| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
MAC address retrieval was switched to more generic upstream (5.13) NVMEM
based solution in commit 06bb4a5018cd ("ramips: convert mtd-mac-address
to nvmem implementation") , but NVMEM subsystem wasn't enabled in the
kernel, so fix it now.
References: https://github.com/openwrt/openwrt/pull/4041#issuecomment-883322801
Fixes: 06bb4a5018cd ("ramips: convert mtd-mac-address to nvmem implementation")
Signed-off-by: David Bauer <mail@david-bauer.net>
Signed-off-by: Petr Štetiar <ynezz@true.cz> [commit message]
|
|
|
|
|
|
|
|
| |
Commands in 10_fix_wifi_mac were not properly concatenated, so
this was also triggered for the second phy without giving a
MAC address as argument.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Specifications:
* SoC: MT7621AT
* RAM: 256MB
* Flash: 128MB NAND flash
* WiFi: MT7615DN (2.4GHz+5Ghz) with DBDC
* LAN: 5x1000M
* Firmware layout is Uboot with extra 96 bytes in header
* Base PCB is DIR-1360 REV1.0
* LEDs Power Blue+Orange,Wan Blue+Orange,WPS Blue,"2.4G"Blue, "5G" Blue,
USB Blue
* Buttons Reset,WPS, Wifi
MAC addresses on OEM firmware:
lan factory 0xe000 f4:*:*:a8:*:65 (label)
wan factory 0xe006 f4:*:*:a8:*:68
2.4 GHz [not on flash] f6:*:*:c8:*:66
5.0 GHz factory 0x4 f4:*:*:a8:*:66
The increment of the 4th byte for the 2.4g address appears to vary.
Reported cases:
5g 2.4g increment
f4:XX:XX:a8:XX:66 f6:XX:XX:c8:XX:66 +0x20
x0:xx:xx:68:xx:xx x2:xx:xx:48:xx:xx -0x20
x4:xx:xx:6a:xx:xx x6:xx:xx:4a:xx:xx -0x20
Since increment is inconsistent and there is no obvious pattern
in swapping bytes, and the 2.4g address has local bit set anyway,
it seems safer to use the LAN address with flipped byte here in
order to prevent collisions between OpenWrt devices and OEM devices
for this interface. This way we at least use an address as base
that is definitely owned by the device at hand.
Flashing instruction:
The Dlink "Emergency Room" cannot be accessed through the reset
button on this device. You can either use console or use the
encrypted factory image availble in the openwrt forum.
Once the encrypted image is flashed throuh the stock Dlink web
interface, the sysupgrade images can be used.
Header pins needs to be soldered near the WPS and Wifi buttons.
The layout for the pins is (VCC,RX,TX,GND). No need to connect the VCC.
the settings are:
Bps/Par/Bits : 57600 8N1
Hardware Flow Control : No
Software Flow Control : No
Connect your client computer to LAN1 of the device
Set your client IP address manually to 192.168.0.101 / 255.255.255.0.
Call the recovery page or tftp for the device at http://192.168.0.1
Use the provided emergency web GUI to upload and flash a new firmware to
the device
At the time of adding support the wireless config needs to be set up by
editing the wireless config file:
* Setting the country code is mandatory, otherwise the router loses
connectivity at the next reboot. This is mandatory and can be done
from luci. After setting the country code the router boots correctly.
A reset with the reset button will fix the issue and the user has to
reconfigure.
* This is minor since the 5g interface does not come up online although
it is not set as disabled. 2 options here:
1- Either run the "wifi" command. Can be added from LUCI in system -
startup - local startup and just add wifi above "exit 0".
2- Or add the serialize option in the wireless config file as shown
below. This one would work and bring both interfaces automatically
at every boot:
config wifi-device 'radio0'
option serialize '1'
config wifi-device 'radio1'
option serialize '1'
Signed-off-by: Karim Dehouche <karimdplay@gmail.com>
[rebase, improve MAC table, update wireless config comment, fix
2.4g macaddr setup]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 128MB NAND
- Ethernet: 5 Gigabit ports
- WiFi: 2.4G/5G MT7615N
- USB: 1 USB 3.0, 1 USB 2.0
This device is very similar to the EA7300 v1/v2, EA7500 v2, and EA8100 v1.
Installation:
Upload the generated factory image through the factory web interface.
(following part taken from EA7300 v2 commit message:)
This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.
Reverting to factory firmware:
Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.
With thanks to Tom Wizetek (@wizetek) for testing.
