aboutsummaryrefslogtreecommitdiffstats
path: root/package/kernel/lantiq/vrx518_ep/src/test/ep_test.c
blob: ab6139b73eee9ae32421c6a7127121819a717075 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
/*******************************************************************************

  Intel SmartPHY DSL PCIe Endpoint/ACA Linux Test driver
  Copyright(c) 2016 Intel Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

*******************************************************************************/

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/delay.h>

#include <net/dc_ep.h>

#include "ep_test.h"

#define DRV_VERSION "1.0.0"
static const char ep_test_driver_version[] = DRV_VERSION;
static struct dc_ep_dev pcie_dev[DC_EP_MAX_PEER + 1];
static int ppe_irq_num;

#define ep_wr32(value, reg)	(writel(value, dev->membase + reg))
#define ep_rd32(reg)		(readl(dev->membase + reg))

#define ep_wr32_mask(clr, set, reg)		\
	ep_wr32(((ep_rd32(reg) & ~(clr)) | (set)), (reg))

struct aca_hd_desc {
	void *base;
	dma_addr_t phy_base;
	size_t size;/* in bytes */
};

struct aca_hd_desc_cfg {
	struct aca_hd_desc txin;
	struct aca_hd_desc txout;
	struct aca_hd_desc rxout;
};

static struct aca_hd_desc_cfg aca_soc_hd_desc[DC_EP_MAX_PEER + 1];

static void ep_mem_write(u8 __iomem *dst, const void *src, size_t len)
{
	int i;
	const u32 *src_addr = src;

	if (len % 4)
		pr_info("Warning!!: Copy len is not multiple of 4\n");

	len = len >> 2;

	for (i = 0; i < len; i++)
		writel(src_addr[i], (dst + (i << 2)));
}

static irqreturn_t dc_ep_ppe_intr(int irq, void *dev_id)
{
	struct dc_ep_dev *dev = dev_id;

	ppe_irq_num++;
	if (ep_rd32(MBOX_IGU0_ISR) == 0) {
		pr_err("Fatal error, dummy interrupt\n");
		return IRQ_NONE;
	}

	ep_wr32(PPE_MBOX_TEST_BIT, MBOX_IGU0_ISRC);
	ep_rd32(MBOX_IGU0_ISR);
	return IRQ_HANDLED;
}

static void dc_ep_ppe_mbox_reg_dump(struct dc_ep_dev *dev)
{
	pr_info("MBOX_IGU0_ISRS addr %p data 0x%08x\n",
		dev->membase + MBOX_IGU0_ISRS,
		ep_rd32(MBOX_IGU0_ISRS));
	pr_info("MBOX_IGU0_ISRC addr %p data 0x%08x\n",
		dev->membase + MBOX_IGU0_ISRC,
		ep_rd32(MBOX_IGU0_ISRC));
	pr_info("MBOX_IGU0_ISR  addr %p data 0x%08x\n",
		dev->membase + MBOX_IGU0_ISR,
		ep_rd32(MBOX_IGU0_ISR));
	pr_info("MBOX_IGU0_IER  addr %p data 0x%08x\n",
		dev->membase + MBOX_IGU0_IER,
		ep_rd32(MBOX_IGU0_IER));
}

#define PPE_INT_TIMEOUT		10
static int dc_ep_ppe_mbox_int_stress_test(struct dc_ep_dev *dev)
{
	int i;
	int j;
	int ret;

	/* Clear it first */
	ep_wr32(PPE_MBOX_TEST_BIT, MBOX_IGU0_ISRC);

	ret = request_irq(dev->irq, dc_ep_ppe_intr, 0, "PPE_MSI", dev);
	if (ret) {
		pr_err("%s request irq %d failed\n", __func__, dev->irq);
		return -1;
	}
	pr_info("PPE test\n");
	ep_wr32(PPE_MBOX_TEST_BIT, MBOX_IGU0_IER);
	ppe_irq_num = 0;
	/* Purposely trigger interrupt */
	for (i = 0; i < PPE_MBOX_IRQ_TEST_NUM; i++) {
		j = 0;
		while ((ep_rd32(MBOX_IGU0_ISR) & PPE_MBOX_TEST_BIT)) {
			j++;
			if (j > PPE_INT_TIMEOUT)
				break;
		}
		ep_wr32(PPE_MBOX_TEST_BIT, MBOX_IGU0_ISRS);
		/* Write flush */
		ep_rd32(MBOX_IGU0_ISR);
	}
	mdelay(10);
	pr_info("irq triggered %d expected %d\n", ppe_irq_num,
		PPE_MBOX_IRQ_TEST_NUM);
	dc_ep_ppe_mbox_reg_dump(dev);
	ppe_irq_num = 0;
	return 0;
}

