOWNTO 1), SI(sMsb-1 DOWNTO 1) )) OR ((NOT SI(sMsb)) AND VInterMux( Data(dMsbHigh DOWNTO dMsbLow+1), sb(sMsb-1 DOWNTO 1), SI(sMsb-1 DOWNTO 1) )); ELSE RETURN (0 ns, 0 ns, 0 ns, 0 ns, 0 ns); -- dselect'LENGTH < 1 END IF; END; -- FUNCTION VitalMUX ( CONSTANT Data : IN SchedArray; CONSTANT sb : IN SchedArray; CONSTANT SI : IN SchedArray ) RETURN SchedType IS CONSTANT msb : INTEGER := 2**sb'LENGTH; VARIABLE lDat : SchedArray(msb DOWNTO 1); ALIAS DataAlias : SchedArray ( Data'LENGTH DOWNTO 1 ) IS Data; ALIAS sbAlias : SchedArray ( sb'LENGTH DOWNTO 1 ) IS sb; ALIAS siAlias : SchedArray ( SI'LENGTH DOWNTO 1 ) IS SI; BEGIN IF Data'LENGTH <= msb THEN FOR i IN Data'LENGTH DOWNTO 1 LOOP lDat(i) := DataAlias(i); END LOOP; FOR i IN msb DOWNTO Data'LENGTH+1 LOOP lDat(i) := DefSchedAnd; END LOOP; ELSE FOR i IN msb DOWNTO 1 LOOP lDat(i) := DataAlias(i); END LOOP; END IF; RETURN VInterMux( lDat, sbAlias, siAlias ); END; -- ------------------------------------------------------------------------ -- Decoder -- General Algorithm : -- (a) Result(...) := '0' when (enable = '0') -- (b) Result(data) := '1'; all other subelements = '0' -- ... Result array is decending (n-1 downto 0) -- -- DECODERn .......... n:2**n decoder -- ------------------------------------------------------------------------ FUNCTION VitalDECODER2 ( CONSTANT DataB : IN SchedType; CONSTANT DataI : IN SchedType; CONSTANT Enable : IN SchedType ) RETURN SchedArray IS VARIABLE Result : SchedArray2; BEGIN Result(1) := Enable AND ( DataB); Result(0) := Enable AND (NOT DataI); RETURN Result; END; FUNCTION VitalDECODER4 ( CONSTANT DataB : IN SchedArray2; CONSTANT DataI : IN SchedArray2; CONSTANT Enable : IN SchedType ) RETURN SchedArray IS VARIABLE Result : SchedArray4; BEGIN Result(3) := Enable AND ( DataB(1)) AND ( DataB(0)); Result(2) := Enable AND ( DataB(1)) AND (NOT DataI(0)); Result(1) := Enable AND (NOT DataI(1)) AND ( DataB(0)); Result(0) := Enable AND (NOT DataI(1)) AND (NOT DataI(0)); RETURN Result; END; FUNCTION VitalDECODER8 ( CONSTANT DataB : IN SchedArray3; CONSTANT DataI : IN SchedArray3; CONSTANT Enable : IN SchedType ) RETURN SchedArray IS VARIABLE Result : SchedArray8; BEGIN Result(7):= Enable AND ( DataB(2))AND( DataB(1))AND( DataB(0)); Result(6):= Enable AND ( DataB(2))AND( DataB(1))AND(NOT DataI(0)); Result(5):= Enable AND ( DataB(2))AND(NOT DataI(1))AND( DataB(0)); Result(4):= Enable AND ( DataB(2))AND(NOT DataI(1))AND(NOT DataI(0)); Result(3):= Enable AND (NOT DataI(2))AND( DataB(1))AND( DataB(0)); Result(2):= Enable AND (NOT DataI(2))AND( DataB(1))AND(NOT DataI(0)); Result(1):= Enable AND (NOT DataI(2))AND(NOT DataI(1))AND( DataB(0)); Result(0):= Enable AND (NOT DataI(2))AND(NOT DataI(1))AND(NOT DataI(0)); RETURN Result; END; FUNCTION VitalDECODER ( CONSTANT DataB : IN SchedArray; CONSTANT DataI : IN SchedArray; CONSTANT Enable : IN SchedType ) RETURN SchedArray IS CONSTANT DMsb : INTEGER := DataB'LENGTH - 1; ALIAS DataBAlias : SchedArray ( DMsb DOWNTO 0 ) IS DataB; ALIAS DataIAlias : SchedArray ( DMsb DOWNTO 0 ) IS DataI; BEGIN IF DataB'LENGTH = 1 THEN RETURN VitalDECODER2 ( DataBAlias( 0 ), DataIAlias( 0 ), Enable ); ELSIF DataB'LENGTH = 2 THEN RETURN VitalDECODER4 ( DataBAlias(1 DOWNTO 0), DataIAlias(1 DOWNTO 0), Enable ); ELSIF DataB'LENGTH = 3 THEN RETURN VitalDECODER8 ( DataBAlias(2 DOWNTO 0), DataIAlias(2 DOWNTO 0), Enable ); ELSIF DataB'LENGTH > 3 THEN RETURN VitalDECODER ( DataBAlias(DMsb-1 DOWNTO 0), DataIAlias(DMsb-1 DOWNTO 0), Enable AND ( DataBAlias(DMsb)) ) & VitalDECODER ( DataBAlias(DMsb-1 DOWNTO 0), DataIAlias(DMsb-1 DOWNTO 0), Enable AND (NOT DataIAlias(DMsb)) ); ELSE RETURN DefSchedArray2; END IF; END; ------------------------------------------------------------------------------- -- PRIMITIVES ------------------------------------------------------------------------------- -- ------------------------------------------------------------------------ -- N-bit wide Logical gates. -- ------------------------------------------------------------------------ FUNCTION VitalAND ( CONSTANT Data : IN std_logic_vector; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS VARIABLE Result : UX01; BEGIN Result := '1'; FOR i IN Data'RANGE LOOP Result := Result AND Data(i); END LOOP; RETURN ResultMap(Result); END; -- FUNCTION VitalOR ( CONSTANT Data : IN std_logic_vector; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS VARIABLE Result : UX01; BEGIN Result := '0'; FOR i IN Data'RANGE LOOP Result := Result OR Data(i); END LOOP; RETURN ResultMap(Result); END; -- FUNCTION VitalXOR ( CONSTANT Data : IN std_logic_vector; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS VARIABLE Result : UX01; BEGIN Result := '0'; FOR i IN Data'RANGE LOOP Result := Result XOR Data(i); END LOOP; RETURN ResultMap(Result); END; -- FUNCTION VitalNAND ( CONSTANT Data : IN std_logic_vector; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS VARIABLE Result : UX01; BEGIN Result := '1'; FOR i IN Data'RANGE LOOP Result := Result AND Data(i); END LOOP; RETURN ResultMap(NOT Result); END; -- FUNCTION VitalNOR ( CONSTANT Data : IN std_logic_vector; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS VARIABLE Result : UX01; BEGIN Result := '0'; FOR i IN Data'RANGE LOOP Result := Result OR Data(i); END LOOP; RETURN ResultMap(NOT Result); END; -- FUNCTION VitalXNOR ( CONSTANT Data : IN std_logic_vector; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS VARIABLE Result : UX01; BEGIN Result := '0'; FOR i IN Data'RANGE LOOP Result := Result XOR Data(i); END LOOP; RETURN ResultMap(NOT Result); END; -- ------------------------------------------------------------------------ -- Commonly used 2-bit Logical gates. -- ------------------------------------------------------------------------ FUNCTION VitalAND2 ( CONSTANT a, b : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(a AND b); END; -- FUNCTION VitalOR2 ( CONSTANT a, b : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(a OR b); END; -- FUNCTION VitalXOR2 ( CONSTANT a, b : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(a XOR b); END; -- FUNCTION VitalNAND2 ( CONSTANT a, b : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(a NAND b); END; -- FUNCTION VitalNOR2 ( CONSTANT a, b : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(a NOR b); END; -- FUNCTION VitalXNOR2 ( CONSTANT a, b : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(NOT (a XOR b)); END; -- -- ------------------------------------------------------------------------ -- Commonly used 3-bit Logical gates. -- ------------------------------------------------------------------------ FUNCTION VitalAND3 ( CONSTANT a, b, c : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(a AND b AND c); END; -- FUNCTION VitalOR3 ( CONSTANT a, b, c : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(a OR b OR c); END; -- FUNCTION VitalXOR3 ( CONSTANT a, b, c : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(a XOR b XOR c); END; -- FUNCTION VitalNAND3 ( CONSTANT a, b, c : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(NOT (a AND b AND c)); END; -- FUNCTION VitalNOR3 ( CONSTANT a, b, c : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(NOT (a OR b OR c)); END; -- FUNCTION VitalXNOR3 ( CONSTANT a, b, c : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(NOT (a XOR b XOR c)); END; -- --------------------------------------------------------------------------- -- Commonly used 4-bit Logical gates. -- --------------------------------------------------------------------------- FUNCTION VitalAND4 ( CONSTANT a, b, c, d : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(a AND b AND c AND d); END; -- FUNCTION VitalOR4 ( CONSTANT a, b, c, d : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(a OR b OR c OR d); END; -- FUNCTION VitalXOR4 ( CONSTANT a, b, c, d : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(a XOR b XOR c XOR d); END; -- FUNCTION VitalNAND4 ( CONSTANT a, b, c, d : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(NOT (a AND b AND c AND d)); END; -- FUNCTION VitalNOR4 ( CONSTANT a, b, c, d : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(NOT (a OR b OR c OR d)); END; -- FUNCTION VitalXNOR4 ( CONSTANT a, b, c, d : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(NOT (a XOR b XOR c XOR d)); END; -- ------------------------------------------------------------------------ -- Buffers -- BUF ....... standard non-inverting buffer -- BUFIF0 ....... non-inverting buffer Data passes thru if (Enable = '0') -- BUFIF1 ....... non-inverting buffer Data passes thru if (Enable = '1') -- ------------------------------------------------------------------------ FUNCTION VitalBUF ( CONSTANT Data : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(To_UX01(Data)); END; -- FUNCTION VitalBUFIF0 ( CONSTANT Data, Enable : IN std_ulogic; CONSTANT ResultMap : IN VitalResultZMapType := VitalDefaultResultZMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(BufIf0_Table(Enable,Data)); END; -- FUNCTION VitalBUFIF1 ( CONSTANT Data, Enable : IN std_ulogic; CONSTANT ResultMap : IN VitalResultZMapType := VitalDefaultResultZMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(BufIf1_Table(Enable,Data)); END; FUNCTION VitalIDENT ( CONSTANT Data : IN std_ulogic; CONSTANT ResultMap : IN VitalResultZMapType := VitalDefaultResultZMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(To_UX01Z(Data)); END; -- ------------------------------------------------------------------------ -- Invertors -- INV ......... standard inverting buffer -- INVIF0 ......... inverting buffer Data passes thru if (Enable = '0') -- INVIF1 ......... inverting buffer Data passes thru if (Enable = '1') -- ------------------------------------------------------------------------ FUNCTION VitalINV ( CONSTANT Data : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(NOT Data); END; -- FUNCTION VitalINVIF0 ( CONSTANT Data, Enable : IN std_ulogic; CONSTANT ResultMap : IN VitalResultZMapType := VitalDefaultResultZMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(InvIf0_Table(Enable,Data)); END; -- FUNCTION VitalINVIF1 ( CONSTANT Data, Enable : IN std_ulogic; CONSTANT ResultMap : IN VitalResultZMapType := VitalDefaultResultZMap ) RETURN std_ulogic IS BEGIN RETURN ResultMap(InvIf1_Table(Enable,Data)); END; -- ------------------------------------------------------------------------ -- Multiplexor -- MUX .......... result := data(dselect) -- MUX2 .......... 