aboutsummaryrefslogtreecommitdiffstats
path: root/package/kernel/linux/modules/virt.mk
blob: 59a2d79563dcbf0eb8ea6bb8707553de667db1be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#
# Copyright (C) 2016 Yousong Zhou <yszhou4tech@gmail.com>
#
# This is free software, licensed under the GNU General Public License v2.
# See /LICENSE for more information.
#
define KernelPackage/irqbypass
  SUBMENU:=Virtualization
  TITLE:=IRQ offload/bypass manager
  KCONFIG:=CONFIG_IRQ_BYPASS_MANAGER
  HIDDEN:=1
  FILES:= $(LINUX_DIR)/virt/lib/irqbypass.ko
  AUTOLOAD:=$(call AutoProbe,irqbypass.ko)
endef
$(eval $(call KernelPackage,irqbypass))


define KernelPackage/kvm-x86
  SUBMENU:=Virtualization
  TITLE:=Kernel-based Virtual Machine (KVM) support
  DEPENDS:=@TARGET_x86_generic||TARGET_x86_64 +kmod-irqbypass
  KCONFIG:=\
	  CONFIG_KVM \
	  CONFIG_KVM_MMU_AUDIT=n \
	  CONFIG_VIRTUALIZATION=y
  FILES:= $(LINUX_DIR)/arch/$(LINUX_KARCH)/kvm/kvm.ko
  AUTOLOAD:=$(call AutoProbe,kvm.ko)
endef

define KernelPackage/kvm-x86/description
  Support hosting fully virtualized guest machines using hardware
  virtualization extensions.  You will need a fairly recent
  processor equipped with virtualization extensions. You will also
  need to select one or more of the processor modules.

  This module provides access to the hardware capabilities through
  a character device node named /dev/kvm.
endef

$(eval $(call KernelPackage,kvm-x86))


define KernelPackage/kvm-intel
  SUBMENU:=Virtualization
  TITLE:=KVM for Intel processors support
  DEPENDS:=+kmod-kvm-x86
  KCONFIG:=CONFIG_KVM_INTEL
  FILES:= $(LINUX_DIR)/arch/$(LINUX_KARCH)/kvm/kvm-intel.ko
  AUTOLOAD:=$(call AutoProbe,kvm-intel.ko)
endef

define KernelPackage/kvm-intel/description
  Provides support for KVM on Intel processors equipped with the VT
  extensions.
endef

$(eval $(call KernelPackage,kvm-intel))


define KernelPackage/kvm-amd
  SUBMENU:=Virtualization
  TITLE:=KVM for AMD processors support
  DEPENDS:=+kmod-kvm-x86
  KCONFIG:=CONFIG_KVM_AMD
  FILES:= $(LINUX_DIR)/arch/$(LINUX_KARCH)/kvm/kvm-amd.ko
  AUTOLOAD:=$(call AutoProbe,kvm-amd.ko)
endef

define KernelPackage/kvm-amd/description
  Provides support for KVM on AMD processors equipped with the AMD-V
  (SVM) extensions.
endef

$(eval $(call KernelPackage,kvm-amd))


define KernelPackage/vfio
  SUBMENU:=Virtualization
  TITLE:=VFIO Non-Privileged userspace driver framework
  DEPENDS:=@TARGET_x86_64
  KCONFIG:= \
	CONFIG_VFIO \
	CONFIG_VFIO_NOIOMMU=n \
	CONFIG_VFIO_MDEV=n
  FILES:= \
	$(LINUX_DIR)/drivers/vfio/vfio.ko \
	$(LINUX_DIR)/drivers/vfio/vfio_virqfd.ko \
	$(LINUX_DIR)/drivers/vfio/vfio_iommu_type1.ko
  AUTOLOAD:=$(call AutoProbe,vfio vfio_iommu_type1 vfio_virqfd)
endef

define KernelPackage/vfio/description
  VFIO provides a framework for secure userspace device drivers.
endef

$(eval $(call KernelPackage,vfio))


define KernelPackage/vfio-pci
  SUBMENU:=Virtualization
  TITLE:=Generic VFIO support for any PCI device
  DEPENDS:=@TARGET_x86_64 @PCI_SUPPORT +kmod-vfio +kmod-irqbypass
  KCONFIG:= \
	CONFIG_VFIO_PCI \
	CONFIG_VFIO_PCI_IGD=y
  FILES:= \
	$(LINUX_DIR)/drivers/vfio/pci/vfio-pci-core.ko@ge5.15 \
	$(LINUX_DIR)/drivers/vfio/pci/vfio-pci.ko
  AUTOLOAD:=$(call AutoProbe,vfio-pci)
endef

define KernelPackage/vfio-pci/description
  Support for the generic PCI VFIO bus driver which can connect any PCI
  device to the VFIO framework.
endef