static void umt_txin_send(struct dc_ep_dev *dev,
	u8 __iomem *soc_dbase, int num)
{
	int i;
	struct aca_dma_desc desc;

	memset(&desc, 0, sizeof(desc));
	desc.own = 0;
	desc.sop = 1;
	desc.eop = 1;
	desc.dic = 1;
	desc.pdu_type = 1;
	desc.data_len = 127;
	desc.data_pointer = 0x26000000;
	desc.dw1 = 0x700;
	desc.dw0 = 0x0000007f;

	for (i = 0; i < num; i++) {
		desc.data_pointer += roundup(desc.data_len, 4);
		ep_mem_write(soc_dbase + i * sizeof(desc),
			(void *)&desc, sizeof(desc));
	}

	ep_wr32(num, TXIN_HD_ACCUM_ADD);
}

static void ppe_txout_send(struct dc_ep_dev *dev,
	u8 __iomem *ppe_sb_base, int num)
{
	int i;
	struct aca_dma_desc_2dw desc;

	memset(&desc, 0, sizeof(desc));
	desc.status.field.own = 1;
	desc.status.field.sop = 1;
	desc.status.field.eop = 1;
	desc.status.field.data_len = 127;
	desc.data_pointer = 0x26100000;

	for (i = 0; i < num; i++) {
		desc.data_pointer += roundup(desc.status.field.data_len, 4);
		ep_mem_write(ppe_sb_base + i * sizeof(desc),
			(void *)&desc, sizeof(desc));
	}

	ep_wr32(num, TXOUT_ACA_ACCUM_ADD);
}

static void ppe_rxout_send(struct dc_ep_dev *dev,
	u8 __iomem *ppe_sb_base, int num)
{
	int i;
	struct aca_dma_desc_2dw desc;

	memset(&desc, 0, sizeof(desc));
	desc.status.field.own = 0;
	desc.status.field.sop = 1;
	desc.status.field.eop = 1;
	desc.status.field.meta_data0 = 0x3;
	desc.status.field.meta_data1 = 0x7f;
	desc.status.field.data_len = 127;
	desc.data_pointer = 0x26200000;

	for (i = 0; i < num; i++) {
		desc.data_pointer += roundup(desc.status.field.data_len, 4);
		ep_mem_write(ppe_sb_base + i * sizeof(desc),
			(void *)&desc, sizeof(desc));
	}

	ep_wr32(num, RXOUT_ACA_ACCUM_ADD);
}

static void dc_aca_test_init(struct dc_ep_dev *dev, void *soc_base)
{
	umt_txin_send(dev, (u8 __iomem *)soc_base, 8);
	ppe_txout_send(dev, (TXOUT_PD_DBASE + dev->membase), 8);
	ppe_rxout_send(dev, (RXOUT_PD_DBASE + dev->membase), 8);
}

static const char *sysclk_str[SYS_CLK_MAX] = {
	"36MHz",
	"288MHz",
};

static const char *ppeclk_str[PPE_CLK_MAX] = {
	"36MHz",
	"576MHz",
	"494MHz",
	"432MHz",
	"288MHz",
};

#define ACA_PMU_CTRL		0x11C
#define ACA_PMU_DMA		BIT(2)
#define ACA_PMU_EMA		BIT(22)

enum {
	DMA_ENDIAN_TYPE0 = 0,
	DMA_ENDIAN_TYPE1,	/*!< Byte Swap(B0B1B2B3 => B1B0B3B2) */
	DMA_ENDIAN_TYPE2,	/*!< Word Swap (B0B1B2B3 => B2B3B0B1) */
	DMA_ENDIAN_TYPE3,	/*!< DWord Swap (B0B1B2B3 => B3B2B1B0) */
	DMA_ENDIAN_MAX,
};

#ifdef CONFIG_CPU_BIG_ENDIAN
#define DMA_ENDIAN_DEFAULT	DMA_ENDIAN_TYPE3
#else
#define DMA_ENDIAN_DEFAULT	DMA_ENDIAN_TYPE0
#endif

enum {
	DMA_BURSTL_2DW = 1,	/*!< 2 DWORD DMA burst length */
	DMA_BURSTL_4DW = 2,	/*!< 4 DWORD DMA burst length */
	DMA_BURSTL_8DW = 3,	/*!< 8 DWORD DMA burst length */
	DMA_BURSTL_16DW = 16,
};