Signed-off-by: Tee Hao Wei <angelsl@in04.sg>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This PR adds support for router D-Link DIR-853-R1
Specifications:
SoC: MT7621AT
RAM: 128MB
Flash: 16MB SPI
WiFi: MT7615DN (2.4GHz+5Ghz) with DBDC (This mode allows this
single chip act as an 2x2 11n radio and an 2x2 11ac radio at the
same time)
LAN: 5x1000M
LEDs Power Blue+Orange,Wan Blue+Orange,WPS Blue,"2.4G"Blue, "5G" Blue
USB Blue
Buttons Reset,WPS, Wifi
MAC addresses:
|Interface | MAC | Factory |Comment
|------------|-----------------|-------------|----------------
|WAN sticker |C4:XX:XX:6E:XX:2A| |Sticker
|LAN |C4:XX:XX:6E:XX:2B| |
|Wifi (5g) |C4:XX:XX:6E:XX:2C|0x4 |
|Wifi (2.4g) |C6:XX:XX:7E:XX:2C| |
| | | |
| |C4:XX:XX:6E:XX:2E|0x8004 0xe000|
| |C4:XX:XX:6E:XX:2F|0xe006 |
The increment of the 4th byte for the 2.4g address appears to vary.
Reported cases:
5g 2.4g increment
C4:XX:XX:6E:XX:2C C6:XX:XX:7E:XX:2C 0x10
f4:XX:XX:16:XX:32 f6:XX:XX:36:XX:32 0x20
F4:XX:XX:A6:XX:E3 F6:XX:XX:B6:XX:E3 0x10
Since increment is inconsistent and there is no obvious pattern
in swapping bytes, and the 2.4g address has local bit set anyway,
it seems safer to use the LAN address with flipped byte here in
order to prevent collisions between OpenWrt devices and OEM devices
for this interface. This way we at least use an address as base
that is definitely owned by the device at hand.
Flashing instruction:
The Dlink "Emergency Room"
Connect your client computer to LAN1 of the device
Set your client IP address manually to 192.168.0.101 / 255.255.255.0.
Then, power down the router, press and hold the reset button, then
re-plug it. Keep the reset button pressed until the internet LED stops
flashing
Call the recovery page or tftp for the device at http://192.168.0.1
Use the provided emergency web GUI to upload and flash a new firmware to
the device.
Signed-off-by: Stas Fiduchi <fiduchi@protonmail.com>
[commit title/message improvements, use correct label MAC address,
calculate MAC addresses based on 0x4, minor DTS style fixes, add
uart2 to state_default, remove factory image, add 2.4g MAC address,
use partition DTSI, add macaddr comment in DTS]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Hardware
--------
MediaTek MT7621 SoC
256M DDR3
16MB BoHong SPI-NOR
MediaTek MT7905+7975 2x2T2R DBDC bgnax / acax
RGB LED
WPS + RESET Button
UART on compute module (silkscreened / 115200n8)
The router itself is just a board with Power / USB / RJ-45 connectors
and DC/DC converters. The SoC and WiFi components are on a
daughterboard which connect using two M.2 connectors.
The compute module has the model number "T-CB1800K-DM2 V02" printed on
it. The main baord has "T-MB5EU V01" printed on it. This information
might be useful, as it's highly likely either of these two will be
reused in similar designs.
The router itself is sold as Tenbay T-MB5EU directly from the OEM as
well as "KuWFI AX1800 Smart WiFi 6 Eouter" on Amazon.de for ~50€ in a
slightly different case.
Installation
------------
A Tool for creating a factory image for the Vendor Web Interface can be
found here: https://github.com/blocktrron/t-mb5eu-v01-factory-creator/
As the OEM Firmware is just a modified LEDE 17.01, you can also access
failsafe mode via UART while the OS boots, by connecting to UART
and pressing "f" when prompted. The Router is reachable at
192.168.1.1 via root without password.
Transfer the OpenWrt sysupgrade image via scp and apply with sysupgrade
using the -n and -F flags.
Alternatively, the board can be flashed by attaching to the UART
console, interrupting the boot process by keeping "0" pressed while
attaching power.
Serve the OpenWrt initramfs using a TFTP server with address
192.168.1.66. Rename the initramfs to ax1800.bin.
Attach your TFTP server to one of the LAN ports. Execute the following
commands.
$ setenv ipaddr 192.168.1.67
$ setenv serverip 192.168.1.66
$ tftpboot 0x84000000 ax1800.bin
$ bootm
Wait for the device to boot. Then transfer the OpenWrt sysupgrade image
to the device using SCP and apply sysupgrade.