$(eval $(call KernelPackage,vfio-pci))
a> 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
/*
 * This file is part of the flashrom project.
 * It handles everything related to status registers of the JEDEC family 25.
 *
 * Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
 * Copyright (C) 2008 coresystems GmbH
 * Copyright (C) 2008 Ronald Hoogenboom <ronald@zonnet.nl>
 * Copyright (C) 2012 Stefan Tauner
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include "flash.h"
#include "chipdrivers.h"
#include "spi.h"

/* === Generic functions === */
static int spi_write_status_register_flag(struct flashctx *flash, int status, const unsigned char enable_opcode)
{
	int result;
	int i = 0;
	/*
	 * WRSR requires either EWSR or WREN depending on chip type.
	 * The code below relies on the fact hat EWSR and WREN have the same
	 * INSIZE and OUTSIZE.
	 */
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ enable_opcode },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_WRSR_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution\n", __func__);
		/* No point in waiting for the command to complete if execution
		 * failed.
		 */
		return result;
	}
	/* WRSR performs a self-timed erase before the changes take effect.
	 * This may take 50-85 ms in most cases, and some chips apparently
	 * allow running RDSR only once. Therefore pick an initial delay of
	 * 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed.
	 */
	programmer_delay(100 * 1000);
	while (spi_read_status_register(flash) & SPI_SR_WIP) {
		if (++i > 490) {
			msg_cerr("Error: WIP bit after WRSR never cleared\n");
			return TIMEOUT_ERROR;
		}
		programmer_delay(10 * 1000);
	}
	return 0;
}

int spi_write_status_register(struct flashctx *flash, int status)
{
	int feature_bits = flash->chip->feature_bits;
	int ret = 1;

	if (!(feature_bits & (FEATURE_WRSR_WREN | FEATURE_WRSR_EWSR))) {
		msg_cdbg("Missing status register write definition, assuming "
			 "EWSR is needed\n");
		feature_bits |= FEATURE_WRSR_EWSR;
	}
	if (feature_bits & FEATURE_WRSR_WREN)
		ret = spi_write_status_register_flag(flash, status, JEDEC_WREN);
	if (ret && (feature_bits & FEATURE_WRSR_EWSR))
		ret = spi_write_status_register_flag(flash, status, JEDEC_EWSR);
	return ret;
}

uint8_t spi_read_status_register(struct flashctx *flash)
{
	static const unsigned char cmd[JEDEC_RDSR_OUTSIZE] = { JEDEC_RDSR };
	/* FIXME: No workarounds for driver/hardware bugs in generic code. */
	unsigned char readarr[2]; /* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */
	int ret;

	/* Read Status Register */
	ret = spi_send_command(flash, sizeof(cmd), sizeof(readarr), cmd, readarr);
	if (ret) {
		msg_cerr("RDSR failed!\n");
		/* FIXME: We should propagate the error. */
		return 0;
	}

	return readarr[0];
}

static int spi_restore_status(struct flashctx *flash, uint8_t status)
{
	msg_cdbg("restoring chip status (0x%02x)\n", status);
	return spi_write_status_register(flash, status);
}

/* 'Read Any Register' used on Spansion/Cypress S25FS chips */
int s25fs_read_cr(struct flashctx *const flash, uint32_t addr)
{
	int result;
	uint8_t cfg;
	/* By default, 8 dummy cycles are necessary for variable-latency
	   commands such as RDAR (see CR2NV[3:0]). */
	unsigned char read_cr_cmd[] = {
					CMD_RDAR,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff),
					0x00, 0x00, 0x00, 0x00,
					0x00, 0x00, 0x00, 0x00,
	};

	result = spi_send_command(flash, sizeof(read_cr_cmd), 1, read_cr_cmd, &cfg);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n",
			__func__, addr);
		return -1;
	}

	return cfg;
}

/* 'Write Any Register' used on Spansion/Cypress S25FS chips */
int s25fs_write_cr(struct flashctx *const flash,
			  uint32_t addr, uint8_t data)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= CMD_WRAR_LEN,
		.writearr	= (const unsigned char[]){
					CMD_WRAR,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff),
					data
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n",
			__func__, addr);
		return -1;
	}