#define DMA_BURSTL_DEFAULT	DMA_BURSTL_16DW

#define DMA_TX_PORT_DEFAULT_WEIGHT	1
/** Default Port Transmit weight value */
#define DMA_TX_CHAN_DEFAULT_WEIGHT	1

enum {
	DMA_RX_CH = 0,  /*!< Rx channel */
	DMA_TX_CH = 1,  /*!< Tx channel */
};

enum {
	DMA_PKT_DROP_DISABLE = 0,
	DMA_PKT_DROP_ENABLE,
};

#ifdef CONFIG_CPU_BIG_ENDIAN
/* 2 DWs format descriptor */
struct rx_desc_2dw {
	u32 data_pointer; /* Descriptor data pointer */
	union {
		struct {
			u32 own:1;
			u32 c:1;
			u32 sop:1;
			u32 eop:1;
			u32 meta:2;
			u32 byte_offset:3;
			u32 meta_data:7;
			u32 data_len:16;
		} __packed field;
		u32 word;
	} __packed status;
} __packed __aligned(8);

struct tx_desc_2dw {
	u32 data_pointer; /* Descriptor data pointer */
	union {
		struct {
			u32 own:1;
			u32 c:1;
			u32 sop:1;
			u32 eop:1;
			u32 meta:2;
			u32 byte_offset:3;
			u32 meta_data:7;
			u32 data_len:16;
		} __packed field;
		u32 word;
	} __packed status;
} __packed __aligned(8);
#else
/* 2 DWs format descriptor */
struct rx_desc_2dw {
	u32 data_pointer; /* Descriptor data pointer */
	union {
		struct {
			u32 data_len:16;
			u32 meta_data:7;
			u32 byte_offset:3;
			u32 meta:2;
			u32 eop:1;
			u32 sop:1;
			u32 c:1;
			u32 own:1;
		} __packed field;
		u32 word;
	} __packed status;
} __packed __aligned(8);

struct tx_desc_2dw {
	u32 data_pointer; /* Descriptor data pointer */
	union {
		struct {
			u32 data_len:16;
			u32 meta_data:7;
			u32 byte_offset:3;
			u32 meta:2;
			u32 eop:1;
			u32 sop:1;
			u32 c:1;
			u32 own:1;
		} __packed field;
		u32 word;
	} __packed status;
} __packed __aligned(8);
#endif

enum {
	SOC_TO_EP = 0,
	EP_TO_SOC,
};

static int dma_pkt_size = 1024;
static int dma_mode = SOC_TO_EP;
static int dma_burst = 16;
static int desc_num = 32;

module_param(dma_pkt_size, int, 0);
MODULE_PARM_DESC(dma_pkt_size, "Single packet length");

module_param(dma_mode, int, 0);
MODULE_PARM_DESC(dma_mode, "mode 0 -- Soc->EP, mode 1-- EP->SoC");


static void dma_ctrl_rst(struct dc_ep_dev *dev)
{
	ep_wr32_mask(ACA_PMU_DMA | ACA_PMU_EMA, 0, ACA_PMU_CTRL);

	udelay(10);
	ep_wr32_mask(0, 1, DMA_CTRL);
	udelay(10);
	ep_wr32(0, DMA_CLC);
}

static void dma_chan_rst(struct dc_ep_dev *dev, int cn)
{
	ep_wr32(cn, DMA_CS);
	ep_wr32(0x2, DMA_CCTRL);
	while (ep_rd32(DMA_CCTRL) & 0x01)
		udelay(10);
}

static void dma_port_cfg(struct dc_ep_dev *dev)
{
	u32 reg = 0;

	reg |= (DMA_TX_PORT_DEFAULT_WEIGHT << 12);
	reg |= (DMA_ENDIAN_TYPE0 << 10);
	reg |= (DMA_ENDIAN_TYPE0 << 8);
	reg |= (DMA_PKT_DROP_DISABLE << 6);
	reg |= 0x3;
	ep_wr32(0, DMA_PS);
	ep_wr32(reg, DMA_PCTRL);
}

static void dma_byte_enable(struct dc_ep_dev *dev, int enable)
{
	if (enable)
		ep_wr32_mask(0, BIT(9), DMA_CTRL);
	else
		ep_wr32_mask(BIT(9), 0, DMA_CTRL);
}

static void dma_tx_ch_cfg(struct dc_ep_dev *dev, int ch, u32 desc_base,
	u32 desc_phys, dma_addr_t data_base, int desc_num)
{
	int i;
	struct tx_desc_2dw *tx_desc;