Signed-off-by: David Bauer <mail@david-bauer.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a driver for the AW9523 I2C GPIO expander.
This driver is required to make LEDs as well as buttons on the Tenbay
T-MB5EU-V01 work.
This driver already had several upstream iterations. I'm working to
push this driver to mainline.
Ref: https://patchwork.ozlabs.org/project/linux-gpio/list/?series=226287
Signed-off-by: David Bauer <mail@david-bauer.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch adds support for the TP-Link Archer C6 v3 (FCC ID TE7A6V3)
The patch adds identification changes to the existing TP-Link Archer A6,
by Vinay Patil <post2vinay@gmail.com>, which has identical hardware.
Specification
-------------
MediaTek MT7621 SOC
RAM: 128MB DDR3
SPI Flash: W25Q128 (16MB)
Ethernet: MT7530 5x 1000Base-T
WiFi 5GHz: Mediatek MT7613BE
WiFi 2.4GHz: Mediatek MT7603E
UART/Serial: 115200 8n1
Device Configuration & Serial Port Pins
---------------------------------------
ETH Ports: LAN4 LAN3 LAN2 LAN1 WAN
_______________________
| |
Serial Pins: | VCC GND TXD RXD |
|_____________________|
LEDs: Power Wifi2G Wifi5G LAN WAN
Build Output
------------
The build will generate following set of files
[1] openwrt-ramips-mt7621-tplink_archer-c6-v3-initramfs-kernel.bin
[2] openwrt-ramips-mt7621-tplink_archer-c6-v3-squashfs-factory.bin
[3] openwrt-ramips-mt7621-tplink_archer-c6-v3-squashfs-sysupgrade.bin
How to Use - Flashing from TP-Link Web Interface
------------------------------------------------
* Go to "Advanced/System Tools/Firmware Update".
* Click "Browse" and upload the OpenWrt factory image: factory.bin[2]
* Click the "Upgrade" button, and select "Yes" when prompted.
TFTP Booting
------------
Setup a TFTP boot server with address 192.168.0.5.
While starting U-boot press '4' key to stop autoboot.
Copy the initramfs-kernel.bin[1] to TFTP server folder, rename as test.bin
From u-boot command prompt run tftpboot followed by bootm.
Recovery
--------
Archer A6 V3 has recovery page activated if SPI booting from flash fails.
Recovery page can be activated by powercycling the router four times
before the boot process is complete.
Note: TFTP boot can be activated only from u-boot serial console.
Device recovery address: 192.168.0.1
Signed-off-by: Amish Vishwakarma <vishwakarma.amish@gmail.com>
[fix indent]
Signed-off-by: David Bauer <mail@david-bauer.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The SERCOMM NA502 is a smart home gateway manufactured by SERCOMM and sold
under different brands (among others, A1 Telekom Austria SmartHome
Gateway). It has multi-protocol radio support in addition to LAN and WiFi.
Note: BLE is currently unsupported.
Specifications
--------------
- MT7621ST 880MHz, Single-Core, Dual-Thread
- MT7603EN 2.4GHz WiFi
- MT7662EN 5GHz WiFi + BLE
- 128MiB NAND
- 256MiB DDR3 RAM
- SD3503 ZWave Controller
- EM357 Zigbee Coordinator
MAC address assignment
----------------------
LAN MAC is read from the config partition, WiFi 2.4GHz is LAN+2 and matches
the OEM firmware. WiFi 5GHz with LAN+1 is an educated guess since the
OEM firmware does not enable 5GHz WiFi.
Installation
------------
Attach serial console, then boot the initramfs image via TFTP.
Once inside OpenWrt, run sysupgrade -n with the sysupgrade file.
Attention: The device has a dual-firmware design. We overwrite kernel2,
since kernel1 contains an automatic recovery image.
If you get NAND ECC errors and are stuck with bad eraseblocks, try to
erase the mtd partition first with
mtd unlock ubi
mtd erase ubi
This should only be needed once.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
[use kiB for IMAGE_SIZE]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 128MB NAND
- Ethernet: 5 Gigabit ports
- WiFi: 2.4G/5G MT7615N
- USB: 1 USB 3.0, 1 USB 2.0
This device is very similar to the EA7300 v1/v2 and EA7500 v2.
Installation:
Upload the generated factory image through the factory web interface.
(following part taken from EA7300 v2 commit message:)
This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.
Reverting to factory firmware:
Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.