	programmer_delay(T_W);
	return spi_poll_wip(flash, 1000 * 10);
}

/* Used on Spansion/Cypress S25FS chips */
int s25fs_restore_cr3nv(struct flashctx *const flash, uint8_t cfg)
{
	int ret = 0;

	msg_cdbg("Restoring CR3NV value to 0x%02x\n", cfg);
	ret |= s25fs_write_cr(flash, CR3NV_ADDR, cfg);
	ret |= s25fs_software_reset(flash);
	return ret;
}

/* A generic block protection disable.
 * Tests if a protection is enabled with the block protection mask (bp_mask) and returns success otherwise.
 * Tests if the register bits are locked with the lock_mask (lock_mask).
 * Tests if a hardware protection is active (i.e. low pin/high bit value) with the write protection mask
 * (wp_mask) and bails out in that case.
 * If there are register lock bits set we try to disable them by unsetting those bits of the previous register
 * contents that are set in the lock_mask. We then check if removing the lock bits has worked and continue as if
 * they never had been engaged:
 * If the lock bits are out of the way try to disable engaged protections.
 * To support uncommon global unprotects (e.g. on most AT2[56]xx1(A)) unprotect_mask can be used to force
 * bits to 0 additionally to those set in bp_mask and lock_mask. Only bits set in unprotect_mask are potentially
 * preserved when doing the final unprotect.
 *
 * To sum up:
 * bp_mask: set those bits that correspond to the bits in the status register that indicate an active protection
 *          (which should be unset after this function returns).
 * lock_mask: set the bits that correspond to the bits that lock changing the bits above.
 * wp_mask: set the bits that correspond to bits indicating non-software revocable protections.
 * unprotect_mask: set the bits that should be preserved if possible when unprotecting.
 */
static int spi_disable_blockprotect_generic(struct flashctx *flash, uint8_t bp_mask, uint8_t lock_mask, uint8_t wp_mask, uint8_t unprotect_mask)
{
	uint8_t status;
	int result;

	status = spi_read_status_register(flash);
	if ((status & bp_mask) == 0) {
		msg_cdbg2("Block protection is disabled.\n");
		return 0;
	}

	/* restore status register content upon exit */
	register_chip_restore(spi_restore_status, flash, status);

	msg_cdbg("Some block protection in effect, disabling... ");
	if ((status & lock_mask) != 0) {
		msg_cdbg("\n\tNeed to disable the register lock first... ");
		if (wp_mask != 0 && (status & wp_mask) == 0) {
			msg_cerr("Hardware protection is active, disabling write protection is impossible.\n");
			return 1;
		}
		/* All bits except the register lock bit (often called SPRL, SRWD, WPEN) are readonly. */
		result = spi_write_status_register(flash, status & ~lock_mask);
		if (result) {
			msg_cerr("spi_write_status_register failed.\n");
			return result;
		}
		status = spi_read_status_register(flash);
		if ((status & lock_mask) != 0) {
			msg_cerr("Unsetting lock bit(s) failed.\n");
			return 1;
		}
		msg_cdbg("done.\n");
	}
	/* Global unprotect. Make sure to mask the register lock bit as well. */
	result = spi_write_status_register(flash, status & ~(bp_mask | lock_mask) & unprotect_mask);
	if (result) {
		msg_cerr("spi_write_status_register failed.\n");
		return result;
	}
	status = spi_read_status_register(flash);
	if ((status & bp_mask) != 0) {
		msg_cerr("Block protection could not be disabled!\n");
		flash->chip->printlock(flash);
		return 1;
	}
	msg_cdbg("disabled.\n");
	return 0;
}

/* A common block protection disable that tries to unset the status register bits masked by 0x3C. */
int spi_disable_blockprotect(struct flashctx *flash)
{
	return spi_disable_blockprotect_generic(flash, 0x3C, 0, 0, 0xFF);
}

int spi_disable_blockprotect_sst26_global_unprotect(struct flashctx *flash)
{
	int result = spi_write_enable(flash);
	if (result)
		return result;

	static const unsigned char cmd[] = { 0x98 }; /* ULBPR */
	result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
	if (result)
		msg_cerr("ULBPR failed\n");
	return result;
}