	for (i = 0; i < desc_num; i++) {
		tx_desc = (struct tx_desc_2dw *)
			(desc_base + (i * sizeof(*tx_desc)));
		tx_desc->data_pointer = (((u32)(data_base +
			(i * dma_pkt_size))) & 0xfffffff8);
		tx_desc->status.word = 0;
		tx_desc->status.field.byte_offset = 0;
		tx_desc->status.field.data_len = dma_pkt_size;

		tx_desc->status.field.sop = 1;
		tx_desc->status.field.eop = 1;
		tx_desc->status.field.own = 1;
		wmb();
	#if 0
		pr_info("Tx desc num %d word 0x%08x data pointer 0x%08x\n",
			i, tx_desc->status.word, tx_desc->data_pointer);
	#endif
	}
	ep_wr32(ch, DMA_CS);
	ep_wr32(desc_phys, DMA_CDBA);
	ep_wr32(desc_num, DMA_CDLEN);
	ep_wr32(0, DMA_CIE);
}

static void dma_rx_ch_cfg(struct dc_ep_dev *dev, int ch, u32 desc_base,
	u32 desc_phys, dma_addr_t data_base, int desc_num)
{
	int i;
	struct rx_desc_2dw *rx_desc;

	for (i = 0; i < desc_num; i++) {
		rx_desc = (struct rx_desc_2dw *)(desc_base
			+ (i * sizeof(*rx_desc)));
		rx_desc->data_pointer = (((u32)(data_base +
			(i * dma_pkt_size))) & 0xfffffff8);

		rx_desc->status.word = 0;
		rx_desc->status.field.sop = 1;
		rx_desc->status.field.eop = 1;
		rx_desc->status.field.byte_offset = 0;
		rx_desc->status.field.data_len = dma_pkt_size;
		rx_desc->status.field.own = 1; /* DMA own the descriptor */
		wmb();
	#if 0
		pr_info("Rx desc num %d word 0x%08x data pointer 0x%08x\n",
			i, rx_desc->status.word, rx_desc->data_pointer);
	#endif
	}

	ep_wr32(ch, DMA_CS);
	ep_wr32(desc_phys, DMA_CDBA);
	ep_wr32(desc_num, DMA_CDLEN);
	ep_wr32(0, DMA_CIE);
}

static void dma_chan_on(struct dc_ep_dev *dev, u8 cn)
{
	ep_wr32(cn, DMA_CS);
	ep_wr32_mask(0, BIT(0), DMA_CCTRL);
}

static void dma_chan_off(struct dc_ep_dev *dev, u8 cn)
{
	ep_wr32(cn, DMA_CS);
	ep_wr32_mask(BIT(0), 0,  DMA_CCTRL);
	udelay(10);
}

#define DEFAULT_TEST_PATTEN	0x12345678

#define REG32(addr)		(*((volatile u32*)(addr)))

#ifdef CONFIG_CPU_BIG_ENDIAN
#define ___swab32(x) ((u32)(				\
	(((u32)(x) & (u32)0x000000ffUL) << 24) |	\
	(((u32)(x) & (u32)0x0000ff00UL) <<  8) |	\
	(((u32)(x) & (u32)0x00ff0000UL) >>  8) |	\
	(((u32)(x) & (u32)0xff000000UL) >> 24)))
#else
#define ___swab32(x)		(x)
#endif

static void dma_sdram_preload(void *sdram_data_tx_ptr, void *sdram_data_rx_ptr)
{
	int i;
	int j;

	u32 testaddr = (u32)sdram_data_tx_ptr;

	for (i = 0; i < desc_num; i++) {
		for (j = 0; j < dma_pkt_size; j = j + 4) {
			REG32(testaddr + i * dma_pkt_size + j)
				= DEFAULT_TEST_PATTEN;
		}
	}
	pr_info("SDR Preload(0x55aa00ff) with data on TX location done\n");

	testaddr = (u32)sdram_data_rx_ptr;
	pr_info("RX Preload start address:0x%08x\n", (u32)(testaddr));

	for (i = 0; i < desc_num; i++) {
		for (j = 0; j < roundup(dma_pkt_size,
			dma_burst << 2); j = j + 4)
			REG32(testaddr + i * dma_pkt_size + j) = 0xcccccccc;
	}
	pr_info("SDR locations for Memcopy RX preset to 0xcccccccc done\n");
}

static void memcopy_data_check(u32 rx_data_addr)
{
	int i, j;
	u32 read_data;

	for (i = 0; i < desc_num; i++) {
		for (j = 0; j < dma_pkt_size; j = j + 4) {
			read_data = REG32(rx_data_addr + i * dma_pkt_size + j);
			if (read_data != ___swab32(DEFAULT_TEST_PATTEN))
				pr_info("Memcopy ERROR at addr 0x%08x data 0x%08x\n",
				(rx_data_addr + j), read_data);
		}
	}
}

static u32 plat_throughput_calc(u32 payload, int cycles)
{
	return (u32)((payload * 300) / cycles);
}

