aboutsummaryrefslogtreecommitdiffstats
path: root/package/kernel/linux/modules/input.mk
blob: 2320b051f9f366c6307062561636f26a247e6480 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#
# Copyright (C) 2006-2013 OpenWrt.org
#
# This is free software, licensed under the GNU General Public License v2.
# See /LICENSE for more information.
#

INPUT_MODULES_MENU:=Input modules

define KernelPackage/hid
  SUBMENU:=$(INPUT_MODULES_MENU)
  TITLE:=HID Devices
  KCONFIG:=CONFIG_HID CONFIG_HIDRAW=y
  FILES:=$(LINUX_DIR)/drivers/hid/hid.ko
  AUTOLOAD:=$(call AutoLoad,61,hid)
  $(call AddDepends/input,+kmod-input-evdev)
endef

define KernelPackage/hid/description
 Kernel modules for HID devices
endef

$(eval $(call KernelPackage,hid))

define KernelPackage/hid-generic
  SUBMENU:=$(INPUT_MODULES_MENU)
  TITLE:=Generic HID device support
  KCONFIG:=CONFIG_HID_GENERIC
  FILES:=$(LINUX_DIR)/drivers/hid/hid-generic.ko
  AUTOLOAD:=$(call AutoProbe,hid-generic)
  $(call AddDepends/hid)
endef

define KernelPackage/hid/description
 Kernel modules for generic HID device (e.g. keyboards and mice) support
endef

$(eval $(call KernelPackage,hid-generic))

define KernelPackage/input-core
  SUBMENU:=$(INPUT_MODULES_MENU)
  TITLE:=Input device core
  KCONFIG:=CONFIG_INPUT
  FILES:=$(LINUX_DIR)/drivers/input/input-core.ko
endef

define KernelPackage/input-core/description
 Kernel modules for support of input device
endef

$(eval $(call KernelPackage,input-core))


define KernelPackage/input-evdev
  SUBMENU:=$(INPUT_MODULES_MENU)
  TITLE:=Input event device
  KCONFIG:=CONFIG_INPUT_EVDEV
  FILES:=$(LINUX_DIR)/drivers/input/evdev.ko
  AUTOLOAD:=$(call AutoLoad,60,evdev)
  $(call AddDepends/input)
endef

define KernelPackage/input-evdev/description
 Kernel modules for support of input device events
endef

$(eval $(call KernelPackage,input-evdev))


define KernelPackage/input-gpio-keys
  SUBMENU:=$(INPUT_MODULES_MENU)
  TITLE:=GPIO key support
  DEPENDS:= @GPIO_SUPPORT
  KCONFIG:= \
	CONFIG_KEYBOARD_GPIO \
	CONFIG_INPUT_KEYBOARD=y
  FILES:=$(LINUX_DIR)/drivers/input/keyboard/gpio_keys.ko
  AUTOLOAD:=$(call AutoProbe,gpio_keys)
  $(call AddDepends/input)
endef

define KernelPackage/input-gpio-keys/description
 This driver implements support for buttons connected
 to GPIO pins of various CPUs (and some other chips).

 See also gpio-button-hotplug which is an alternative, lower overhead
 implementation that generates uevents instead of kernel input events.
endef

$(eval $(call KernelPackage,input-gpio-keys))


define KernelPackage/input-gpio-keys-polled
  SUBMENU:=$(INPUT_MODULES_MENU)
  TITLE:=Polled GPIO key support
  DEPENDS:=@GPIO_SUPPORT +kmod-input-polldev
  KCONFIG:= \
	CONFIG_KEYBOARD_GPIO_POLLED \
	CONFIG_INPUT_KEYBOARD=y
  FILES:=$(LINUX_DIR)/drivers/input/keyboard/gpio_keys_polled.ko
  AUTOLOAD:=$(call AutoProbe,gpio_keys_polled,1)
  $(call AddDepends/input)
endef

define KernelPackage/input-gpio-keys-polled/description
 Kernel module for support polled GPIO keys input device

 See also gpio-button-hotplug which is an alternative, lower overhead
 implementation that generates uevents instead of kernel input events.
endef