/* A common block protection disable that tries to unset the status register bits masked by 0x0C (BP0-1) and
 * protected/locked by bit #7. Useful when bits 4-5 may be non-0). */
int spi_disable_blockprotect_bp1_srwd(struct flashctx *flash)
{
	return spi_disable_blockprotect_generic(flash, 0x0C, 1 << 7, 0, 0xFF);
}

/* A common block protection disable that tries to unset the status register bits masked by 0x1C (BP0-2) and
 * protected/locked by bit #7. Useful when bit #5 is neither a protection bit nor reserved (and hence possibly
 * non-0). */
int spi_disable_blockprotect_bp2_srwd(struct flashctx *flash)
{
	return spi_disable_blockprotect_generic(flash, 0x1C, 1 << 7, 0, 0xFF);
}

/* A common block protection disable that tries to unset the status register bits masked by 0x3C (BP0-3) and
 * protected/locked by bit #7. */
int spi_disable_blockprotect_bp3_srwd(struct flashctx *flash)
{
	return spi_disable_blockprotect_generic(flash, 0x3C, 1 << 7, 0, 0xFF);
}

/* A common block protection disable that tries to unset the status register bits masked by 0x7C (BP0-4) and
 * protected/locked by bit #7. */
int spi_disable_blockprotect_bp4_srwd(struct flashctx *flash)
{
	return spi_disable_blockprotect_generic(flash, 0x7C, 1 << 7, 0, 0xFF);
}

static void spi_prettyprint_status_register_hex(uint8_t status)
{
	msg_cdbg("Chip status register is 0x%02x.\n", status);
}

/* Common highest bit: Status Register Write Disable (SRWD) or Status Register Protect (SRP). */
static void spi_prettyprint_status_register_srwd(uint8_t status)
{
	msg_cdbg("Chip status register: Status Register Write Disable (SRWD, SRP, ...) is %sset\n",
		 (status & (1 << 7)) ? "" : "not ");
}

/* Common highest bit: Block Protect Write Disable (BPL). */
static void spi_prettyprint_status_register_bpl(uint8_t status)
{
	msg_cdbg("Chip status register: Block Protect Write Disable (BPL) is %sset\n",
		 (status & (1 << 7)) ? "" : "not ");
}

/* Common lowest 2 bits: WEL and WIP. */
static void spi_prettyprint_status_register_welwip(uint8_t status)
{
	msg_cdbg("Chip status register: Write Enable Latch (WEL) is %sset\n",
		 (status & (1 << 1)) ? "" : "not ");
	msg_cdbg("Chip status register: Write In Progress (WIP/BUSY) is %sset\n",
		 (status & (1 << 0)) ? "" : "not ");
}

/* Common block protection (BP) bits. */
static void spi_prettyprint_status_register_bp(uint8_t status, int bp)
{
	switch (bp) {
	case 4:
		msg_cdbg("Chip status register: Block Protect 4 (BP4) is %sset\n",
			 (status & (1 << 6)) ? "" : "not ");
		/* Fall through. */
	case 3:
		msg_cdbg("Chip status register: Block Protect 3 (BP3) is %sset\n",
			 (status & (1 << 5)) ? "" : "not ");
		/* Fall through. */
	case 2:
		msg_cdbg("Chip status register: Block Protect 2 (BP2) is %sset\n",
			 (status & (1 << 4)) ? "" : "not ");
		/* Fall through. */
	case 1:
		msg_cdbg("Chip status register: Block Protect 1 (BP1) is %sset\n",
			 (status & (1 << 3)) ? "" : "not ");
		/* Fall through. */
	case 0:
		msg_cdbg("Chip status register: Block Protect 0 (BP0) is %sset\n",
			 (status & (1 << 2)) ? "" : "not ");
	}
}

/* Unnamed bits. */
void spi_prettyprint_status_register_bit(uint8_t status, int bit)
{
	msg_cdbg("Chip status register: Bit %i is %sset\n", bit, (status & (1 << bit)) ? "" : "not ");
}

int spi_prettyprint_status_register_plain(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);
	return 0;
}

/* Print the plain hex value and the welwip bits only. */
int spi_prettyprint_status_register_default_welwip(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_welwip(status);
	return 0;
}

/* Works for many chips of the
 * AMIC A25L series
 * and MX MX25L512
 */
int spi_prettyprint_status_register_bp1_srwd(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_srwd(status);
	spi_prettyprint_status_register_bit(status, 6);
	spi_prettyprint_status_register_bit(status, 5);
	spi_prettyprint_status_register_bit(status, 4);
	spi_prettyprint_status_register_bp(status, 1);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