2-input mux; result := data0 when (dselect = '0'), -- data1 when (dselect = '1'), -- 'X' when (dselect = 'X') and (data0 /= data1) -- MUX4 .......... 4-input mux; result := data(dselect) -- MUX8 .......... 8-input mux; result := data(dselect) -- ------------------------------------------------------------------------ FUNCTION VitalMUX2 ( CONSTANT Data1, Data0 : IN std_ulogic; CONSTANT dSelect : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS VARIABLE Result : UX01; BEGIN CASE To_X01(dSelect) IS WHEN '0' => Result := To_UX01(Data0); WHEN '1' => Result := To_UX01(Data1); WHEN OTHERS => Result := VitalSame( Data1, Data0 ); END CASE; RETURN ResultMap(Result); END; -- FUNCTION VitalMUX4 ( CONSTANT Data : IN std_logic_vector4; CONSTANT dSelect : IN std_logic_vector2; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS VARIABLE Slct : std_logic_vector2; VARIABLE Result : UX01; BEGIN Slct := To_X01(dSelect); CASE Slct IS WHEN "00" => Result := To_UX01(Data(0)); WHEN "01" => Result := To_UX01(Data(1)); WHEN "10" => Result := To_UX01(Data(2)); WHEN "11" => Result := To_UX01(Data(3)); WHEN "0X" => Result := VitalSame( Data(1), Data(0) ); WHEN "1X" => Result := VitalSame( Data(2), Data(3) ); WHEN "X0" => Result := VitalSame( Data(2), Data(0) ); WHEN "X1" => Result := VitalSame( Data(3), Data(1) ); WHEN OTHERS => Result := VitalSame( VitalSame(Data(3),Data(2)), VitalSame(Data(1),Data(0))); END CASE; RETURN ResultMap(Result); END; -- FUNCTION VitalMUX8 ( CONSTANT Data : IN std_logic_vector8; CONSTANT dSelect : IN std_logic_vector3; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS VARIABLE Result : UX01; BEGIN CASE To_X01(dSelect(2)) IS WHEN '0' => Result := VitalMUX4( Data(3 DOWNTO 0), dSelect(1 DOWNTO 0)); WHEN '1' => Result := VitalMUX4( Data(7 DOWNTO 4), dSelect(1 DOWNTO 0)); WHEN OTHERS => Result := VitalSame( VitalMUX4( Data(3 DOWNTO 0), dSelect(1 DOWNTO 0)), VitalMUX4( Data(7 DOWNTO 4), dSelect(1 DOWNTO 0))); END CASE; RETURN ResultMap(Result); END; -- FUNCTION VInterMux ( CONSTANT Data : IN std_logic_vector; CONSTANT dSelect : IN std_logic_vector ) RETURN std_ulogic IS CONSTANT sMsb : INTEGER := dSelect'LENGTH; CONSTANT dMsbHigh : INTEGER := Data'LENGTH; CONSTANT dMsbLow : INTEGER := Data'LENGTH/2; ALIAS DataAlias : std_logic_vector ( Data'LENGTH DOWNTO 1) IS Data; ALIAS dSelAlias : std_logic_vector (dSelect'LENGTH DOWNTO 1) IS dSelect; VARIABLE Result : UX01; BEGIN IF dSelect'LENGTH = 1 THEN Result := VitalMUX2( DataAlias(2), DataAlias(1), dSelAlias(1) ); ELSIF dSelect'LENGTH = 2 THEN Result := VitalMUX4( DataAlias, dSelAlias ); ELSIF dSelect'LENGTH > 2 THEN CASE To_X01(dSelect(sMsb)) IS WHEN '0' => Result := VInterMux( DataAlias(dMsbLow DOWNTO 1), dSelAlias(sMsb-1 DOWNTO 1) ); WHEN '1' => Result := VInterMux( DataAlias(dMsbHigh DOWNTO dMsbLow+1), dSelAlias(sMsb-1 DOWNTO 1) ); WHEN OTHERS => Result := VitalSame( VInterMux( DataAlias(dMsbLow DOWNTO 1), dSelAlias(sMsb-1 DOWNTO 1) ), VInterMux( DataAlias(dMsbHigh DOWNTO dMsbLow+1), dSelAlias(sMsb-1 DOWNTO 1) ) ); END CASE; ELSE Result := 'X'; -- dselect'LENGTH < 1 END IF; RETURN Result; END; -- FUNCTION VitalMUX ( CONSTANT Data : IN std_logic_vector; CONSTANT dSelect : IN std_logic_vector; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_ulogic IS CONSTANT msb : INTEGER := 2**dSelect'LENGTH; ALIAS DataAlias : std_logic_vector ( Data'LENGTH DOWNTO 1) IS Data; ALIAS dSelAlias : std_logic_vector (dSelect'LENGTH DOWNTO 1) IS dSelect; VARIABLE lDat : std_logic_vector(msb DOWNTO 1) := (OTHERS=>'X'); VARIABLE Result : UX01; BEGIN IF Data'LENGTH <= msb THEN FOR i IN Data'LENGTH DOWNTO 1 LOOP lDat(i) := DataAlias(i); END LOOP; ELSE FOR i IN msb DOWNTO 1 LOOP lDat(i) := DataAlias(i); END LOOP; END IF; Result := VInterMux( lDat, dSelAlias ); RETURN ResultMap(Result); END; -- ------------------------------------------------------------------------ -- Decoder -- General Algorithm : -- (a) Result(...) := '0' when (enable = '0') -- (b) Result(data) := '1'; all other subelements = '0' -- ... Result array is decending (n-1 downto 0) -- -- DECODERn .......... n:2**n decoder -- ------------------------------------------------------------------------ FUNCTION VitalDECODER2 ( CONSTANT Data : IN std_ulogic; CONSTANT Enable : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_logic_vector2 IS VARIABLE Result : std_logic_vector2; BEGIN Result(1) := ResultMap(Enable AND ( Data)); Result(0) := ResultMap(Enable AND (NOT Data)); RETURN Result; END; -- FUNCTION VitalDECODER4 ( CONSTANT Data : IN std_logic_vector2; CONSTANT Enable : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_logic_vector4 IS VARIABLE Result : std_logic_vector4; BEGIN Result(3) := ResultMap(Enable AND ( Data(1)) AND ( Data(0))); Result(2) := ResultMap(Enable AND ( Data(1)) AND (NOT Data(0))); Result(1) := ResultMap(Enable AND (NOT Data(1)) AND ( Data(0))); Result(0) := ResultMap(Enable AND (NOT Data(1)) AND (NOT Data(0))); RETURN Result; END; -- FUNCTION VitalDECODER8 ( CONSTANT Data : IN std_logic_vector3; CONSTANT Enable : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_logic_vector8 IS VARIABLE Result : std_logic_vector8; BEGIN Result(7) := ( Data(2)) AND ( Data(1)) AND ( Data(0)); Result(6) := ( Data(2)) AND ( Data(1)) AND (NOT Data(0)); Result(5) := ( Data(2)) AND (NOT Data(1)) AND ( Data(0)); Result(4) := ( Data(2)) AND (NOT Data(1)) AND (NOT Data(0)); Result(3) := (NOT Data(2)) AND ( Data(1)) AND ( Data(0)); Result(2) := (NOT Data(2)) AND ( Data(1)) AND (NOT Data(0)); Result(1) := (NOT Data(2)) AND (NOT Data(1)) AND ( Data(0)); Result(0) := (NOT Data(2)) AND (NOT Data(1)) AND (NOT Data(0)); Result(0) := ResultMap ( Enable AND Result(0) ); Result(1) := ResultMap ( Enable AND Result(1) ); Result(2) := ResultMap ( Enable AND Result(2) ); Result(3) := ResultMap ( Enable AND Result(3) ); Result(4) := ResultMap ( Enable AND Result(4) ); Result(5) := ResultMap ( Enable AND Result(5) ); Result(6) := ResultMap ( Enable AND Result(6) ); Result(7) := ResultMap ( Enable AND Result(7) ); RETURN Result; END; -- FUNCTION VitalDECODER ( CONSTANT Data : IN std_logic_vector; CONSTANT Enable : IN std_ulogic; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) RETURN std_logic_vector IS CONSTANT DMsb : INTEGER := Data'LENGTH - 1; ALIAS DataAlias : std_logic_vector ( DMsb DOWNTO 0 ) IS Data; BEGIN IF Data'LENGTH = 1 THEN RETURN VitalDECODER2 (DataAlias( 0 ), Enable, ResultMap ); ELSIF Data'LENGTH = 2 THEN RETURN VitalDECODER4 (DataAlias(1 DOWNTO 0), Enable, ResultMap ); ELSIF Data'LENGTH = 3 THEN RETURN VitalDECODER8 (DataAlias(2 DOWNTO 0), Enable, ResultMap ); ELSIF Data'LENGTH > 3 THEN RETURN VitalDECODER (DataAlias(DMsb-1 DOWNTO 0), Enable AND ( DataAlias(DMsb)), ResultMap ) & VitalDECODER (DataAlias(DMsb-1 DOWNTO 0), Enable AND (NOT DataAlias(DMsb)), ResultMap ); ELSE RETURN "X"; END IF; END; -- ------------------------------------------------------------------------ -- N-bit wide Logical gates. -- ------------------------------------------------------------------------ PROCEDURE VitalAND ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_logic_vector; CONSTANT tpd_data_q : IN VitalDelayArrayType01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE LastData : std_logic_vector(Data'RANGE) := (OTHERS=>'U'); VARIABLE Data_Edge : EdgeArray(Data'RANGE); VARIABLE Data_Schd : SchedArray(Data'RANGE); VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; ALIAS Atpd_data_q : VitalDelayArrayType01(Data'RANGE) IS tpd_data_q; VARIABLE AllZeroDelay : BOOLEAN := TRUE; --SN BEGIN -- ------------------------------------------------------------------------ -- Check if ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ FOR i IN Data'RANGE LOOP IF (Atpd_data_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; IF (AllZeroDelay) THEN LOOP q <= VitalAND(Data, ResultMap); WAIT ON Data; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- FOR n IN Data'RANGE LOOP BufPath ( Data_Schd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); END LOOP; LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- GetEdge ( Data, LastData, Data_Edge ); BufPath ( Data_Schd, Data_Edge, Atpd_data_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := '1'; new_schd := Data_Schd(Data_Schd'LEFT); FOR i IN Data'RANGE LOOP NewValue := NewValue AND Data(i); new_schd := new_schd AND Data_Schd(i); END LOOP; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data; END LOOP; END IF; --SN END; -- PROCEDURE VitalOR ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_logic_vector; CONSTANT tpd_data_q : IN VitalDelayArrayType01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE LastData : std_logic_vector(Data'RANGE) := (OTHERS=>'U'); VARIABLE Data_Edge : EdgeArray(Data'RANGE); VARIABLE Data_Schd : SchedArray(Data'RANGE); VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; ALIAS Atpd_data_q : VitalDelayArrayType01(Data'RANGE) IS tpd_data_q; VARIABLE AllZeroDelay : BOOLEAN := TRUE; --SN BEGIN -- ------------------------------------------------------------------------ -- Check if ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ FOR i IN Data'RANGE LOOP IF (Atpd_data_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; IF (AllZeroDelay) THEN LOOP q <= VitalOR(Data, ResultMap); WAIT ON Data; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- FOR n IN Data'RANGE LOOP BufPath ( Data_Schd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); END LOOP; LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- GetEdge ( Data, LastData, Data_Edge ); BufPath ( Data_Schd, Data_Edge, Atpd_data_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := '0'; new_schd := Data_Schd(Data_Schd'LEFT); FOR i IN Data'RANGE LOOP NewValue := NewValue OR Data(i); new_schd := new_schd OR Data_Schd(i); END LOOP; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data; END LOOP; END IF; --SN END; -- PROCEDURE VitalXOR ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_logic_vector; CONSTANT tpd_data_q : IN VitalDelayArrayType01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE LastData : std_logic_vector(Data'RANGE) := (OTHERS=>'U'); VARIABLE Data_Edge : EdgeArray(Data'RANGE); VARIABLE DataB_Schd : SchedArray(1 TO Data'LENGTH); VARIABLE DataI_Schd : SchedArray(1 TO Data'LENGTH); VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; ALIAS Atpd_data_q : VitalDelayArrayType01(Data'RANGE) IS tpd_data_q; ALIAS ADataB_Schd : SchedArray(Data'RANGE) IS DataB_Schd; ALIAS ADataI_Schd : SchedArray(Data'RANGE) IS DataI_Schd; VARIABLE AllZeroDelay : BOOLEAN := TRUE; --SN BEGIN -- ------------------------------------------------------------------------ -- Check if ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ FOR i IN Data'RANGE LOOP IF (Atpd_data_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; IF (AllZeroDelay) THEN LOOP q <= VitalXOR(Data, ResultMap); WAIT ON Data; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- FOR n IN Data'RANGE LOOP BufPath ( ADataB_Schd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); InvPath ( ADataI_Schd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); END LOOP; LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- GetEdge ( Data, LastData, Data_Edge ); BufPath ( ADataB_Schd, Data_Edge, Atpd_data_q ); InvPath ( ADataI_Schd, Data_Edge, Atpd_data_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := VitalXOR ( Data ); new_schd := VitalXOR ( DataB_Schd, DataI_Schd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data; END LOOP; END IF; --SN END; -- PROCEDURE VitalNAND ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_logic_vector; CONSTANT tpd_data_q : IN VitalDelayArrayType01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE LastData : std_logic_vector(Data'RANGE) := (OTHERS=>'U'); VARIABLE Data_Edge : EdgeArray(Data'RANGE); VARIABLE Data_Schd : SchedArray(Data'RANGE); VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; ALIAS Atpd_data_q : VitalDelayArrayType01(Data'RANGE) IS tpd_data_q; VARIABLE AllZeroDelay : BOOLEAN := TRUE; --SN BEGIN -- ------------------------------------------------------------------------ -- Check if ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ FOR i IN Data'RANGE LOOP IF (Atpd_data_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; IF (AllZeroDelay) THEN LOOP q <= VitalNAND(Data, ResultMap); WAIT ON Data; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- FOR n IN Data'RANGE LOOP InvPath ( Data_Schd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); END LOOP; LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- GetEdge ( Data, LastData, Data_Edge ); InvPath ( Data_Schd, Data_Edge, Atpd_data_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := '1'; new_schd := Data_Schd(Data_Schd'LEFT); FOR i IN Data'RANGE LOOP NewValue := NewValue AND Data(i); new_schd := new_schd AND Data_Schd(i); END LOOP; NewValue := NOT NewValue; new_schd := NOT new_schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data; END LOOP; END IF; END; -- PROCEDURE VitalNOR ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_logic_vector; CONSTANT tpd_data_q : IN VitalDelayArrayType01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE LastData : std_logic_vector(Data'RANGE) := (OTHERS=>'U'); VARIABLE Data_Edge : EdgeArray(Data'RANGE); VARIABLE Data_Schd : SchedArray(Data'RANGE); VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; ALIAS Atpd_data_q : VitalDelayArrayType01(Data'RANGE) IS tpd_data_q; VARIABLE AllZeroDelay : BOOLEAN := TRUE; --SN BEGIN -- ------------------------------------------------------------------------ -- Check if ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ FOR i IN Data'RANGE LOOP IF (Atpd_data_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; IF (AllZeroDelay) THEN LOOP q <= VitalNOR(Data, ResultMap); WAIT ON Data; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- FOR n IN Data'RANGE LOOP InvPath ( Data_Schd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); END LOOP; LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- GetEdge ( Data, LastData, Data_Edge ); InvPath ( Data_Schd, Data_Edge, Atpd_data_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := '0'; new_schd := Data_Schd(Data_Schd'LEFT); FOR i IN Data'RANGE LOOP NewValue := NewValue OR Data(i); new_schd := new_schd OR Data_Schd(i); END LOOP; NewValue := NOT NewValue; new_schd := NOT new_schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data; END LOOP; END IF; --SN END; -- PROCEDURE VitalXNOR ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_logic_vector; CONSTANT tpd_data_q : IN VitalDelayArrayType01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE LastData : std_logic_vector(Data'RANGE) := (OTHERS=>'U'); VARIABLE Data_Edge : EdgeArray(Data'RANGE); VARIABLE DataB_Schd : SchedArray(1 TO Data'LENGTH); VARIABLE DataI_Schd : SchedArray(1 TO Data'LENGTH); VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; ALIAS Atpd_data_q : VitalDelayArrayType01(Data'RANGE) IS tpd_data_q; ALIAS ADataB_Schd : SchedArray(Data'RANGE) IS DataB_Schd; ALIAS ADataI_Schd : SchedArray(Data'RANGE) IS DataI_Schd; VARIABLE AllZeroDelay : BOOLEAN := TRUE; --SN BEGIN -- ------------------------------------------------------------------------ -- Check if ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ FOR i IN Data'RANGE LOOP IF (Atpd_data_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; IF (AllZeroDelay) THEN LOOP q <= VitalXNOR(Data, ResultMap); WAIT ON Data; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- FOR n IN Data'RANGE LOOP BufPath ( ADataB_Schd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); InvPath ( ADataI_Schd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); END LOOP; LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- GetEdge ( Data, LastData, Data_Edge ); BufPath ( ADataB_Schd, Data_Edge, Atpd_data_q ); InvPath ( ADataI_Schd, Data_Edge, Atpd_data_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := VitalXNOR ( Data ); new_schd := VitalXNOR ( DataB_Schd, DataI_Schd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data; END LOOP; END IF; --SN END; -- -- ------------------------------------------------------------------------ -- Commonly used 2-bit Logical gates. -- ------------------------------------------------------------------------ PROCEDURE VitalAND2 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE a_schd, b_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ((tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01)) THEN LOOP q <= VitalAND2 ( a, b, ResultMap ); WAIT ON a, b; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( a_schd, InitialEdge(a), tpd_a_q ); BufPath ( b_schd, InitialEdge(b), tpd_b_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( a_schd, GetEdge(a), tpd_a_q ); BufPath ( b_schd, GetEdge(b), tpd_b_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := a AND b; new_schd := a_schd AND b_schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b; END LOOP; END IF; END; -- PROCEDURE VitalOR2 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE a_schd, b_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ((tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01)) THEN LOOP q <= VitalOR2 ( a, b, ResultMap ); WAIT ON a, b; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( a_schd, InitialEdge(a), tpd_a_q ); BufPath ( b_schd, InitialEdge(b), tpd_b_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( a_schd, GetEdge(a), tpd_a_q ); BufPath ( b_schd, GetEdge(b), tpd_b_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := a OR b; new_schd := a_schd OR b_schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b; END LOOP; END IF; END; -- PROCEDURE VitalNAND2 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE a_schd, b_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ((tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01)) THEN LOOP q <= VitalNAND2 ( a, b, ResultMap ); WAIT ON a, b; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- InvPath ( a_schd, InitialEdge(a), tpd_a_q ); InvPath ( b_schd, InitialEdge(b), tpd_b_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- InvPath ( a_schd, GetEdge(a), tpd_a_q ); InvPath ( b_schd, GetEdge(b), tpd_b_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := a NAND b; new_schd := a_schd NAND b_schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b; END LOOP; END IF; END; -- PROCEDURE VitalNOR2 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE a_schd, b_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ((tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01)) THEN LOOP q <= VitalNOR2 ( a, b, ResultMap ); WAIT ON a, b; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- InvPath ( a_schd, InitialEdge(a), tpd_a_q ); InvPath ( b_schd, InitialEdge(b), tpd_b_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- InvPath ( a_schd, GetEdge(a), tpd_a_q ); InvPath ( b_schd, GetEdge(b), tpd_b_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := a NOR b; new_schd := a_schd NOR b_schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b; END LOOP; END IF; END; -- PROCEDURE VitalXOR2 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE ab_schd, bb_schd : SchedType; VARIABLE ai_schd, bi_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ((tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01)) THEN LOOP q <= VitalXOR2 ( a, b, ResultMap ); WAIT ON a, b; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( ab_schd, InitialEdge(a), tpd_a_q ); InvPath ( ai_schd, InitialEdge(a), tpd_a_q ); BufPath ( bb_schd, InitialEdge(b), tpd_b_q ); InvPath ( bi_schd, InitialEdge(b), tpd_b_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( ab_schd, GetEdge(a), tpd_a_q ); InvPath ( ai_schd, GetEdge(a), tpd_a_q ); BufPath ( bb_schd, GetEdge(b), tpd_b_q ); InvPath ( bi_schd, GetEdge(b), tpd_b_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := a XOR b; new_schd := VitalXOR2 ( ab_schd,ai_schd, bb_schd,bi_schd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b; END LOOP; END IF; END; -- PROCEDURE VitalXNOR2 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE ab_schd, bb_schd : SchedType; VARIABLE ai_schd, bi_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ((tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01)) THEN LOOP q <= VitalXNOR2 ( a, b, ResultMap ); WAIT ON a, b; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( ab_schd, InitialEdge(a), tpd_a_q ); InvPath ( ai_schd, InitialEdge(a), tpd_a_q ); BufPath ( bb_schd, InitialEdge(b), tpd_b_q ); InvPath ( bi_schd, InitialEdge(b), tpd_b_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( ab_schd, GetEdge(a), tpd_a_q ); InvPath ( ai_schd, GetEdge(a), tpd_a_q ); BufPath ( bb_schd, GetEdge(b), tpd_b_q ); InvPath ( bi_schd, GetEdge(b), tpd_b_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := NOT (a XOR b); new_schd := VitalXNOR2 ( ab_schd,ai_schd, bb_schd,bi_schd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b; END LOOP; END IF; END; -- ------------------------------------------------------------------------ -- Commonly used 3-bit Logical gates. -- ------------------------------------------------------------------------ PROCEDURE VitalAND3 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b, c : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_c_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE a_schd, b_schd, c_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01) AND (tpd_c_q = VitalZeroDelay01)) THEN LOOP q <= VitalAND3 ( a, b, c, ResultMap ); WAIT ON a, b, c; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( a_schd, InitialEdge(a), tpd_a_q ); BufPath ( b_schd, InitialEdge(b), tpd_b_q ); BufPath ( c_schd, InitialEdge(c), tpd_c_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( a_schd, GetEdge(a), tpd_a_q ); BufPath ( b_schd, GetEdge(b), tpd_b_q ); BufPath ( c_schd, GetEdge(c), tpd_c_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := a AND b AND c; new_schd := a_schd AND b_schd AND c_schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b, c; END LOOP; END IF; END; -- PROCEDURE VitalOR3 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b, c : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_c_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE a_schd, b_schd, c_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01) AND (tpd_c_q = VitalZeroDelay01)) THEN LOOP q <= VitalOR3 ( a, b, c, ResultMap ); WAIT ON a, b, c; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( a_schd, InitialEdge(a), tpd_a_q ); BufPath ( b_schd, InitialEdge(b), tpd_b_q ); BufPath ( c_schd, InitialEdge(c), tpd_c_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( a_schd, GetEdge(a), tpd_a_q ); BufPath ( b_schd, GetEdge(b), tpd_b_q ); BufPath ( c_schd, GetEdge(c), tpd_c_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := a OR b OR c; new_schd := a_schd OR b_schd OR c_schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b, c; END LOOP; END IF; END; -- PROCEDURE VitalNAND3 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b, c : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_c_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE a_schd, b_schd, c_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01) AND (tpd_c_q = VitalZeroDelay01)) THEN LOOP q <= VitalNAND3 ( a, b, c, ResultMap ); WAIT ON a, b, c; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- InvPath ( a_schd, InitialEdge(a), tpd_a_q ); InvPath ( b_schd, InitialEdge(b), tpd_b_q ); InvPath ( c_schd, InitialEdge(c), tpd_c_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- InvPath ( a_schd, GetEdge(a), tpd_a_q ); InvPath ( b_schd, GetEdge(b), tpd_b_q ); InvPath ( c_schd, GetEdge(c), tpd_c_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := (a AND b) NAND c; new_schd := (a_schd AND b_schd) NAND c_schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b, c; END LOOP; END IF; END; -- PROCEDURE VitalNOR3 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b, c : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_c_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE a_schd, b_schd, c_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01) AND (tpd_c_q = VitalZeroDelay01)) THEN LOOP q <= VitalNOR3 ( a, b, c, ResultMap ); WAIT ON a, b, c; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- InvPath ( a_schd, InitialEdge(a), tpd_a_q ); InvPath ( b_schd, InitialEdge(b), tpd_b_q ); InvPath ( c_schd, InitialEdge(c), tpd_c_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- InvPath ( a_schd, GetEdge(a), tpd_a_q ); InvPath ( b_schd, GetEdge(b), tpd_b_q ); InvPath ( c_schd, GetEdge(c), tpd_c_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := (a OR b) NOR c; new_schd := (a_schd OR b_schd) NOR c_schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b, c; END LOOP; END IF; END; -- PROCEDURE VitalXOR3 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b, c : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_c_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE ab_schd, bb_schd, cb_schd : SchedType; VARIABLE ai_schd, bi_schd, ci_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01) AND (tpd_c_q = VitalZeroDelay01)) THEN LOOP q <= VitalXOR3 ( a, b, c, ResultMap ); WAIT ON a, b, c; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( ab_schd, InitialEdge(a), tpd_a_q ); InvPath ( ai_schd, InitialEdge(a), tpd_a_q ); BufPath ( bb_schd, InitialEdge(b), tpd_b_q ); InvPath ( bi_schd, InitialEdge(b), tpd_b_q ); BufPath ( cb_schd, InitialEdge(c), tpd_c_q ); InvPath ( ci_schd, InitialEdge(c), tpd_c_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( ab_schd, GetEdge(a), tpd_a_q ); InvPath ( ai_schd, GetEdge(a), tpd_a_q ); BufPath ( bb_schd, GetEdge(b), tpd_b_q ); InvPath ( bi_schd, GetEdge(b), tpd_b_q ); BufPath ( cb_schd, GetEdge(c), tpd_c_q ); InvPath ( ci_schd, GetEdge(c), tpd_c_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := a XOR b XOR c; new_schd := VitalXOR3 ( ab_schd,ai_schd, bb_schd,bi_schd, cb_schd,ci_schd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b, c; END LOOP; END IF; END; -- PROCEDURE VitalXNOR3 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b, c : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_c_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE ab_schd, bb_schd, cb_schd : SchedType; VARIABLE ai_schd, bi_schd, ci_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01) AND (tpd_c_q = VitalZeroDelay01)) THEN LOOP q <= VitalXNOR3 ( a, b, c, ResultMap ); WAIT ON a, b, c; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( ab_schd, InitialEdge(a), tpd_a_q ); InvPath ( ai_schd, InitialEdge(a), tpd_a_q ); BufPath ( bb_schd, InitialEdge(b), tpd_b_q ); InvPath ( bi_schd, InitialEdge(b), tpd_b_q ); BufPath ( cb_schd, InitialEdge(c), tpd_c_q ); InvPath ( ci_schd, InitialEdge(c), tpd_c_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( ab_schd, GetEdge(a), tpd_a_q ); InvPath ( ai_schd, GetEdge(a), tpd_a_q ); BufPath ( bb_schd, GetEdge(b), tpd_b_q ); InvPath ( bi_schd, GetEdge(b), tpd_b_q ); BufPath ( cb_schd, GetEdge(c), tpd_c_q ); InvPath ( ci_schd, GetEdge(c), tpd_c_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := NOT (a XOR b XOR c); new_schd := VitalXNOR3 ( ab_schd, ai_schd, bb_schd, bi_schd, cb_schd, ci_schd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b, c; END LOOP; END IF; END; -- ------------------------------------------------------------------------ -- Commonly used 4-bit Logical gates. -- ------------------------------------------------------------------------ PROCEDURE VitalAND4 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b, c, d : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_c_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_d_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE a_schd, b_schd, c_schd, d_Schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01) AND (tpd_c_q = VitalZeroDelay01) AND (tpd_d_q = VitalZeroDelay01)) THEN LOOP q <= VitalAND4 ( a, b, c, d, ResultMap ); WAIT ON a, b, c, d; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( a_schd, InitialEdge(a), tpd_a_q ); BufPath ( b_schd, InitialEdge(b), tpd_b_q ); BufPath ( c_schd, InitialEdge(c), tpd_c_q ); BufPath ( d_Schd, InitialEdge(d), tpd_d_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( a_schd, GetEdge(a), tpd_a_q ); BufPath ( b_schd, GetEdge(b), tpd_b_q ); BufPath ( c_schd, GetEdge(c), tpd_c_q ); BufPath ( d_Schd, GetEdge(d), tpd_d_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := a AND b AND c AND d; new_schd := a_schd AND b_schd AND c_schd AND d_Schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b, c, d; END LOOP; END IF; END; -- PROCEDURE VitalOR4 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b, c, d : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_c_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_d_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE a_schd, b_schd, c_schd, d_Schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01) AND (tpd_c_q = VitalZeroDelay01) AND (tpd_d_q = VitalZeroDelay01)) THEN LOOP q <= VitalOR4 ( a, b, c, d, ResultMap ); WAIT ON a, b, c, d; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( a_schd, InitialEdge(a), tpd_a_q ); BufPath ( b_schd, InitialEdge(b), tpd_b_q ); BufPath ( c_schd, InitialEdge(c), tpd_c_q ); BufPath ( d_Schd, InitialEdge(d), tpd_d_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( a_schd, GetEdge(a), tpd_a_q ); BufPath ( b_schd, GetEdge(b), tpd_b_q ); BufPath ( c_schd, GetEdge(c), tpd_c_q ); BufPath ( d_Schd, GetEdge(d), tpd_d_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := a OR b OR c OR d; new_schd := a_schd OR b_schd OR c_schd OR d_Schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b, c, d; END LOOP; END IF; END; -- PROCEDURE VitalNAND4 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b, c, d : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_c_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_d_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE a_schd, b_schd, c_schd, d_Schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01) AND (tpd_c_q = VitalZeroDelay01) AND (tpd_d_q = VitalZeroDelay01)) THEN LOOP q <= VitalNAND4 ( a, b, c, d, ResultMap ); WAIT ON a, b, c, d; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- InvPath ( a_schd, InitialEdge(a), tpd_a_q ); InvPath ( b_schd, InitialEdge(b), tpd_b_q ); InvPath ( c_schd, InitialEdge(c), tpd_c_q ); InvPath ( d_Schd, InitialEdge(d), tpd_d_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- InvPath ( a_schd, GetEdge(a), tpd_a_q ); InvPath ( b_schd, GetEdge(b), tpd_b_q ); InvPath ( c_schd, GetEdge(c), tpd_c_q ); InvPath ( d_Schd, GetEdge(d), tpd_d_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := (a AND b) NAND (c AND d); new_schd := (a_schd AND b_schd) NAND (c_schd AND d_Schd); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b, c, d; END LOOP; END IF; END; -- PROCEDURE VitalNOR4 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b, c, d : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_c_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_d_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE a_schd, b_schd, c_schd, d_Schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01) AND (tpd_c_q = VitalZeroDelay01) AND (tpd_d_q = VitalZeroDelay01)) THEN LOOP q <= VitalNOR4 ( a, b, c, d, ResultMap ); WAIT ON a, b, c, d; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- InvPath ( a_schd, InitialEdge(a), tpd_a_q ); InvPath ( b_schd, InitialEdge(b), tpd_b_q ); InvPath ( c_schd, InitialEdge(c), tpd_c_q ); InvPath ( d_Schd, InitialEdge(d), tpd_d_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- InvPath ( a_schd, GetEdge(a), tpd_a_q ); InvPath ( b_schd, GetEdge(b), tpd_b_q ); InvPath ( c_schd, GetEdge(c), tpd_c_q ); InvPath ( d_Schd, GetEdge(d), tpd_d_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := (a OR b) NOR (c OR d); new_schd := (a_schd OR b_schd) NOR (c_schd OR d_Schd); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b, c, d; END LOOP; END IF; END; -- PROCEDURE VitalXOR4 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b, c, d : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_c_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_d_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE ab_schd, bb_schd, cb_schd, DB_Schd : SchedType; VARIABLE ai_schd, bi_schd, ci_schd, di_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01) AND (tpd_c_q = VitalZeroDelay01) AND (tpd_d_q = VitalZeroDelay01)) THEN LOOP q <= VitalXOR4 ( a, b, c, d, ResultMap ); WAIT ON a, b, c, d; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( ab_schd, InitialEdge(a), tpd_a_q ); InvPath ( ai_schd, InitialEdge(a), tpd_a_q ); BufPath ( bb_schd, InitialEdge(b), tpd_b_q ); InvPath ( bi_schd, InitialEdge(b), tpd_b_q ); BufPath ( cb_schd, InitialEdge(c), tpd_c_q ); InvPath ( ci_schd, InitialEdge(c), tpd_c_q ); BufPath ( DB_Schd, InitialEdge(d), tpd_d_q ); InvPath ( di_schd, InitialEdge(d), tpd_d_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( ab_schd, GetEdge(a), tpd_a_q ); InvPath ( ai_schd, GetEdge(a), tpd_a_q ); BufPath ( bb_schd, GetEdge(b), tpd_b_q ); InvPath ( bi_schd, GetEdge(b), tpd_b_q ); BufPath ( cb_schd, GetEdge(c), tpd_c_q ); InvPath ( ci_schd, GetEdge(c), tpd_c_q ); BufPath ( DB_Schd, GetEdge(d), tpd_d_q ); InvPath ( di_schd, GetEdge(d), tpd_d_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := a XOR b XOR c XOR d; new_schd := VitalXOR4 ( ab_schd,ai_schd, bb_schd,bi_schd, cb_schd,ci_schd, DB_Schd,di_schd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b, c, d; END LOOP; END IF; END; -- PROCEDURE VitalXNOR4 ( SIGNAL q : OUT std_ulogic; SIGNAL a, b, c, d : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_b_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_c_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_d_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE ab_schd, bb_schd, cb_schd, DB_Schd : SchedType; VARIABLE ai_schd, bi_schd, ci_schd, di_schd : SchedType; VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_a_q = VitalZeroDelay01) AND (tpd_b_q = VitalZeroDelay01) AND (tpd_c_q = VitalZeroDelay01) AND (tpd_d_q = VitalZeroDelay01)) THEN LOOP q <= VitalXNOR4 ( a, b, c, d, ResultMap ); WAIT ON a, b, c, d; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( ab_schd, InitialEdge(a), tpd_a_q ); InvPath ( ai_schd, InitialEdge(a), tpd_a_q ); BufPath ( bb_schd, InitialEdge(b), tpd_b_q ); InvPath ( bi_schd, InitialEdge(b), tpd_b_q ); BufPath ( cb_schd, InitialEdge(c), tpd_c_q ); InvPath ( ci_schd, InitialEdge(c), tpd_c_q ); BufPath ( DB_Schd, InitialEdge(d), tpd_d_q ); InvPath ( di_schd, InitialEdge(d), tpd_d_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( ab_schd, GetEdge(a), tpd_a_q ); InvPath ( ai_schd, GetEdge(a), tpd_a_q ); BufPath ( bb_schd, GetEdge(b), tpd_b_q ); InvPath ( bi_schd, GetEdge(b), tpd_b_q ); BufPath ( cb_schd, GetEdge(c), tpd_c_q ); InvPath ( ci_schd, GetEdge(c), tpd_c_q ); BufPath ( DB_Schd, GetEdge(d), tpd_d_q ); InvPath ( di_schd, GetEdge(d), tpd_d_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := NOT (a XOR b XOR c XOR d); new_schd := VitalXNOR4 ( ab_schd,ai_schd, bb_schd,bi_schd, cb_schd,ci_schd, DB_Schd,di_schd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON a, b, c, d; END LOOP; END IF; END; -- ------------------------------------------------------------------------ -- Buffers -- BUF ....... standard non-inverting buffer -- BUFIF0 ....... non-inverting buffer Data passes thru if (Enable = '0') -- BUFIF1 ....... non-inverting buffer Data passes thru if (Enable = '1') -- ------------------------------------------------------------------------ PROCEDURE VitalBUF ( SIGNAL q : OUT std_ulogic; SIGNAL a : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF (tpd_a_q = VitalZeroDelay01) THEN LOOP q <= ResultMap(To_UX01(a)); WAIT ON a; END LOOP; ELSE LOOP -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := To_UX01(a); -- convert to forcing strengths CASE EdgeType'(GetEdge(a)) IS WHEN '1'|'/'|'R'|'r' => Dly := tpd_a_q(tr01); WHEN '0'|'\'|'F'|'f' => Dly := tpd_a_q(tr10); WHEN OTHERS => Dly := Minimum (tpd_a_q(tr01), tpd_a_q(tr10)); END CASE; VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode ); WAIT ON a; END LOOP; END IF; END; -- PROCEDURE VitalBUFIF1 ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_ulogic; SIGNAL Enable : IN std_ulogic; CONSTANT tpd_data_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_enable_q : IN VitalDelayType01Z := VitalDefDelay01Z; CONSTANT ResultMap : IN VitalResultZMapType := VitalDefaultResultZMap ) IS VARIABLE NewValue : UX01Z; VARIABLE Glitch_Data : GlitchDataType; VARIABLE d_Schd, e1_Schd, e0_Schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_data_q = VitalZeroDelay01 ) AND (tpd_enable_q = VitalZeroDelay01Z)) THEN LOOP q <= VitalBUFIF1( Data, Enable, ResultMap ); WAIT ON Data, Enable; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( d_Schd, InitialEdge(Data), tpd_data_q ); BufEnab ( e1_Schd, e0_Schd, InitialEdge(Enable), tpd_enable_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( d_Schd, GetEdge(Data), tpd_data_q ); BufEnab ( e1_Schd, e0_Schd, GetEdge(Enable), tpd_enable_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := VitalBUFIF1( Data, Enable ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), d_Schd, e1_Schd, e0_Schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data, Enable; END LOOP; END IF; END; -- PROCEDURE VitalBUFIF0 ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_ulogic; SIGNAL Enable : IN std_ulogic; CONSTANT tpd_data_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_enable_q : IN VitalDelayType01Z := VitalDefDelay01Z; CONSTANT ResultMap : IN VitalResultZMapType := VitalDefaultResultZMap ) IS VARIABLE NewValue : UX01Z; VARIABLE Glitch_Data : GlitchDataType; VARIABLE d_Schd, e1_Schd, e0_Schd : SchedType; VARIABLE ne1_schd, ne0_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_data_q = VitalZeroDelay01 ) AND (tpd_enable_q = VitalZeroDelay01Z)) THEN LOOP q <= VitalBUFIF0( Data, Enable, ResultMap ); WAIT ON Data, Enable; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( d_Schd, InitialEdge(Data), tpd_data_q ); InvEnab ( e1_Schd, e0_Schd, InitialEdge(Enable), tpd_enable_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( d_Schd, GetEdge(Data), tpd_data_q ); InvEnab ( e1_Schd, e0_Schd, GetEdge(Enable), tpd_enable_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := VitalBUFIF0( Data, Enable ); ne1_schd := NOT e1_Schd; ne0_schd := NOT e0_Schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), d_Schd, ne1_schd, ne0_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data, Enable; END LOOP; END IF; END; PROCEDURE VitalIDENT ( SIGNAL q : OUT std_ulogic; SIGNAL a : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01Z := VitalDefDelay01Z; CONSTANT ResultMap : IN VitalResultZMapType := VitalDefaultResultZMap ) IS SUBTYPE v2 IS std_logic_vector(0 TO 1); VARIABLE NewValue : UX01Z; VARIABLE Glitch_Data : GlitchDataType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF (tpd_a_q = VitalZeroDelay01Z) THEN LOOP q <= ResultMap(To_UX01Z(a)); WAIT ON a; END LOOP; ELSE LOOP -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ CASE v2'(To_X01Z(NewValue) & To_X01Z(a)) IS WHEN "00" => Dly := tpd_a_q(tr10); WHEN "01" => Dly := tpd_a_q(tr01); WHEN "0Z" => Dly := tpd_a_q(tr0z); WHEN "0X" => Dly := tpd_a_q(tr01); WHEN "10" => Dly := tpd_a_q(tr10); WHEN "11" => Dly := tpd_a_q(tr01); WHEN "1Z" => Dly := tpd_a_q(tr1z); WHEN "1X" => Dly := tpd_a_q(tr10); WHEN "Z0" => Dly := tpd_a_q(trz0); WHEN "Z1" => Dly := tpd_a_q(trz1); WHEN "ZZ" => Dly := 0 ns; WHEN "ZX" => Dly := Minimum (tpd_a_q(trz1), tpd_a_q(trz0)); WHEN "X0" => Dly := tpd_a_q(tr10); WHEN "X1" => Dly := tpd_a_q(tr01); WHEN "XZ" => Dly := Minimum (tpd_a_q(tr0z), tpd_a_q(tr1z)); WHEN OTHERS => Dly := Minimum (tpd_a_q(tr01), tpd_a_q(tr10)); END CASE; NewValue := To_UX01Z(a); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode ); WAIT ON