$(eval $(call KernelPackage,input-gpio-keys-polled))


define KernelPackage/input-gpio-encoder
  SUBMENU:=$(INPUT_MODULES_MENU)
  TITLE:=GPIO rotay encoder
  KCONFIG:=CONFIG_INPUT_GPIO_ROTARY_ENCODER
  FILES:=$(LINUX_DIR)/drivers/input/misc/rotary_encoder.ko
  AUTOLOAD:=$(call AutoProbe,rotary_encoder)
  $(call AddDepends/input,@GPIO_SUPPORT)
endef

define KernelPackage/gpio-encoder/description
 Kernel module to use rotary encoders connected to GPIO pins
endef

$(eval $(call KernelPackage,input-gpio-encoder))


define KernelPackage/input-joydev
  SUBMENU:=$(INPUT_MODULES_MENU)
  TITLE:=Joystick device support
  KCONFIG:=CONFIG_INPUT_JOYDEV
  FILES:=$(LINUX_DIR)/drivers/input/joydev.ko
  AUTOLOAD:=$(call AutoProbe,joydev)
  $(call AddDepends/input)
endef

define KernelPackage/input-joydev/description
 Kernel module for joystick support
endef

$(eval $(call KernelPackage,input-joydev))


define KernelPackage/input-polldev
  SUBMENU:=$(INPUT_MODULES_MENU)
  TITLE:=Polled Input device support
  KCONFIG:=CONFIG_INPUT_POLLDEV
  FILES:=$(LINUX_DIR)/drivers/input/input-polldev.ko
  $(call AddDepends/input)
endef

define KernelPackage/input-polldev/description
 Kernel module for support of polled input devices
endef

$(eval $(call KernelPackage,input-polldev))


define KernelPackage/input-matrixkmap
  SUBMENU:=$(INPUT_MODULES_MENU)
  TITLE:=Input matrix devices support
  KCONFIG:=CONFIG_INPUT_MATRIXKMAP
  FILES:=$(LINUX_DIR)/drivers/input/matrix-keymap.ko
  AUTOLOAD:=$(call AutoProbe,matrix-keymap)
  $(call AddDepends/input)
endef

define KernelPackage/input-matrix/description
 Kernel module support for input matrix devices
endef

$(eval $(call KernelPackage,input-matrixkmap))


define KernelPackage/acpi-button
  SUBMENU:=$(INPUT_MODULES_MENU)
  TITLE:=ACPI Button Support
  DEPENDS:=@(TARGET_x86_generic||TARGET_x86_kvm_guest||TARGET_x86_xen_domu) +kmod-input-evdev
  KCONFIG:=CONFIG_ACPI_BUTTON
  FILES:=$(LINUX_DIR)/drivers/acpi/button.ko
  AUTOLOAD:=$(call AutoLoad,06,button)
endef

define KernelPackage/acpi-button/description
 Kernel module for ACPI Button support
endef

$(eval $(call KernelPackage,acpi-button))


define KernelPackage/keyboard-imx
  SUBMENU:=$(INPUT_MODULES_MENU)
  TITLE:=IMX keypad support
  DEPENDS:=@(TARGET_mxs||TARGET_imx6) +kmod-input-matrixkmap
  KCONFIG:= \
	CONFIG_KEYBOARD_IMX \
	CONFIG_INPUT_KEYBOARD=y
  FILES:=$(LINUX_DIR)/drivers/input/keyboard/imx_keypad.ko
  AUTOLOAD:=$(call AutoProbe,imx_keypad)
endef

define KernelPackage/keyboard-imx/description
 Enable support for IMX keypad port.
endef