/* Works for many chips of the
 * AMIC A25L series
 * PMC Pm25LD series
 */
int spi_prettyprint_status_register_bp2_srwd(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_srwd(status);
	spi_prettyprint_status_register_bit(status, 6);
	spi_prettyprint_status_register_bit(status, 5);
	spi_prettyprint_status_register_bp(status, 2);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

/* Works for many chips of the
 * ST M25P series
 * MX MX25L series
 */
int spi_prettyprint_status_register_bp3_srwd(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_srwd(status);
	spi_prettyprint_status_register_bit(status, 6);
	spi_prettyprint_status_register_bp(status, 3);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

int spi_prettyprint_status_register_bp4_srwd(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_srwd(status);
	spi_prettyprint_status_register_bp(status, 4);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

int spi_prettyprint_status_register_bp2_bpl(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_bpl(status);
	spi_prettyprint_status_register_bit(status, 6);
	spi_prettyprint_status_register_bit(status, 5);
	spi_prettyprint_status_register_bp(status, 2);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

int spi_prettyprint_status_register_bp2_tb_bpl(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_bpl(status);
	spi_prettyprint_status_register_bit(status, 6);
	msg_cdbg("Chip status register: Top/Bottom (TB) is %s\n", (status & (1 << 5)) ? "bottom" : "top");
	spi_prettyprint_status_register_bp(status, 2);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

/* === Amic ===
 * FIXME: spi_disable_blockprotect is incorrect but works fine for chips using
 * spi_prettyprint_status_register_bp1_srwd or
 * spi_prettyprint_status_register_bp2_srwd.
 * FIXME: spi_disable_blockprotect is incorrect and will fail for chips using
 * spi_prettyprint_status_register_amic_a25l032 if those have locks controlled
 * by the second status register.
 */

int spi_prettyprint_status_register_amic_a25l032(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_srwd(status);
	msg_cdbg("Chip status register: Sector Protect Size (SEC) is %i KB\n", (status & (1 << 6)) ? 4 : 64);
	msg_cdbg("Chip status register: Top/Bottom (TB) is %s\n", (status & (1 << 5)) ? "bottom" : "top");
	spi_prettyprint_status_register_bp(status, 2);
	spi_prettyprint_status_register_welwip(status);
	msg_cdbg("Chip status register 2 is NOT decoded!\n");
	return 0;
}

/* === Atmel === */

static void spi_prettyprint_status_register_atmel_at25_wpen(uint8_t status)
{
	msg_cdbg("Chip status register: Write Protect Enable (WPEN) is %sset\n",
		 (status & (1 << 7)) ? "" : "not ");
}

static void spi_prettyprint_status_register_atmel_at25_srpl(uint8_t status)
{
	msg_cdbg("Chip status register: Sector Protection Register Lock (SRPL) is %sset\n",
		 (status & (1 << 7)) ? "" : "not ");
}

static void spi_prettyprint_status_register_atmel_at25_epewpp(uint8_t status)
{
	msg_cdbg("Chip status register: Erase/Program Error (EPE) is %sset\n",
		 (status & (1 << 5)) ? "" : "not ");
	msg_cdbg("Chip status register: WP# pin (WPP) is %sasserted\n",
		 (status & (1 << 4)) ? "not " : "");
}

static void spi_prettyprint_status_register_atmel_at25_swp(uint8_t status)
{
	msg_cdbg("Chip status register: Software Protection Status (SWP): ");
	switch (status & (3 << 2)) {
	case 0x0 << 2:
		msg_cdbg("no sectors are protected\n");
		break;
	case 0x1 << 2:
		msg_cdbg("some sectors are protected\n");
		/* FIXME: Read individual Sector Protection Registers. */
		break;
	case 0x3 << 2:
		msg_cdbg("all sectors are protected\n");
		break;
	default:
		msg_cdbg("reserved for future use\n");
		break;
	}
}

int spi_prettyprint_status_register_at25df(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_atmel_at25_srpl(status);
	spi_prettyprint_status_register_bit(status, 6);
	spi_prettyprint_status_register_atmel_at25_epewpp(status);
	spi_prettyprint_status_register_atmel_at25_swp(status);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

int spi_prettyprint_status_register_at25df_sec(struct flashctx *flash)
{
	/* FIXME: We should check the security lockdown. */
	msg_cdbg("Ignoring security lockdown (if present)\n");
	msg_cdbg("Ignoring status register byte 2\n");
	return spi_prettyprint_status_register_at25df(flash);
}