With thanks to Leon Poon (@LeonPoon) for the initial bringup.
Signed-off-by: Tee Hao Wei <angelsl@in04.sg>
[add missing entry in 10_fix_wifi_mac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Amped Wireless ALLY is a whole-home WiFi kit, with a router (model
ALLY-R1900K) and an Extender (model ALLY-00X19K). Both are devices are
11ac and based on MediaTek MT7621AT and MT7615N chips. The units are
nearly identical, except the Extender lacks a USB port and has a single
Ethernet port.
Specification:
- SoC: MediaTek MT7621AT (2C/4T) @ 880MHz
- RAM: 128MB DDR3 (Nanya NT5CC64M16GP-DI)
- FLASH: 128MB NAND (Winbond W29N01GVSIAA)
- WiFi: 2.4/5 GHz 4T4R
- 2.4GHz MediaTek MT7615N bgn
- 5GHz MediaTek MT7615N nac
- Switch: SoC integrated Gigabit Switch
- USB: 1x USB3 (Router only)
- BTN: Reset, WPS
- LED: single RGB
- UART: through-hole on PCB.
J1: pin1 (square pad, towards rear)=3.3V, pin2=RX,
pin3=GND, pin4=TX. Settings: 57600/8N1.
Note regarding dual system partitions
-------------------------------------
The vendor firmware and boot loader use a dual partition scheme. The boot
partition is decided by the bootImage U-boot environment variable: 0 for
the 1st partition, 1 for the 2nd.
OpenWrt does not support this scheme and will always use the first OS
partition. It will set bootImage to 0 during installation, making sure
the first partition is selected by the boot loader.
Also, because we can't be sure which partition is active to begin with, a
2-step flash process is used. We first flash an initramfs image, then
follow with a regular sysupgrade.
Installation:
Router (ALLY-R1900K)
1) Install the flashable initramfs image via the OEM web-interface.
(Alternatively, you can use the TFTP recovery method below.)
You can use WiFi or Ethernet.
The direct URL is: http://192.168.3.1/07_06_00_firmware.html
a. No login is needed, and you'll be in their setup wizard.
b. You might get a warning about not being connected to the Internet.
c. Towards the bottom of the page will be a section entitled "Or
Manually Upgrade Firmware from a File:" where you can manually choose
and upload a firmware file.
d: Click "Choose File", select the OpenWRT "initramfs" image and click
"Upload."
2) The Router will flash the OpenWrt initramfs image and reboot. After
booting, LuCI will be available on 192.168.1.1.
3) Log into LuCI as root; there is no password.
4) Optional (but recommended) is to backup the OEM firmware before
continuing; see process below.
5) Complete the Installation by flashing a full OpenWRT image. Note:
you may use the sysupgrade command line tool in lieu of the UI if
you prefer.
a. Choose System -> Backup/Flash Firmware.
b. Click "Flash Image..." under "Flash new firmware image"
c. Click "Browse..." and then select the sysupgrade file.
d. Click Upload to upload the sysupgrade file.
e. Important: uncheck "Keep settings and retain the current
configuration" for this initial installation.
f. Click "Continue" to flash the firmware.
g. The device will reboot and OpenWRT is installed.
Extender (ALLY-00X19K)
1) This device requires a TFTP recovery procedure to do an initial load
of OpenWRT. Start by configuring a computer as a TFTP client:
a. Install a TFTP client (server not necessary)
b. Configure an Ethernet interface to 192.168.1.x/24; don't use .1 or .6
c. Connect the Ethernet to the sole Ethernet port on the X19K.
2) Put the ALLY Extender in TFTP recovery mode.
a. Do this by pressing and holding the reset button on the bottom while
connecting the power.
b. As soon as the LED lights up green (roughly 2-3 seconds), release
the button.
3) Start the TFTP transfer of the Initramfs image from your setup machine.
For example, from Linux:
tftp -v -m binary 192.168.1.6 69 -c put initramfs.bin
4) The Extender will flash the OpenWrt initramfs image and reboot. After
booting, LuCI will be available on 192.168.1.1.
5) Log into LuCI as root; there is no password.
6) Optional (but recommended) is to backup the OEM firmware before
continuing; see process below.
7) Complete the Installation by flashing a full OpenWRT image. Note: you
may use the sysupgrade command line tool in lieu of the UI if you prefer.
a. Choose System -> Backup/Flash Firmware.
b. Click "Flash Image..." under "Flash new firmware image"
c. Click "Browse..." and then select the sysupgrade file.
d. Click Upload to upload the sysupgrade file.
e. Important: uncheck "Keep settings and retain the current
configuration" for this initial installation.
f. Click "Continue" to flash the firmware.
g. The device will reboot and OpenWRT is installed.