$(eval $(call KernelPackage,keyboard-imx))
'b0)); else FDRE_1 #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0)); end else if (DEPTH <= 16) begin SRL16E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(L[0]), .A1(L[1]), .A2(L[2]), .A3(L[3]), .CE(CE), .CLK(C), .D(D), .Q(Q)); end else if (DEPTH > 17 && DEPTH <= 32) begin SRLC32E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(Q)); end else if (DEPTH > 33 && DEPTH <= 64) begin wire T0, T1, T2; SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1)); \$__XILINX_SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-32-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L), .E(E), .Q(T2)); if (&_TECHMAP_CONSTMSK_L_) assign Q = T2; else MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(L[5])); end else if (DEPTH > 65 && DEPTH <= 96) begin wire T0, T1, T2, T3, T4, T5, T6; SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1)); SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3)); \$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4)); if (&_TECHMAP_CONSTMSK_L_) assign Q = T4; else \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(1'bx), .S0(L[5]), .S1(L[6]), .O(Q)); end else if (DEPTH > 97 && DEPTH < 128) begin wire T0, T1, T2, T3, T4, T5, T6, T7, T8; SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1)); SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3)); SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5)); \$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6)); if (&_TECHMAP_CONSTMSK_L_) assign Q = T6; else \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q)); end else if (DEPTH == 128) begin wire T0, T1, T2, T3, T4, T5, T6; SRLC32E #(.INIT(INIT_R[ 32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1)); SRLC32E #(.INIT(INIT_R[ 64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3)); SRLC32E #(.INIT(INIT_R[ 96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5)); SRLC32E #(.INIT(INIT_R[128-1:96]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_3 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T5), .Q(T6), .Q31(SO)); if (&_TECHMAP_CONSTMSK_L_) assign Q = T6; else \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q)); end // For fixed length, if just 1 over a convenient value, decompose else if (DEPTH <= 129 && &_TECHMAP_CONSTMSK_L_) begin wire T; \$__XILINX_SHREG_ #(.DEPTH(DEPTH-1), .INIT(INIT[DEPTH-1:1]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl (.C(C), .D(D), .L({32{1'b1}}), .E(E), .Q(T)); \$__XILINX_SHREG_ #(.DEPTH(1), .INIT(INIT[0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_last (.C(C), .D(T), .L(L), .E(E), .Q(Q)); end // For variable length, if just 1 over a convenient value, then bump up one more else if (DEPTH < 129 && ~&_TECHMAP_CONSTMSK_L_) \$__XILINX_SHREG_ #(.DEPTH(DEPTH+1), .INIT({INIT,1'b0}), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q)); else begin localparam depth0 = 128; localparam num_srl128 = DEPTH / depth0; localparam depthN = DEPTH % depth0; wire [num_srl128 + (depthN > 0 ? 1 : 0) - 1:0] T; wire [num_srl128 + (depthN > 0 ? 1 : 0) :0] S; assign S[0] = D; genvar i; for (i = 0; i < num_srl128; i++) \$__XILINX_SHREG_ #(.DEPTH(depth0), .INIT(INIT[DEPTH-1-i*depth0-:depth0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl (.C(C), .D(S[i]), .L(L[$clog2(depth0)-1:0]), .E(E), .Q(T[i]), .SO(S[i+1])); if (depthN > 0) \$__XILINX_SHREG_ #(.DEPTH(depthN), .INIT(INIT[depthN-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_last (.C(C), .D(S[num_srl128]), .L(L[$clog2(depth0)-1:0]), .E(E), .Q(T[num_srl128])); if (&_TECHMAP_CONSTMSK_L_) assign Q = T[num_srl128 + (depthN > 0 ? 