/* used for AT25F512, AT25F1024(A), AT25F2048 */
int spi_prettyprint_status_register_at25f(struct flashctx *flash)
{
	uint8_t status;

	status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_atmel_at25_wpen(status);
	spi_prettyprint_status_register_bit(status, 6);
	spi_prettyprint_status_register_bit(status, 5);
	spi_prettyprint_status_register_bit(status, 4);
	spi_prettyprint_status_register_bp(status, 1);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

int spi_prettyprint_status_register_at25f512a(struct flashctx *flash)
{
	uint8_t status;

	status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_atmel_at25_wpen(status);
	spi_prettyprint_status_register_bit(status, 6);
	spi_prettyprint_status_register_bit(status, 5);
	spi_prettyprint_status_register_bit(status, 4);
	spi_prettyprint_status_register_bit(status, 3);
	spi_prettyprint_status_register_bp(status, 0);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

int spi_prettyprint_status_register_at25f512b(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_atmel_at25_srpl(status);
	spi_prettyprint_status_register_bit(status, 6);
	spi_prettyprint_status_register_atmel_at25_epewpp(status);
	spi_prettyprint_status_register_bit(status, 3);
	spi_prettyprint_status_register_bp(status, 0);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

int spi_prettyprint_status_register_at25f4096(struct flashctx *flash)
{
	uint8_t status;

	status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_atmel_at25_wpen(status);
	spi_prettyprint_status_register_bit(status, 6);
	spi_prettyprint_status_register_bit(status, 5);
	spi_prettyprint_status_register_bp(status, 2);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

int spi_prettyprint_status_register_at25fs010(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_atmel_at25_wpen(status);
	msg_cdbg("Chip status register: Bit 6 / Block Protect 4 (BP4) is "
		 "%sset\n", (status & (1 << 6)) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 5 / Block Protect 3 (BP3) is "
		 "%sset\n", (status & (1 << 5)) ? "" : "not ");
	spi_prettyprint_status_register_bit(status, 4);
	msg_cdbg("Chip status register: Bit 3 / Block Protect 1 (BP1) is "
		 "%sset\n", (status & (1 << 3)) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 2 / Block Protect 0 (BP0) is "
		 "%sset\n", (status & (1 << 2)) ? "" : "not ");
	/* FIXME: Pretty-print detailed sector protection status. */
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

int spi_prettyprint_status_register_at25fs040(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_atmel_at25_wpen(status);
	spi_prettyprint_status_register_bp(status, 4);
	/* FIXME: Pretty-print detailed sector protection status. */
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

int spi_prettyprint_status_register_at26df081a(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_atmel_at25_srpl(status);
	msg_cdbg("Chip status register: Sequential Program Mode Status (SPM) is %sset\n",
		 (status & (1 << 6)) ? "" : "not ");
	spi_prettyprint_status_register_atmel_at25_epewpp(status);
	spi_prettyprint_status_register_atmel_at25_swp(status);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

/* Some Atmel DataFlash chips support per sector protection bits and the write protection bits in the status
 * register do indicate if none, some or all sectors are protected. It is possible to globally (un)lock all
 * sectors at once by writing 0 not only the protection bits (2 and 3) but also completely unrelated bits (4 and
 * 5) which normally are not touched.
 * Affected are all known Atmel chips matched by AT2[56]D[FLQ]..1A? but the AT26DF041. */
int spi_disable_blockprotect_at2x_global_unprotect(struct flashctx *flash)
{
	return spi_disable_blockprotect_generic(flash, 0x0C, 1 << 7, 1 << 4, 0x00);
}

int spi_disable_blockprotect_at2x_global_unprotect_sec(struct flashctx *flash)
{
	/* FIXME: We should check the security lockdown. */
	msg_cinfo("Ignoring security lockdown (if present)\n");
	return spi_disable_blockprotect_at2x_global_unprotect(flash);
}

int spi_disable_blockprotect_at25f(struct flashctx *flash)
{
	return spi_disable_blockprotect_generic(flash, 0x0C, 1 << 7, 0, 0xFF);
}

int spi_disable_blockprotect_at25f512a(struct flashctx *flash)
{
	return spi_disable_blockprotect_generic(flash, 0x04, 1 << 7, 0, 0xFF);
}