#define DMA_CPOLL_CNT_MASK 0xFFF0u

static void dma_ctrl_global_polling_enable(struct dc_ep_dev *dev, int interval)
{
	u32 reg = 0;

	reg |= (1 << 31);
	reg |= (interval << 4);

	ep_wr32_mask(DMA_CPOLL_CNT_MASK,
		reg,  DMA_CPOLL);
}

static void dma_controller_cfg(struct dc_ep_dev *dev)
{
	ep_wr32_mask(0, BIT(31), DMA_CTRL);
	ep_wr32_mask(BIT(30), 0, DMA_CTRL);
	ep_wr32_mask(0, BIT(1), DMA_CTRL);
	ep_wr32_mask(0, BIT(13), DMA_CTRL);
}

#define PDRAM_OFFSET		0x200200
#define PDRAM_TX_DESC_OFFSET	0x200000
#define PDRAM_RX_DESC_OFFSET	0x200100
#define ACA_SRAM_OFFSET		0x100000
#define PPE_SB_TX_DESC_OFFSET	0x280000
#define PPE_SB_RX_DESC_OFFSET	0x281000

#define PPE_FPI_TX_DESC_OFFSET	0x320000
#define PPE_FPI_RX_DESC_OFFSET	0x321000

static void dma_test(struct dc_ep_dev *dev, int mode, int rcn, int tcn)
{
	u32 loop = 0;
	void *tx_data;
	void *rx_data;
	dma_addr_t tx_data_phys = 0;
	dma_addr_t rx_data_phys = 0;
	u32 start, end;
	u32 cycles;
	struct rx_desc_2dw *rx_desc;
	struct tx_desc_2dw *tx_desc;
	struct tx_desc_2dw *last_tx_desc;
	struct rx_desc_2dw *last_rx_desc;
	dma_addr_t tx_desc_phys;
	dma_addr_t rx_desc_phys;
	u32 membase = (u32)(dev->membase);

	rx_desc = (struct rx_desc_2dw *)(membase + PDRAM_RX_DESC_OFFSET);
	rx_desc_phys = (dev->phy_membase + PDRAM_RX_DESC_OFFSET);
	tx_desc = (struct tx_desc_2dw *)(membase + PDRAM_TX_DESC_OFFSET);
	tx_desc_phys = (dev->phy_membase + PDRAM_TX_DESC_OFFSET);
	last_rx_desc = rx_desc + (desc_num - 1);
	last_tx_desc = tx_desc + (desc_num - 1);

	if (mode == SOC_TO_EP) { /* Read from SoC DDR to local PDBRAM  */
		tx_data = dma_alloc_coherent(NULL,
			desc_num * dma_pkt_size, &tx_data_phys, GFP_DMA);
		rx_data_phys = (dma_addr_t)(dev->phy_membase + PDRAM_OFFSET);
		rx_data = (void *)(membase + PDRAM_OFFSET);
	} else { /* Write from local PDBRAM to remote DDR */
		tx_data_phys = (dma_addr_t)(dev->phy_membase + PDRAM_OFFSET);
		tx_data = (void *)(membase + PDRAM_OFFSET);
		rx_data = dma_alloc_coherent(NULL, desc_num * dma_pkt_size,
			 &rx_data_phys, GFP_DMA);
	}

	pr_info("tx_desc_base %p tx_desc_phys 0x%08x tx_data %p tx_data_phys 0x%08x\n",
		tx_desc, (u32)tx_desc_phys, tx_data, (u32)tx_data_phys);

	pr_info("rx_desc_base %p rx_desc_phys 0x%08x rx_data %p rx_data_phys 0x%08x\n",
		rx_desc, (u32)rx_desc_phys, rx_data, (u32)rx_data_phys);

	pr_info("dma burst %d desc number %d packet size %d\n",
		dma_burst, desc_num, dma_pkt_size);

	dma_ctrl_rst(dev);
	dma_chan_rst(dev, rcn);
	dma_chan_rst(dev, tcn);
	dma_port_cfg(dev);
	dma_controller_cfg(dev);
	dma_byte_enable(dev, 1);

	dma_ctrl_global_polling_enable(dev, 24);

	dma_sdram_preload(tx_data, rx_data);

	dma_tx_ch_cfg(dev, tcn, (u32)tx_desc, tx_desc_phys,
		tx_data_phys, desc_num);
	dma_rx_ch_cfg(dev, rcn, (u32)rx_desc, rx_desc_phys,
		rx_data_phys, desc_num);

	udelay(5); /* Make sure that RX descriptor prefetched */

	start = get_cycles();
	dma_chan_on(dev, rcn);
	dma_chan_on(dev, tcn);