Backup the OEM Firmware:
-----------------------
There isn't any downloadable firmware for the ALLY devices on the Amped
Wireless web site. Reverting back to the OEM firmware is not possible
unless we have a backup of the original OEM firmware.
The OEM firmware may be stored on either /dev/mtd3 ("firmware") or
/dev/mtd6 ("oem"). We can't be sure which was overwritten with the
initramfs image, so backup both partitions to be safe.
1) Once logged into LuCI, navigate to System -> Backup/Flash Firmware.
2) Under "Save mtdblock contents," first select "firmware" and click
"Save mtdblock" to download the image.
3) Repeat the process, but select "oem" from the pull-down menu.
Revert to the OEM Firmware:
--------------------------
* U-boot TFTP:
Follow the TFTP recovery steps for the Extender, and use the
backup image.
* OpenWrt "Flash Firmware" interface:
Upload the backup image and select "Force update"
before continuing.
Signed-off-by: Jonathan Sturges <jsturges@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This submission relied heavily on the work of Linksys EA7300 v1/ v2.
Specifications:
* SoC: MediaTek MT7621A (880 MHz 2c/4t)
* RAM: 128M DDR3-1600
* Flash: 128M NAND
* Eth: MediaTek MT7621A (10/100/1000 Mbps x5)
* Radio: MT7603E/MT7613BE (2.4 GHz & 5 GHz)
* Antennae: 2 internal fixed in the casing and 2 on the PCB
* LEDs: Blue (x4 Ethernet)
Blue+Orange (x2 Power + WPS and Internet)
* Buttons: Reset (x1)
WPS (x1)
Installation:
Flash factory image through GUI.
This device has 2 partitions for the firmware called firmware and
alt_firmware. To successfully flash and boot the device, the device
should have been running from alt_firmware partition. To get the device
booted through alt_firmware partition, download the OEM firmware from
Linksys website and upgrade the firmware from web GUI. Once this is done,
flash the OpenWrt Factory firmware from web GUI.
Reverting to factory firmware:
1. Boot to 'alt_firmware'(where stock firmware resides) by doing one of
the following:
Press the "wps" button as soon as power LED turns on when booting.
(OR) Hard-reset the router consecutively three times to force it to
boot from 'alt_firmware'.
2. To remove any traces of OpenWRT from your router simply flash the OEM
image at this point.
Signed-off-by: Aashish Kulkarni <aashishkul@gmail.com>
[fix hanging indents and wrap to 74 characters per line,
add kmod-mt7663-firmware-sta package for 5GHz STA mode to work,
remove sysupgrade.bin and concatenate IMAGES instead in mt7621.mk,
set default-state "on" for power LED]
Signed-off-by: Sannihith Kinnera <digislayer@protonmail.com>
[move check-size before append-metadata, remove trailing whitespace]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
JCG Q20 is an AX 1800M router.
Hardware specs:
SoC: MediaTek MT7621AT
Flash: Winbond W29N01HV 128 MiB
RAM: Winbond W632GU6NB-11 256 MiB
WiFi: MT7915 2.4/5 GHz 2T2R
Ethernet: 10/100/1000 Mbps x3
LED: Status (red / blue)
Button: Reset, WPS
Power: DC 12V,1A
Flash instructions:
Upload factory.bin in stock firmware's upgrade page,
do not preserve settings.
MAC addresses map:
0x00004 *:3e wlan2g/wlan5g
0x3fff4 *:3c lan/label
0x3fffa *:3c wan
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Specifications
SoC: MT7621
CPU: 880 MHz
Flash: 16 MiB
RAM: 128 MiB
WLAN: 2.4 GHz b/g/n, 5 GHz a/n/ac
MT7603E / MT7615E
Ethernet: 5x Gbit ports
Installation
There are two known options:
1) The Luci-based UI.
2) Press and hold the reset button during power up.
The router will request 'recovery.bin' from a TFTP server at
192.168.1.88.
Both options require a signed firmware binary.
The openwrt image supplied by cudy is signed and can be used to
install unsigned images.
R4 & R5 need to be shorted (0-100Ω) for the UART to work.
Signed-off-by: Leon M. George <leon@georgemail.eu>
[remove non-required switch-port node - remove trgmii phy-mode]
Signed-off-by: David Bauer <mail@david-bauer.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for TP-Link Archer C6U v1 (EU).