int spi_disable_blockprotect_at25f512b(struct flashctx *flash)
{
	return spi_disable_blockprotect_generic(flash, 0x04, 1 << 7, 1 << 4, 0xFF);
}

int spi_disable_blockprotect_at25fs010(struct flashctx *flash)
{
	return spi_disable_blockprotect_generic(flash, 0x6C, 1 << 7, 0, 0xFF);
 }

int spi_disable_blockprotect_at25fs040(struct flashctx *flash)
{
	return spi_disable_blockprotect_generic(flash, 0x7C, 1 << 7, 0, 0xFF);
}

/* === Eon === */

int spi_prettyprint_status_register_en25s_wp(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_srwd(status);
	msg_cdbg("Chip status register: WP# disable (WPDIS) is %sabled\n", (status & (1 << 6)) ? "en " : "dis");
	spi_prettyprint_status_register_bp(status, 3);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

/* === Intel/Numonyx/Micron - Spansion === */

int spi_disable_blockprotect_n25q(struct flashctx *flash)
{
	return spi_disable_blockprotect_generic(flash, 0x5C, 1 << 7, 0, 0xFF);
}

int spi_prettyprint_status_register_n25q(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_srwd(status);
	if (flash->chip->total_size <= 32 / 8 * 1024) /* N25Q16 and N25Q32: reserved */
		spi_prettyprint_status_register_bit(status, 6);
	else
		msg_cdbg("Chip status register: Block Protect 3 (BP3) is %sset\n",
			 (status & (1 << 6)) ? "" : "not ");
	msg_cdbg("Chip status register: Top/Bottom (TB) is %s\n", (status & (1 << 5)) ? "bottom" : "top");
	spi_prettyprint_status_register_bp(status, 2);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

/* Used by Intel/Numonyx S33 and Spansion S25FL-S chips */
/* TODO: Clear P_FAIL and E_FAIL with Clear SR Fail Flags Command (30h) here? */
int spi_disable_blockprotect_bp2_ep_srwd(struct flashctx *flash)
{
	return spi_disable_blockprotect_bp2_srwd(flash);
}

/* Used by Intel/Numonyx S33 and Spansion S25FL-S chips */
int spi_prettyprint_status_register_bp2_ep_srwd(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_srwd(status);
	msg_cdbg("Chip status register: Program Fail Flag (P_FAIL) is %sset\n",
		 (status & (1 << 6)) ? "" : "not ");
	msg_cdbg("Chip status register: Erase Fail Flag (E_FAIL) is %sset\n",
		 (status & (1 << 5)) ? "" : "not ");
	spi_prettyprint_status_register_bp(status, 2);
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

/* === SST === */

static void spi_prettyprint_status_register_sst25_common(uint8_t status)
{
	spi_prettyprint_status_register_hex(status);

	spi_prettyprint_status_register_bpl(status);
	msg_cdbg("Chip status register: Auto Address Increment Programming (AAI) is %sset\n",
		 (status & (1 << 6)) ? "" : "not ");
	spi_prettyprint_status_register_bp(status, 3);
	spi_prettyprint_status_register_welwip(status);
}

int spi_prettyprint_status_register_sst25(struct flashctx *flash)
{
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_sst25_common(status);
	return 0;
}

int spi_prettyprint_status_register_sst25vf016(struct flashctx *flash)
{
	static const char *const bpt[] = {
		"none",
		"1F0000H-1FFFFFH",
		"1E0000H-1FFFFFH",
		"1C0000H-1FFFFFH",
		"180000H-1FFFFFH",
		"100000H-1FFFFFH",
		"all", "all"
	};
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_sst25_common(status);
	msg_cdbg("Resulting block protection : %s\n", bpt[(status & 0x1c) >> 2]);
	return 0;
}

int spi_prettyprint_status_register_sst25vf040b(struct flashctx *flash)
{
	static const char *const bpt[] = {
		"none",
		"0x70000-0x7ffff",
		"0x60000-0x7ffff",
		"0x40000-0x7ffff",
		"all blocks", "all blocks", "all blocks", "all blocks"
	};
	uint8_t status = spi_read_status_register(flash);
	spi_prettyprint_status_register_sst25_common(status);
	msg_cdbg("Resulting block protection : %s\n", bpt[(status & 0x1c) >> 2]);
	return 0;
}