	/* wait till tx chan desc own is 0 */
	while (last_tx_desc->status.field.own == 1) {
		loop++;
		udelay(1);
	}
	end = get_cycles();
	cycles = end - start;
	pr_info("cylces %d throughput %dMb\n", cycles,
		plat_throughput_calc(desc_num * dma_pkt_size * 8, cycles));
	pr_info("loop times %d\n", loop);
	while (last_rx_desc->status.field.own == 1) {
		loop++;
		udelay(1);
	}

	memcopy_data_check((u32)rx_data);
	dma_chan_off(dev, rcn);
	dma_chan_off(dev, tcn);
	if (mode == SOC_TO_EP) {
		dma_free_coherent(NULL, desc_num * dma_pkt_size,
			tx_data, tx_data_phys);
	} else {
		dma_free_coherent(NULL, desc_num * dma_pkt_size,
			rx_data, rx_data_phys);
	}
}

static int aca_soc_desc_alloc(int dev)
{
	dma_addr_t phy_addr;
	void *base;
	u32 size;

	if (dev < 0 || dev > (DC_EP_MAX_PEER + 1))
		return -EINVAL;

	/* TXIN */
	size = TXIN_SOC_DES_NUM * TXIN_HD_DES_SIZE * 4;
	base  = dma_alloc_coherent(NULL, size, &phy_addr, GFP_DMA);
	if (!base)
		goto txin;
	aca_soc_hd_desc[dev].txin.base = base;
	aca_soc_hd_desc[dev].txin.phy_base = phy_addr;
	aca_soc_hd_desc[dev].txin.size = size;
	pr_info("txin soc desc base %p phy 0x%08x size 0x%08x\n",
		base, (u32)phy_addr, size);

	/* TXOUT */
	size = TXOUT_SOC_DES_NUM * TXOUT_HD_DES_SIZE * 4;
	base  = dma_alloc_coherent(NULL, size, &phy_addr, GFP_DMA);
	if (!base)
		goto txout;
	aca_soc_hd_desc[dev].txout.base = base;
	aca_soc_hd_desc[dev].txout.phy_base = phy_addr;
	aca_soc_hd_desc[dev].txout.size = size;
	pr_info("txout soc desc base %p phy 0x%08x size 0x%08x\n",
		base, (u32)phy_addr, size);
	/* RXOUT */
	size = RXOUT_SOC_DES_NUM * RXOUT_HD_DES_SIZE * 4;
	base  = dma_alloc_coherent(NULL, size, &phy_addr, GFP_DMA);
	if (!base)
		goto rxout;
	aca_soc_hd_desc[dev].rxout.base = base;
	aca_soc_hd_desc[dev].rxout.phy_base = phy_addr;
	aca_soc_hd_desc[dev].rxout.size = size;
	pr_info("rxout soc desc base %p phy 0x%08x size 0x%08x\n",
		base, (u32)phy_addr, size);
	return 0;
rxout:
	dma_free_coherent(NULL, aca_soc_hd_desc[dev].txout.size,
		aca_soc_hd_desc[dev].txout.base,
		aca_soc_hd_desc[dev].txout.phy_base);
txout:
	dma_free_coherent(NULL, aca_soc_hd_desc[dev].txin.size,
		aca_soc_hd_desc[dev].txin.base,
		aca_soc_hd_desc[dev].txin.phy_base);
txin:
	return -ENOMEM;
}

static int aca_soc_desc_free(int dev)
{
	dma_addr_t phy_addr;
	void *base;
	size_t size;

	if (dev < 0 || dev > (DC_EP_MAX_PEER + 1))
		return -EINVAL;

	/* TXIN */
	base = aca_soc_hd_desc[dev].txin.base;
	phy_addr = aca_soc_hd_desc[dev].txin.phy_base;
	size = aca_soc_hd_desc[dev].txin.size;
	dma_free_coherent(NULL, size, base, phy_addr);

	/* TXOUT */
	base = aca_soc_hd_desc[dev].txout.base;
	phy_addr = aca_soc_hd_desc[dev].txout.phy_base;
	size = aca_soc_hd_desc[dev].txout.size;
	dma_free_coherent(NULL, size, base, phy_addr);