a; END LOOP; END IF; END; -- ------------------------------------------------------------------------ -- Invertors -- INV ......... standard inverting buffer -- INVIF0 ......... inverting buffer Data passes thru if (Enable = '0') -- INVIF1 ......... inverting buffer Data passes thru if (Enable = '1') -- ------------------------------------------------------------------------ PROCEDURE VitalINV ( SIGNAL q : OUT std_ulogic; SIGNAL a : IN std_ulogic ; CONSTANT tpd_a_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN IF (tpd_a_q = VitalZeroDelay01) THEN LOOP q <= ResultMap(NOT a); WAIT ON a; END LOOP; ELSE LOOP -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := NOT a; CASE EdgeType'(GetEdge(a)) IS WHEN '1'|'/'|'R'|'r' => Dly := tpd_a_q(tr10); WHEN '0'|'\'|'F'|'f' => Dly := tpd_a_q(tr01); WHEN OTHERS => Dly := Minimum (tpd_a_q(tr01), tpd_a_q(tr10)); END CASE; VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode ); WAIT ON a; END LOOP; END IF; END; -- PROCEDURE VitalINVIF1 ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_ulogic; SIGNAL Enable : IN std_ulogic; CONSTANT tpd_data_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_enable_q : IN VitalDelayType01Z := VitalDefDelay01Z; CONSTANT ResultMap : IN VitalResultZMapType := VitalDefaultResultZMap ) IS VARIABLE NewValue : UX01Z; VARIABLE new_schd : SchedType; VARIABLE Glitch_Data : GlitchDataType; VARIABLE d_Schd, e1_Schd, e0_Schd : SchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_data_q = VitalZeroDelay01 ) AND (tpd_enable_q = VitalZeroDelay01Z)) THEN LOOP q <= VitalINVIF1( Data, Enable, ResultMap ); WAIT ON Data, Enable; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- InvPath ( d_Schd, InitialEdge(Data), tpd_data_q ); BufEnab ( e1_Schd, e0_Schd, InitialEdge(Enable), tpd_enable_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- InvPath ( d_Schd, GetEdge(Data), tpd_data_q ); BufEnab ( e1_Schd, e0_Schd, GetEdge(Enable), tpd_enable_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := VitalINVIF1( Data, Enable ); new_schd := NOT d_Schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd, e1_Schd, e0_Schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data, Enable; END LOOP; END IF; END; -- PROCEDURE VitalINVIF0 ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_ulogic; SIGNAL Enable : IN std_ulogic; CONSTANT tpd_data_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_enable_q : IN VitalDelayType01Z := VitalDefDelay01Z; CONSTANT ResultMap : IN VitalResultZMapType := VitalDefaultResultZMap ) IS VARIABLE NewValue : UX01Z; VARIABLE new_schd : SchedType; VARIABLE Glitch_Data : GlitchDataType; VARIABLE d_Schd, e1_Schd, e0_Schd : SchedType; VARIABLE ne1_schd, ne0_schd : SchedType := DefSchedType; VARIABLE Dly, Glch : TIME; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_data_q = VitalZeroDelay01 ) AND (tpd_enable_q = VitalZeroDelay01Z)) THEN LOOP q <= VitalINVIF0( Data, Enable, ResultMap ); WAIT ON Data, Enable; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- InvPath ( d_Schd, InitialEdge(Data), tpd_data_q ); InvEnab ( e1_Schd, e0_Schd, InitialEdge(Enable), tpd_enable_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- InvPath ( d_Schd, GetEdge(Data), tpd_data_q ); InvEnab ( e1_Schd, e0_Schd, GetEdge(Enable), tpd_enable_q ); -- ------------------------------------ -- Compute function and propation delay -- ------------------------------------ NewValue := VitalINVIF0( Data, Enable ); ne1_schd := NOT e1_Schd; ne0_schd := NOT e0_Schd; new_schd := NOT d_Schd; -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd, ne1_schd, ne0_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data, Enable; END LOOP; END IF; END; -- ------------------------------------------------------------------------ -- Multiplexor -- MUX .......... result := data(dselect) -- MUX2 .......... 2-input mux; result := data0 when (dselect = '0'), -- data1 when (dselect = '1'), -- 'X' when (dselect = 'X') and (data0 /= data1) -- MUX4 .......... 4-input mux; result := data(dselect) -- MUX8 .......... 8-input mux; result := data(dselect) -- ------------------------------------------------------------------------ PROCEDURE VitalMUX2 ( SIGNAL q : OUT std_ulogic; SIGNAL d1, d0 : IN std_ulogic; SIGNAL dSel : IN std_ulogic; CONSTANT tpd_d1_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_d0_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_dsel_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; VARIABLE d1_Schd, d0_Schd : SchedType; VARIABLE dSel_bSchd, dSel_iSchd : SchedType; VARIABLE d1_Edge, d0_Edge, dSel_Edge : EdgeType; BEGIN -- ------------------------------------------------------------------------ -- For ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF ( (tpd_d1_q = VitalZeroDelay01) AND (tpd_d0_q = VitalZeroDelay01) AND (tpd_dsel_q = VitalZeroDelay01) ) THEN LOOP q <= VitalMUX2 ( d1, d0, dSel, ResultMap ); WAIT ON d1, d0, dSel; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( d1_Schd, InitialEdge(d1), tpd_d1_q ); BufPath ( d0_Schd, InitialEdge(d0), tpd_d0_q ); BufPath ( dSel_bSchd, InitialEdge(dSel), tpd_dsel_q ); InvPath ( dSel_iSchd, InitialEdge(dSel), tpd_dsel_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( d1_Schd, GetEdge(d1), tpd_d1_q ); BufPath ( d0_Schd, GetEdge(d0), tpd_d0_q ); BufPath ( dSel_bSchd, GetEdge(dSel), tpd_dsel_q ); InvPath ( dSel_iSchd, GetEdge(dSel), tpd_dsel_q ); -- ------------------------------------ -- Compute function and propation delaq -- ------------------------------------ NewValue := VitalMUX2 ( d1, d0, dSel ); new_schd := VitalMUX2 ( d1_Schd, d0_Schd, dSel_bSchd, dSel_iSchd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON d1, d0, dSel; END LOOP; END IF; END; -- PROCEDURE VitalMUX4 ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_logic_vector4; SIGNAL dSel : IN std_logic_vector2; CONSTANT tpd_data_q : IN VitalDelayArrayType01; CONSTANT tpd_dsel_q : IN VitalDelayArrayType01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE LastData : std_logic_vector(Data'RANGE) := (OTHERS=>'U'); VARIABLE LastdSel : std_logic_vector(dSel'RANGE) := (OTHERS=>'U'); VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; VARIABLE Data_Schd : SchedArray4; VARIABLE Data_Edge : EdgeArray4; VARIABLE dSel_Edge : EdgeArray2; VARIABLE dSel_bSchd : SchedArray2; VARIABLE dSel_iSchd : SchedArray2; ALIAS Atpd_data_q : VitalDelayArrayType01(Data'RANGE) IS tpd_data_q; ALIAS Atpd_dsel_q : VitalDelayArrayType01(dSel'RANGE) IS tpd_dsel_q; VARIABLE AllZeroDelay : BOOLEAN := TRUE; --SN BEGIN -- ------------------------------------------------------------------------ -- Check if ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ FOR i IN dSel'RANGE LOOP IF (Atpd_dsel_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; IF (AllZeroDelay) THEN FOR i IN Data'RANGE LOOP IF (Atpd_data_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; IF (AllZeroDelay) THEN LOOP q <= VitalMUX(Data, dSel, ResultMap); WAIT ON Data, dSel; END LOOP; END IF; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- FOR n IN Data'RANGE LOOP BufPath ( Data_Schd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); END LOOP; FOR n IN dSel'RANGE LOOP BufPath ( dSel_bSchd(n), InitialEdge(dSel(n)), Atpd_dsel_q(n) ); InvPath ( dSel_iSchd(n), InitialEdge(dSel(n)), Atpd_dsel_q(n) ); END LOOP; LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- GetEdge ( Data, LastData, Data_Edge ); BufPath ( Data_Schd, Data_Edge, Atpd_data_q ); GetEdge ( dSel, LastdSel, dSel_Edge ); BufPath ( dSel_bSchd, dSel_Edge, Atpd_dsel_q ); InvPath ( dSel_iSchd, dSel_Edge, Atpd_dsel_q ); -- ------------------------------------ -- Compute function and propation delaq -- ------------------------------------ NewValue := VitalMUX4 ( Data, dSel ); new_schd := VitalMUX4 ( Data_Schd, dSel_bSchd, dSel_iSchd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data, dSel; END LOOP; END IF; --SN END; PROCEDURE VitalMUX8 ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_logic_vector8; SIGNAL dSel : IN std_logic_vector3; CONSTANT tpd_data_q : IN VitalDelayArrayType01; CONSTANT tpd_dsel_q : IN VitalDelayArrayType01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE LastData : std_logic_vector(Data'RANGE) := (OTHERS=>'U'); VARIABLE LastdSel : std_logic_vector(dSel'RANGE) := (OTHERS=>'U'); VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; VARIABLE Data_Schd : SchedArray8; VARIABLE Data_Edge : EdgeArray8; VARIABLE dSel_Edge : EdgeArray3; VARIABLE dSel_bSchd : SchedArray3; VARIABLE dSel_iSchd : SchedArray3; ALIAS Atpd_data_q : VitalDelayArrayType01(Data'RANGE) IS tpd_data_q; ALIAS Atpd_dsel_q : VitalDelayArrayType01(dSel'RANGE) IS tpd_dsel_q; VARIABLE AllZeroDelay : BOOLEAN := TRUE; --SN BEGIN -- ------------------------------------------------------------------------ -- Check if ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ FOR i IN dSel'RANGE LOOP IF (Atpd_dsel_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; IF (AllZeroDelay) THEN FOR i IN Data'RANGE LOOP IF (Atpd_data_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; IF (AllZeroDelay) THEN LOOP q <= VitalMUX(Data, dSel, ResultMap); WAIT ON Data, dSel; END LOOP; END IF; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- FOR n IN Data'RANGE LOOP BufPath ( Data_Schd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); END LOOP; FOR n IN dSel'RANGE LOOP BufPath ( dSel_bSchd(n), InitialEdge(dSel(n)), Atpd_dsel_q(n) ); InvPath ( dSel_iSchd(n), InitialEdge(dSel(n)), Atpd_dsel_q(n) ); END LOOP; LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- GetEdge ( Data, LastData, Data_Edge ); BufPath ( Data_Schd, Data_Edge, Atpd_data_q ); GetEdge ( dSel, LastdSel, dSel_Edge ); BufPath ( dSel_bSchd, dSel_Edge, Atpd_dsel_q ); InvPath ( dSel_iSchd, dSel_Edge, Atpd_dsel_q ); -- ------------------------------------ -- Compute function and propation delaq -- ------------------------------------ NewValue := VitalMUX8 ( Data, dSel ); new_schd := VitalMUX8 ( Data_Schd, dSel_bSchd, dSel_iSchd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data, dSel; END