1 : 0) - 1]; else assign Q = T[L[DEPTH-1:$clog2(depth0)]]; end endgenerate endmodule `ifdef MIN_MUX_INPUTS module \$__XILINX_SHIFTX (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; (* force_downto *) input [A_WIDTH-1:0] A; (* force_downto *) input [B_WIDTH-1:0] B; (* force_downto *) output [Y_WIDTH-1:0] Y; parameter [A_WIDTH-1:0] _TECHMAP_CONSTMSK_A_ = 0; parameter [A_WIDTH-1:0] _TECHMAP_CONSTVAL_A_ = 0; parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0; parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0; function integer A_WIDTH_trimmed; input integer start; begin A_WIDTH_trimmed = start; while (A_WIDTH_trimmed > 0 && _TECHMAP_CONSTMSK_A_[A_WIDTH_trimmed-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH_trimmed-1] === 1'bx) A_WIDTH_trimmed = A_WIDTH_trimmed - 1; end endfunction generate genvar i, j; // Bit-blast if (Y_WIDTH > 1) begin for (i = 0; i < Y_WIDTH; i++) \$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH-Y_WIDTH+1), .B_WIDTH(B_WIDTH), .Y_WIDTH(1'd1)) bitblast (.A(A[A_WIDTH-Y_WIDTH+i:i]), .B(B), .Y(Y[i])); end // If the LSB of B is constant zero (and Y_WIDTH is 1) then // we can optimise by removing every other entry from A // and popping the constant zero from B else if (_TECHMAP_CONSTMSK_B_[0] && !_TECHMAP_CONSTVAL_B_[0]) begin wire [(A_WIDTH+1)/2-1:0] A_i; for (i = 0; i < (A_WIDTH+1)/2; i++) assign A_i[i] = A[i*2]; \$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH((A_WIDTH+1'd1)/2'd2), .B_WIDTH(B_WIDTH-1'd1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_i), .B(B[B_WIDTH-1:1]), .Y(Y)); end // Trim off any leading 1'bx -es in A else if (_TECHMAP_CONSTMSK_A_[A_WIDTH-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH-1] === 1'bx) begin localparam A_WIDTH_new = A_WIDTH_trimmed(A_WIDTH-1); \$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH_new), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A[A_WIDTH_new-1:0]), .B(B), .Y(Y)); end else if (A_WIDTH < `MIN_MUX_INPUTS) begin wire _TECHMAP_FAIL_ = 1; end else if (A_WIDTH == 2) begin MUXF7 fpga_hard_mux (.I0(A[0]), .I1(A[1]), .S(B[0]), .O(Y)); end else if (A_WIDTH <= 4) begin wire [4-1:0] Ax; if (A_WIDTH == 4) assign Ax = A; else // Rather than extend with 1'bx which gets flattened to 1'b0 // causing the "don't care" status to get lost, extend with // the same driver of F7B.I0 so that we can optimise F7B away // later assign Ax = {A[1], A}; \$__XILINX_MUXF78 fpga_hard_mux (.I0(Ax[0]), .I1(Ax[2]), .I2(Ax[1]), .I3(Ax[3]), .S0(B[1]), .S1(B[0]), .O(Y)); end // Note that the following decompositions are 'backwards' in that // the LSBs are placed on the hard resources, and the soft resources // are used for MSBs. // This has the effect of more effectively utilising the hard mux; // take for example a 5:1 multiplexer, currently this would map as: // // A[0] \___ __ A[0] \__ __ // A[4] / \| \ whereas the more A[1] / \| \ // A[1] _____| | obvious mapping A[2] \___| | // A[2] _____| |-- of MSBs to hard A[3] / | |__ // A[3]______| | resources would A[4] ____| | // |__/ lead to: 1'bx ____| | // || |__/ // || || // B[1:0] B[1:2] // // Expectation would be that the 'forward' mapping (right) is more // area efficient (consider a 9:1 multiplexer using 2x4:1 multiplexers // on its I0 and I1 inputs, and A[8] and 1'bx on its I2 and I3 inputs) // but that the 'backwards' mapping (left) is more delay efficient // since smaller LUTs are faster than wider ones. else if (A_WIDTH <= 8) begin wire [8-1:0] Ax = {{{8-A_WIDTH}{1'bx}}, A}; wire T0 = B[2] ? Ax[4] : Ax[0]; wire T1 = B[2] ? Ax[5] : Ax[1]; wire T2 = B[2] ? Ax[6] : Ax[2]; wire T3 = B[2] ? Ax[7] : Ax[3]; \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y)); end else if (A_WIDTH <= 16) begin wire [16-1:0] Ax = {{{16-A_WIDTH}{1'bx}}, A}; wire T0 = B[2] ? B[3] ? Ax[12] : Ax[4] : B[3] ? Ax[ 8] : Ax[0]; wire T1 = B[2] ? B[3] ? Ax[13] : Ax[5] : B[3] ? Ax[ 9] : Ax[1]; wire T2 = B[2] ? B[3] ? Ax[14] : Ax[6] : B[3] ? Ax[10] : Ax[2]; wire T3 = B[2] ? B[3] ? Ax[15] : Ax[7] : B[3] ? Ax[11] : Ax[3]; \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y)); end else begin localparam num_mux16 = (A_WIDTH+15) / 16; localparam clog2_num_mux16 = $clog2(num_mux16); wire [num_mux16-1:0] T; wire [num_mux16*16-1:0] Ax = {{(num_mux16*16-A_WIDTH){1'bx}}, A}; for (i = 0; i < num_mux16; i++) \$__XILINX_SHIFTX #( .A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(16), .B_WIDTH(4), .Y_WIDTH(Y_WIDTH) ) fpga_mux ( .A(Ax[i*16+:16]), .B(B[3:0]), .Y(T[i]) ); \$__XILINX_SHIFTX #( .A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(num_mux16), .B_WIDTH(clog2_num_mux16), .Y_WIDTH(Y_WIDTH) ) _TECHMAP_REPLACE_ ( .A(T), .B(B[B_WIDTH-1-:clog2_num_mux16]), .Y(Y)); end endgenerate endmodule (* techmap_celltype = "$__XILINX_SHIFTX" *) module _90__XILINX_SHIFTX (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; (* force_downto *) input [A_WIDTH-1:0] A; (* force_downto *) input [B_WIDTH-1:0] B; (* force_downto *) output [Y_WIDTH-1:0] Y; \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A), .B(B), .Y(Y)); endmodule module \$_MUX_ (A, B, S, Y); input A, B, S; output Y; generate if (`MIN_MUX_INPUTS == 2) \$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(2), .B_WIDTH(1), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({B,A}), .B(S), .Y(Y)); else wire _TECHMAP_FAIL_ = 1; endgenerate endmodule module \$_MUX4_ (A, B, C, D, S, T, Y); input A, B, C, D, S, T; output Y; \$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(4), .B_WIDTH(2), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({D,C,B,A}), .B({T,S}), .Y(Y)); endmodule module \$_MUX8_ (A, B, C, D, E, F, G, H, S, T, U, Y); input A, B, C, D, E, F, G, H, S, T, U; output Y; \$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(8), .B_WIDTH(3), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({H,G,F,E,D,C,B,A}), .B({U,T,S}), .Y(Y)); endmodule module \$_MUX16_ (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V, Y); input A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V; output Y; \$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(16), .B_WIDTH(4), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A}), .B({V,U,T,S}), .Y(Y)); endmodule `endif module \$__XILINX_MUXF78 (O, I0, I1, I2, I3, S0, S1); output O; input I0, I1, I2, I3, S0, S1; wire T0, T1; parameter _TECHMAP_BITS_CONNMAP_ = 0; parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I0_ = 0; parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I1_ = 0; parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I2_ = 0; parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I3_ = 0; parameter _TECHMAP_CONSTMSK_S0_ = 0; parameter _TECHMAP_CONSTVAL_S0_ = 0; parameter _TECHMAP_CONSTMSK_S1_ = 0; parameter _TECHMAP_CONSTVAL_S1_ = 0; if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1) assign T0 = I1; else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_) assign T0 = I0; else MUXF7 mux7a (.I0(I0), .I1(I1), .S(S0), .O(T0)); if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1) assign T1 = I3; else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_) assign T1 = I2; else MUXF7 mux7b (.I0(I2), .I1(I3), .S(S0), .O(T1)); if (_TECHMAP_CONSTMSK_S1_ && _TECHMAP_CONSTVAL_S1_ === 1'b1) assign O = T1; else if (_TECHMAP_CONSTMSK_S1_ || (_TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_ && _TECHMAP_CONNMAP_I1_ === _TECHMAP_CONNMAP_I2_ && _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_)) assign O = T0; else MUXF8 mux8 (.I0(T0), .I1(T1), .S(S1), .O(O)); endmodule