	/* RXOUT */
	base = aca_soc_hd_desc[dev].rxout.base;
	phy_addr = aca_soc_hd_desc[dev].rxout.phy_base;
	size = aca_soc_hd_desc[dev].rxout.size;
	dma_free_coherent(NULL, size, base, phy_addr);
	return 0;
}

static int __init dc_ep_test_init(void)
{
	int i, j;
	int dev_num;
	struct dc_ep_dev dev;
	int func = 0;
	u32 sysclk = 0;
	u32 ppeclk = 0;

	if (dc_ep_dev_num_get(&dev_num)) {
		pr_err("%s failed to get total device number\n", __func__);
		return -EIO;
	}

	pr_info("%s: total %d EPs found\n", __func__, dev_num);

	for (i = 0; i < dev_num; i++)
		aca_soc_desc_alloc(i);

	for (i = 0; i < dev_num; i++) {
		struct aca_param aca_cfg = {
			.aca_txin = {
				.soc_desc_base
					= aca_soc_hd_desc[i].txin.phy_base,
				.soc_desc_num = TXIN_SOC_DES_NUM,
				.pp_buf_desc_num = 32,
				.pd_desc_base = TXIN_PD_DBASE,
				.pd_desc_num = TXIN_PD_DES_NUM,
				.hd_size_in_dw = TXIN_HD_DES_SIZE,
				.pd_size_in_dw = TXIN_PD_DES_SIZE,
				.byteswap = 1,
			},
			.aca_txout = {
				.soc_desc_base
					= aca_soc_hd_desc[i].txout.phy_base,
				.soc_desc_num = TXOUT_SOC_DES_NUM,
				.pp_buf_desc_num = 32,
				.pd_desc_base = TXOUT_PD_DBASE,
				.pd_desc_num = TXOUT_PD_DES_NUM,
				.hd_size_in_dw = TXOUT_HD_DES_SIZE,
				.pd_size_in_dw = TXOUT_PD_DES_SIZE,
				.byteswap = 1,
			},
			.aca_rxout = {
				.soc_desc_base
					= aca_soc_hd_desc[i].rxout.phy_base,
				.soc_desc_num = RXOUT_SOC_DES_NUM,
				.pp_buf_desc_num = 32,
				.pd_desc_base = RXOUT_PD_DBASE,
				.pd_desc_num = RXOUT_PD_DES_NUM,
				.hd_size_in_dw = RXOUT_HD_DES_SIZE,
				.pd_size_in_dw = RXOUT_PD_DES_SIZE,
				.byteswap = 1,
			},
		};
		struct aca_modem_param modem_cfg = {
			.mdm_txout = {
				.stat = SB_XBAR_ADDR(__TX_OUT_ACA_ACCUM_STATUS),
				.pd      = SB_XBAR_ADDR(__TX_OUT_QUEUE_PD_BASE_ADDR_OFFSET),
				.acc_cnt = SB_XBAR_ADDR(__TX_OUT_ACA_ACCUM_COUNT),
			},
			.mdm_rxout = {
				.stat    = SB_XBAR_ADDR(__RX_OUT_ACA_ACCUM_STATUS),
				.pd      = SB_XBAR_ADDR(__RX_OUT_QUEUE_PD_BASE_ADDR_OFFSET),
				.acc_cnt = SB_XBAR_ADDR(__RX_OUT_ACA_ACCUM_COUNT),
			},
			.mdm_rxin = {
				.stat    = SB_XBAR_ADDR(__RX_IN_ACA_ACCUM_STATUS),
				.pd      = SB_XBAR_ADDR(__RX_IN_QUEUE_PD_BASE_ADDR_OFFSET),
				.acc_cnt = SB_XBAR_ADDR(__RX_IN_ACA_ACCUM_COUNT),
			},
		};
		if (dc_ep_dev_info_req(i, DC_EP_INT_PPE, &dev))
			pr_info("%s failed to get pcie ep %d information\n",
			__func__, i);
		pr_info("irq %d\n", dev.irq);
		pr_info("phyiscal membase 0x%08x virtual membase 0x%p\n",
			dev.phy_membase, dev.membase);
		if (dev_num > 1) {
			for (j = 0; j < dev.peer_num; j++) {
				pr_info("phyiscal peer membase 0x%08x virtual peer membase 0x%p\n",
					dev.peer_phy_membase[j], dev.peer_membase[j]);
			}
		}
		/* For module unload perpose */
		memcpy(&pcie_dev[i], &dev, sizeof(struct dc_ep_dev));
		dc_ep_ppe_mbox_int_stress_test(&pcie_dev[i]);
		dev.hw_ops->clk_on(&dev, PMU_CDMA | PMU_EMA | PMU_PPM2);
		dev.hw_ops->clk_set(&dev, SYS_CLK_288MHZ, PPE_CLK_576MHZ);
		dev.hw_ops->pinmux_set(&dev, 14, MUX_FUNC_ALT1);
		dev.hw_ops->pinmux_set(&dev, 15, MUX_FUNC_ALT2);
		dev.hw_ops->pinmux_get(&dev, 15, &func);
		pr_info("gpio 15 func %d\n", func);
		dev.hw_ops->pinmux_set(&dev, 13, MUX_FUNC_GPIO);
		dev.hw_ops->gpio_dir(&dev, 13, GPIO_DIR_OUT);
		dev.hw_ops->gpio_set(&dev, 13, 1);
		dev.hw_ops->gpio_get(&dev, 13, &func);
		pr_info("gpio 13 value %d\n", func);
		dev.hw_ops->gpio_pupd_set(&dev, 14, GPIO_PULL_DOWN);
		dev.hw_ops->gpio_od_set(&dev, 0, 1);
		dev.hw_ops->gpio_src_set(&dev, 0, GPIO_SLEW_RATE_FAST);
		dev.hw_ops->gpio_dcc_set(&dev, 0, GPIO_DRV_CUR_8MA);
		dev.hw_ops->clk_get(&dev, &sysclk, &ppeclk);
		pr_info("ppe clk %s sys clk %s\n", ppeclk_str[ppeclk],
			sysclk_str[sysclk]);
		dev.hw_ops->aca_init(&dev, &aca_cfg, &modem_cfg);
		dev.hw_ops->aca_start(&dev, ACA_ALL_EN, 1);