LOOP; END IF; END; -- PROCEDURE VitalMUX ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_logic_vector; SIGNAL dSel : IN std_logic_vector; CONSTANT tpd_data_q : IN VitalDelayArrayType01; CONSTANT tpd_dsel_q : IN VitalDelayArrayType01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE LastData : std_logic_vector(Data'RANGE) := (OTHERS=>'U'); VARIABLE LastdSel : std_logic_vector(dSel'RANGE) := (OTHERS=>'U'); VARIABLE NewValue : UX01; VARIABLE Glitch_Data : GlitchDataType; VARIABLE new_schd : SchedType; VARIABLE Dly, Glch : TIME; VARIABLE Data_Schd : SchedArray(Data'RANGE); VARIABLE Data_Edge : EdgeArray(Data'RANGE); VARIABLE dSel_Edge : EdgeArray(dSel'RANGE); VARIABLE dSel_bSchd : SchedArray(dSel'RANGE); VARIABLE dSel_iSchd : SchedArray(dSel'RANGE); ALIAS Atpd_data_q : VitalDelayArrayType01(Data'RANGE) IS tpd_data_q; ALIAS Atpd_dsel_q : VitalDelayArrayType01(dSel'RANGE) IS tpd_dsel_q; VARIABLE AllZeroDelay : BOOLEAN := TRUE; --SN BEGIN -- ------------------------------------------------------------------------ -- Check if ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ FOR i IN dSel'RANGE LOOP IF (Atpd_dsel_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; IF (AllZeroDelay) THEN FOR i IN Data'RANGE LOOP IF (Atpd_data_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; IF (AllZeroDelay) THEN LOOP q <= VitalMUX(Data, dSel, ResultMap); WAIT ON Data, dSel; END LOOP; END IF; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- FOR n IN Data'RANGE LOOP BufPath ( Data_Schd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); END LOOP; FOR n IN dSel'RANGE LOOP BufPath ( dSel_bSchd(n), InitialEdge(dSel(n)), Atpd_dsel_q(n) ); InvPath ( dSel_iSchd(n), InitialEdge(dSel(n)), Atpd_dsel_q(n) ); END LOOP; LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- GetEdge ( Data, LastData, Data_Edge ); BufPath ( Data_Schd, Data_Edge, Atpd_data_q ); GetEdge ( dSel, LastdSel, dSel_Edge ); BufPath ( dSel_bSchd, dSel_Edge, Atpd_dsel_q ); InvPath ( dSel_iSchd, dSel_Edge, Atpd_dsel_q ); -- ------------------------------------ -- Compute function and propation delaq -- ------------------------------------ NewValue := VitalMUX ( Data, dSel ); new_schd := VitalMUX ( Data_Schd, dSel_bSchd, dSel_iSchd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, ResultMap(NewValue), Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data, dSel; END LOOP; END IF; --SN END; -- ------------------------------------------------------------------------ -- Decoder -- General Algorithm : -- (a) Result(...) := '0' when (enable = '0') -- (b) Result(data) := '1'; all other subelements = '0' -- ... Result array is decending (n-1 downto 0) -- -- DECODERn .......... n:2**n decoder -- Caution: If 'ResultMap' defines other than strength mapping, the -- delay selection is not defined. -- ------------------------------------------------------------------------ PROCEDURE VitalDECODER2 ( SIGNAL q : OUT std_logic_vector2; SIGNAL Data : IN std_ulogic; SIGNAL Enable : IN std_ulogic; CONSTANT tpd_data_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT tpd_enable_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE NewValue : std_logic_vector2; VARIABLE Glitch_Data : GlitchArray2; VARIABLE new_schd : SchedArray2; VARIABLE Dly, Glch : TimeArray2; VARIABLE Enable_Schd : SchedType := DefSchedType; VARIABLE Data_BSchd, Data_ISchd : SchedType; BEGIN -- ------------------------------------------------------------------------ -- Check if ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF (tpd_enable_q = VitalZeroDelay01) AND (tpd_data_q = VitalZeroDelay01) THEN LOOP q <= VitalDECODER2(Data, Enable, ResultMap); WAIT ON Data, Enable; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- BufPath ( Data_BSchd, InitialEdge(Data), tpd_data_q ); InvPath ( Data_ISchd, InitialEdge(Data), tpd_data_q ); BufPath ( Enable_Schd, InitialEdge(Enable), tpd_enable_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- BufPath ( Data_BSchd, GetEdge(Data), tpd_data_q ); InvPath ( Data_ISchd, GetEdge(Data), tpd_data_q ); BufPath ( Enable_Schd, GetEdge(Enable), tpd_enable_q ); -- ------------------------------------ -- Compute function and propation delaq -- ------------------------------------ NewValue := VitalDECODER2 ( Data, Enable, ResultMap ); new_schd := VitalDECODER2 ( Data_BSchd, Data_ISchd, Enable_Schd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, NewValue, Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data, Enable; END LOOP; END IF; -- SN END; -- PROCEDURE VitalDECODER4 ( SIGNAL q : OUT std_logic_vector4; SIGNAL Data : IN std_logic_vector2; SIGNAL Enable : IN std_ulogic; CONSTANT tpd_data_q : IN VitalDelayArrayType01; CONSTANT tpd_enable_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE LastData : std_logic_vector(Data'RANGE) := (OTHERS=>'U'); VARIABLE NewValue : std_logic_vector4; VARIABLE Glitch_Data : GlitchArray4; VARIABLE new_schd : SchedArray4; VARIABLE Dly, Glch : TimeArray4; VARIABLE Enable_Schd : SchedType; VARIABLE Enable_Edge : EdgeType; VARIABLE Data_Edge : EdgeArray2; VARIABLE Data_BSchd, Data_ISchd : SchedArray2; ALIAS Atpd_data_q : VitalDelayArrayType01(Data'RANGE) IS tpd_data_q; VARIABLE AllZeroDelay : BOOLEAN := TRUE; --SN BEGIN -- ------------------------------------------------------------------------ -- Check if ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF (tpd_enable_q /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; ELSE FOR i IN Data'RANGE LOOP IF (Atpd_data_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; END IF; IF (AllZeroDelay) THEN LOOP q <= VitalDECODER4(Data, Enable, ResultMap); WAIT ON Data, Enable; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- FOR n IN Data'RANGE LOOP BufPath ( Data_BSchd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); InvPath ( Data_ISchd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); END LOOP; BufPath ( Enable_Schd, InitialEdge(Enable), tpd_enable_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- GetEdge ( Data, LastData, Data_Edge ); BufPath ( Data_BSchd, Data_Edge, Atpd_data_q ); InvPath ( Data_ISchd, Data_Edge, Atpd_data_q ); BufPath ( Enable_Schd, GetEdge(Enable), tpd_enable_q ); -- ------------------------------------ -- Compute function and propation delaq -- ------------------------------------ NewValue := VitalDECODER4 ( Data, Enable, ResultMap ); new_schd := VitalDECODER4 ( Data_BSchd, Data_ISchd, Enable_Schd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, NewValue, Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data, Enable; END LOOP; END IF; END; -- PROCEDURE VitalDECODER8 ( SIGNAL q : OUT std_logic_vector8; SIGNAL Data : IN std_logic_vector3; SIGNAL Enable : IN std_ulogic; CONSTANT tpd_data_q : IN VitalDelayArrayType01; CONSTANT tpd_enable_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE LastData : std_logic_vector(Data'RANGE) := (OTHERS=>'U'); VARIABLE NewValue : std_logic_vector8; VARIABLE Glitch_Data : GlitchArray8; VARIABLE new_schd : SchedArray8; VARIABLE Dly, Glch : TimeArray8; VARIABLE Enable_Schd : SchedType; VARIABLE Enable_Edge : EdgeType; VARIABLE Data_Edge : EdgeArray3; VARIABLE Data_BSchd, Data_ISchd : SchedArray3; ALIAS Atpd_data_q : VitalDelayArrayType01(Data'RANGE) IS tpd_data_q; VARIABLE AllZeroDelay : BOOLEAN := TRUE; --SN BEGIN -- ------------------------------------------------------------------------ -- Check if ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF (tpd_enable_q /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; ELSE FOR i IN Data'RANGE LOOP IF (Atpd_data_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; END IF; IF (AllZeroDelay) THEN LOOP q <= VitalDECODER(Data, Enable, ResultMap); WAIT ON Data, Enable; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- FOR n IN Data'RANGE LOOP BufPath ( Data_BSchd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); InvPath ( Data_ISchd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); END LOOP; BufPath ( Enable_Schd, InitialEdge(Enable), tpd_enable_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- GetEdge ( Data, LastData, Data_Edge ); BufPath ( Data_BSchd, Data_Edge, Atpd_data_q ); InvPath ( Data_ISchd, Data_Edge, Atpd_data_q ); BufPath ( Enable_Schd, GetEdge(Enable), tpd_enable_q ); -- ------------------------------------ -- Compute function and propation delaq -- ------------------------------------ NewValue := VitalDECODER8 ( Data, Enable, ResultMap ); new_schd := VitalDECODER8 ( Data_BSchd, Data_ISchd, Enable_Schd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, NewValue, Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data, Enable; END LOOP; END IF; --SN END; -- PROCEDURE VitalDECODER ( SIGNAL q : OUT std_logic_vector; SIGNAL Data : IN std_logic_vector; SIGNAL Enable : IN std_ulogic; CONSTANT tpd_data_q : IN VitalDelayArrayType01; CONSTANT tpd_enable_q : IN VitalDelayType01 := VitalDefDelay01; CONSTANT ResultMap : IN VitalResultMapType := VitalDefaultResultMap ) IS VARIABLE LastData : std_logic_vector(Data'RANGE) := (OTHERS=>'U'); VARIABLE NewValue : std_logic_vector(q'RANGE); VARIABLE Glitch_Data : GlitchDataArrayType(q'RANGE); VARIABLE new_schd : SchedArray(q'RANGE); VARIABLE Dly, Glch : VitalTimeArray(q'RANGE); VARIABLE Enable_Schd : SchedType; VARIABLE Enable_Edge : EdgeType; VARIABLE Data_Edge : EdgeArray(Data'RANGE); VARIABLE Data_BSchd, Data_ISchd : SchedArray(Data'RANGE); ALIAS Atpd_data_q : VitalDelayArrayType01(Data'RANGE) IS tpd_data_q; VARIABLE AllZeroDelay : BOOLEAN := TRUE; BEGIN -- ------------------------------------------------------------------------ -- Check if ALL zero delay paths, use simple model -- ( No delay selection, glitch detection required ) -- ------------------------------------------------------------------------ IF (tpd_enable_q /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; ELSE FOR i IN Data'RANGE LOOP IF (Atpd_data_q(i) /= VitalZeroDelay01) THEN AllZeroDelay := FALSE; EXIT; END IF; END LOOP; END IF; IF (AllZeroDelay) THEN LOOP q <= VitalDECODER(Data, Enable, ResultMap); WAIT ON Data, Enable; END LOOP; ELSE -- -------------------------------------- -- Initialize delay schedules -- -------------------------------------- FOR n IN Data'RANGE LOOP BufPath ( Data_BSchd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); InvPath ( Data_ISchd(n), InitialEdge(Data(n)), Atpd_data_q(n) ); END LOOP; BufPath ( Enable_Schd, InitialEdge(Enable), tpd_enable_q ); LOOP -- -------------------------------------- -- Process input signals -- get edge values -- re-evaluate output schedules -- -------------------------------------- GetEdge ( Data, LastData, Data_Edge ); BufPath ( Data_BSchd, Data_Edge, Atpd_data_q ); InvPath ( Data_ISchd, Data_Edge, Atpd_data_q ); BufPath ( Enable_Schd, GetEdge(Enable), tpd_enable_q ); -- ------------------------------------ -- Compute function and propation delaq -- ------------------------------------ NewValue := VitalDECODER ( Data, Enable, ResultMap ); new_schd := VitalDECODER ( Data_BSchd, Data_ISchd, Enable_Schd ); -- ------------------------------------------------------ -- Assign Outputs -- get delays to new value and possable glitch -- schedule output change with On Event glitch detection -- ------------------------------------------------------ GetSchedDelay ( Dly, Glch, NewValue, CurValue(Glitch_Data), new_schd ); VitalGlitchOnEvent ( q, "q", Glitch_Data, NewValue, Dly, PrimGlitchMode, GlitchDelay=>Glch ); WAIT ON Data, Enable; END LOOP; END IF; END; -- ------------------------------------------------------------------------ FUNCTION VitalTruthTable ( CONSTANT TruthTable : IN VitalTruthTableType; CONSTANT DataIn : IN std_logic_vector ) RETURN std_logic_vector IS CONSTANT InputSize : INTEGER := DataIn'LENGTH; CONSTANT OutSize : INTEGER := TruthTable'LENGTH(2) - InputSize; VARIABLE ReturnValue : std_logic_vector(OutSize - 1 DOWNTO 0) := (OTHERS => 'X'); VARIABLE DataInAlias : std_logic_vector(0 TO InputSize - 1) := To_X01(DataIn); VARIABLE Index : INTEGER; VARIABLE Err : BOOLEAN := FALSE; -- This needs to be done since the TableLookup arrays must be -- ascending starting with 0 VARIABLE TableAlias : VitalTruthTableType(0 TO (TruthTable'LENGTH(1)-1), 0 TO (TruthTable'LENGTH(2)-1)) := TruthTable; BEGIN -- search through each row of the truth table IF OutSize > 0 THEN ColLoop: FOR i IN TableAlias'RANGE(1) LOOP RowLoop: -- Check each input element of the entry FOR j IN 0 TO InputSize LOOP IF (j = InputSize) THEN -- This entry matches -- Return the Result Index := 0; FOR k IN TruthTable'LENGTH(2) - 1 DOWNTO InputSize LOOP TruthOutputX01Z ( TableAlias(i,k), ReturnValue(Index), Err); EXIT WHEN Err; Index := Index + 1; END LOOP; IF Err THEN ReturnValue := (OTHERS => 'X'); END IF; RETURN ReturnValue; END IF; IF NOT ValidTruthTableInput(TableAlias(i,j)) THEN VitalError ( "VitalTruthTable", ErrInpSym, To_TruthChar(TableAlias(i,j)) ); EXIT ColLoop; END IF; EXIT RowLoop WHEN NOT ( TruthTableMatch( DataInAlias(j), TableAlias(i, j))); END LOOP RowLoop; END LOOP ColLoop; ELSE VitalError ( "VitalTruthTable", ErrTabWidSml ); END IF; RETURN ReturnValue; END VitalTruthTable; FUNCTION VitalTruthTable ( CONSTANT TruthTable : IN VitalTruthTableType; CONSTANT DataIn : IN std_logic_vector ) RETURN std_logic IS CONSTANT InputSize : INTEGER := DataIn'LENGTH; CONSTANT OutSize : INTEGER := TruthTable'LENGTH(2) - InputSize; VARIABLE TempResult : std_logic_vector(OutSize - 1 DOWNTO 0) := (OTHERS => 'X'); BEGIN IF (OutSize > 0) THEN TempResult := VitalTruthTable(TruthTable, DataIn); IF ( 1 > OutSize) THEN VitalError ( "VitalTruthTable", ErrTabResSml ); ELSIF ( 1 < OutSize) THEN VitalError ( "VitalTruthTable", ErrTabResLrg ); END IF; RETURN (TempResult(0)); ELSE VitalError ( "VitalTruthTable", ErrTabWidSml ); RETURN 'X'; END IF; END VitalTruthTable; PROCEDURE VitalTruthTable ( SIGNAL Result : OUT std_logic_vector; CONSTANT TruthTable : IN VitalTruthTableType; SIGNAL DataIn : IN std_logic_vector -- IR#236 ) IS CONSTANT ResLeng : INTEGER := Result'LENGTH; CONSTANT ActResLen : INTEGER := TruthTable'LENGTH(2) - DataIn'LENGTH; CONSTANT FinalResLen : INTEGER := Minimum(ActResLen, ResLeng); VARIABLE TempResult : std_logic_vector(ActResLen - 1 DOWNTO 0) := (OTHERS => 'X'); BEGIN TempResult := VitalTruthTable(TruthTable, DataIn); IF (ResLeng > ActResLen) THEN VitalError ( "VitalTruthTable", ErrTabResSml ); ELSIF (ResLeng < ActResLen) THEN VitalError ( "VitalTruthTable", ErrTabResLrg ); END IF; TempResult(FinalResLen-1 DOWNTO 0) := TempResult(FinalResLen-1 DOWNTO 0); Result <= TempResult; END VitalTruthTable; PROCEDURE VitalTruthTable ( SIGNAL Result : OUT std_logic; CONSTANT TruthTable : IN VitalTruthTableType; SIGNAL DataIn : IN std_logic_vector -- IR#236 ) IS CONSTANT ActResLen : INTEGER := TruthTable'LENGTH(2) - DataIn'LENGTH; VARIABLE TempResult : std_logic_vector(ActResLen - 1 DOWNTO 0) := (OTHERS => 'X'); BEGIN TempResult := VitalTruthTable(TruthTable, DataIn); IF ( 1 > ActResLen) THEN VitalError ( "VitalTruthTable", ErrTabResSml ); ELSIF ( 1 < ActResLen) THEN VitalError ( "VitalTruthTable", ErrTabResLrg ); END IF; IF (ActResLen > 0) THEN Result <= TempResult(0); END IF; END VitalTruthTable; -- ------------------------------------------------------------------------ PROCEDURE VitalStateTable ( VARIABLE Result : INOUT std_logic_vector; VARIABLE PreviousDataIn : INOUT std_logic_vector; CONSTANT StateTable : IN VitalStateTableType; CONSTANT DataIn : IN std_logic_vector; CONSTANT NumStates : IN NATURAL ) IS CONSTANT InputSize : INTEGER := DataIn'LENGTH; CONSTANT OutSize : INTEGER := StateTable'LENGTH(2) - InputSize - NumStates; CONSTANT ResLeng : INTEGER := Result'LENGTH; VARIABLE DataInAlias : std_logic_vector(0 TO DataIn'LENGTH-1) := To_X01(DataIn); VARIABLE PrevDataAlias : std_logic_vector(0 TO PreviousDataIn'LENGTH-1) := To_X01(PreviousDataIn); VARIABLE ResultAlias : std_logic_vector(0 TO ResLeng-1) := To_X01(Result); VARIABLE ExpResult : std_logic_vector(0 TO OutSize-1); BEGIN IF (PreviousDataIn'LENGTH < DataIn'LENGTH) THEN VitalError ( "VitalStateTable", ErrVctLng, "PreviousDataIn<DataIn"); ResultAlias := (OTHERS => 'X'); Result := ResultAlias; ELSIF (OutSize <= 0) THEN VitalError ( "VitalStateTable", ErrTabWidSml ); ResultAlias := (OTHERS => 'X'); Result := ResultAlias; ELSE IF (ResLeng > OutSize) THEN VitalError ( "VitalStateTable", ErrTabResSml ); ELSIF (ResLeng < OutSize) THEN VitalError ( "VitalStateTable", ErrTabResLrg ); END IF; ExpResult := StateTableLookUp ( StateTable, DataInAlias, PrevDataAlias, NumStates, ResultAlias); ResultAlias := (OTHERS => 'X'); ResultAlias ( Maximum(0, ResLeng - OutSize) TO ResLeng - 1) := ExpResult(Maximum(0, OutSize - ResLeng) TO OutSize-1); Result := ResultAlias; PrevDataAlias(0 TO InputSize - 1) := DataInAlias; PreviousDataIn := PrevDataAlias; END IF; END VitalStateTable; PROCEDURE VitalStateTable ( VARIABLE Result : INOUT std_logic; -- states VARIABLE PreviousDataIn : INOUT std_logic_vector; -- previous inputs and states CONSTANT StateTable : IN VitalStateTableType; -- User's StateTable data CONSTANT DataIn : IN std_logic_vector -- Inputs ) IS VARIABLE ResultAlias : std_logic_vector(0 TO 0); BEGIN ResultAlias(0) := Result; VitalStateTable ( StateTable => StateTable, DataIn => DataIn, NumStates => 1, Result => ResultAlias, PreviousDataIn => PreviousDataIn ); Result := ResultAlias(0); END VitalStateTable; PROCEDURE VitalStateTable ( SIGNAL Result : INOUT std_logic_vector; CONSTANT StateTable : IN VitalStateTableType; SIGNAL DataIn : IN std_logic_vector; CONSTANT NumStates : IN NATURAL ) IS CONSTANT InputSize : INTEGER := DataIn'LENGTH; CONSTANT OutSize : INTEGER := StateTable'LENGTH(2) - InputSize - NumStates; CONSTANT ResLeng : INTEGER := Result'LENGTH; VARIABLE PrevData : std_logic_vector(0 TO DataIn'LENGTH-1) := (OTHERS => 'X'); VARIABLE DataInAlias : std_logic_vector(0 TO DataIn'LENGTH-1); VARIABLE ResultAlias : std_logic_vector(0 TO ResLeng-1); VARIABLE ExpResult : std_logic_vector(0 TO OutSize-1); BEGIN IF (OutSize <= 0) THEN VitalError ( "VitalStateTable", ErrTabWidSml ); ResultAlias := (OTHERS => 'X'); Result <= ResultAlias; ELSE IF (ResLeng > OutSize) THEN VitalError ( "VitalStateTable", ErrTabResSml ); ELSIF (ResLeng < OutSize) THEN VitalError ( "VitalStateTable", ErrTabResLrg ); END IF; LOOP DataInAlias := To_X01(DataIn); ResultAlias := To_X01(Result); ExpResult := StateTableLookUp ( StateTable, DataInAlias, PrevData, NumStates, ResultAlias); ResultAlias := (OTHERS => 'X'); ResultAlias(Maximum(0, ResLeng - OutSize) TO ResLeng-1) := ExpResult(Maximum(0, OutSize - ResLeng) TO OutSize-1); Result <= ResultAlias; PrevData := DataInAlias; WAIT ON DataIn; END LOOP; END IF; END VitalStateTable; PROCEDURE VitalStateTable ( SIGNAL Result : INOUT std_logic; CONSTANT StateTable : IN VitalStateTableType; SIGNAL DataIn : IN std_logic_vector ) IS CONSTANT InputSize : INTEGER := DataIn'LENGTH; CONSTANT OutSize : INTEGER := StateTable'LENGTH(2) - InputSize-1; VARIABLE PrevData : std_logic_vector(0 TO DataIn'LENGTH-1) := (OTHERS => 'X'); VARIABLE DataInAlias : std_logic_vector(0 TO DataIn'LENGTH-1); VARIABLE ResultAlias : std_logic_vector(0 TO 0); VARIABLE ExpResult : std_logic_vector(0 TO OutSize-1); BEGIN IF (OutSize <= 0) THEN VitalError ( "VitalStateTable", ErrTabWidSml ); Result <= 'X'; ELSE IF ( 1 > OutSize) THEN VitalError ( "VitalStateTable", ErrTabResSml ); ELSIF ( 1 < OutSize) THEN VitalError ( "VitalStateTable", ErrTabResLrg ); END IF; LOOP ResultAlias(0) := To_X01(Result); DataInAlias := To_X01(DataIn); ExpResult := StateTableLookUp ( StateTable, DataInAlias, PrevData, 1, ResultAlias); Result <= ExpResult(OutSize-1); PrevData := DataInAlias; WAIT ON DataIn; END LOOP; END IF; END VitalStateTable; -- ------------------------------------------------------------------------ -- std_logic resolution primitive -- ------------------------------------------------------------------------ PROCEDURE VitalResolve ( SIGNAL q : OUT std_ulogic; SIGNAL Data : IN std_logic_vector --IR236 4/2/98 ) IS VARIABLE uData : std_ulogic_vector(Data'RANGE); BEGIN FOR i IN Data'RANGE LOOP uData(i) := Data(i); END LOOP; q <= resolved(uData); END; END VITAL_Primitives;