		pr_info("ACA test\n");
		dc_aca_test_init(&dev, aca_soc_hd_desc[i].txin.base);

		pr_info("DMA test\n");
		dma_pkt_size = 64;
		dma_test(&dev, dma_mode, 0, 1);
#if 0
		dma_pkt_size = 128;
		dma_test(&dev, dma_mode, 0, 1);
		dma_pkt_size = 256;
		dma_test(&dev, dma_mode, 0, 1);
		dma_pkt_size = 512;
		dma_test(&dev, dma_mode, 0, 1);
		dma_pkt_size = 1024;
		dma_test(&dev, dma_mode, 0, 1);
		dma_pkt_size = 2048;
		dma_test(&dev, dma_mode, 0, 1);

		dma_mode = EP_TO_SOC;
		dma_pkt_size = 64;
		dma_test(&dev, dma_mode, 0, 1);
		dma_pkt_size = 128;
		dma_test(&dev, dma_mode, 0, 1);
		dma_pkt_size = 256;
		dma_test(&dev, dma_mode, 0, 1);
		dma_pkt_size = 512;
		dma_test(&dev, dma_mode, 0, 1);
		dma_pkt_size = 1024;
		dma_test(&dev, dma_mode, 0, 1);
		dma_pkt_size = 2048;
		dma_test(&dev, dma_mode, 0, 1);
#endif
	}

	pr_info("Intel(R) SmartPHY DSL(VRX518) PCIe EP Test Driver - %s\n",
		ep_test_driver_version);
	return 0;
}

static void __exit dc_ep_test_exit(void)
{
	int i;
	int dev_num;
	u32 func = ACA_ALL_EN;
	struct dc_ep_dev *dev;

	if (dc_ep_dev_num_get(&dev_num)) {
		pr_err("%s failed to get total device number\n", __func__);
		return;
	}
	pr_info("%s: total %d EPs found\n", __func__, dev_num);
	for (i = 0; i < dev_num; i++) {
		dev = &pcie_dev[i];
		free_irq(dev->irq, dev);
		dev->hw_ops->aca_stop(dev, &func, 1);
		dev->hw_ops->clk_off(dev, PMU_EMA);
		if (dc_ep_dev_info_release(i)) {
			pr_info("%s failed to release pcie ep %d information\n",
				__func__, i);
		}
		aca_soc_desc_free(i);
	}
}

module_init(dc_ep_test_init);
module_exit(dc_ep_test_exit);

MODULE_AUTHOR("Intel Corporation, <Chuanhua.lei@intel.com>");
MODULE_DESCRIPTION("Intel(R) SmartPHY (VRX518) PCIe EP/ACA test driver");
MODULE_LICENSE("GPL");