The device is also known in some market as Archer C6 v3.
This patch supports only Archer C6U v1 (EU).
Specifications:
--------------
* SoC: Mediatek MT7621AT 2C2T, 880MHz
* RAM: 128MB DDR3
* Flash: 16MB SPI NOR flash (Winbond 25Q128)
* WiFi 5GHz: Mediatek MT7613BEN (2x2:2)
* WiFi 2.4GHz: Mediatek MT7603EN (2x2:2)
* Ethernet: MT7630, 5x 1000Base-T.
* LED: Power, WAN, LAN, WiFi 2GHz and 5GHz, USB
* Buttons: Reset, WPS.
* UART: Serial console (115200 8n1), J1(GND:3)
* USB: One USB2 port.
Installation:
------------
Install the OpenWrt factory image for C6U is from the
TP-Link web interface.
1) Go to "Advanced/System Tools/Firmware Update".
2) Click "Browse" and upload the OpenWrt factory image:
openwrt-ramips-mt7621-tplink_archer-c6u-v1-squashfs-factory.bin.
3) Click the "Upgrade" button, and select "Yes" when prompted.
Recovery to stock firmware:
--------------------------
The C6U bootloader has a failsafe mode that provides a web
interface (running at 192.168.0.1) for reverting back to the
stock TP-Link firmware. The failsafe interface is triggered
from the serial console or on failed kernel boot. Unfortunately,
there's no key combination that enables the failsafe mode. This
gives us two options for recovery:
1) Recover using the serial console (J1 header).
The recovery interface can be selected by hitting 'x' when
prompted on boot.
2) Trigger the bootloader failsafe mode.
A more dangerous option is force the bootloader into
recovery mode by erasing the OpenWrt partition from the
OpenWrt's shell - e.g "mtd erase firmware". Please be
careful, since erasing the wrong partition can brick
your device.
MAC addresses:
-------------
OEM firmware configuration:
D8:07:B6:xx:xx:83 : 5G
D8:07:B6:xx:xx:84 : LAN (label)
D8:07:B6:xx:xx:84 : 2.4G
D8:07:B6:xx:xx:85 : WAN
Signed-off-by: Georgi Vlaev <georgi.vlaev@konsulko.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch adds support for the TP-Link Archer A6 v3
The router is sold in US and India with FCC ID TE7A6V3
Specification
-------------
MediaTek MT7621 SOC
RAM: 128MB DDR3
SPI Flash: W25Q128 (16MB)
Ethernet: MT7530 5x 1000Base-T
WiFi 5GHz: Mediatek MT7613BE
WiFi 2.4GHz: Mediatek MT7603E
UART/Serial: 115200 8n1
Device Configuration & Serial Port Pins
---------------------------------------
ETH Ports: LAN4 LAN3 LAN2 LAN1 WAN
_______________________
| |
Serial Pins: | VCC GND TXD RXD |
|_____________________|
LEDs: Power Wifi2G Wifi5G LAN WAN
Build Output
------------
The build will generate following set of files
[1] openwrt-ramips-mt7621-tplink_archer-a6-v3-initramfs-kernel.bin
[2] openwrt-ramips-mt7621-tplink_archer-a6-v3-squashfs-factory.bin
[3] openwrt-ramips-mt7621-tplink_archer-a6-v3-squashfs-sysupgrade.bin
How to Use - Flashing from TP-Link Web Interface
------------------------------------------------
* Go to "Advanced/System Tools/Firmware Update".
* Click "Browse" and upload the OpenWrt factory image: factory.bin[2]
* Click the "Upgrade" button, and select "Yes" when prompted.
TFTP Booting
------------
Setup a TFTP boot server with address 192.168.0.5.
While starting U-boot press '4' key to stop autoboot.
Copy the initramfs-kernel.bin[1] to TFTP server folder, rename as test.bin
From u-boot command prompt run tftpboot followed by bootm.
Recovery
--------
Archer A6 V3 has recovery page activated if SPI booting from flash fails.
Recovery page can be activated from serial console only.
Press 'x' while u-boot is starting
Note: TFTP boot can be activated only from u-boot serial console.
Device recovery address: 192.168.0.1
Thanks to: Frankis for Randmon MAC address fix.
Signed-off-by: Vinay Patil <post2vinay@gmail.com>
[remove superfluous factory image definition, whitespacing]
Signed-off-by: David Bauer <mail@david-bauer.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The ZyXEL NR7101 is an 802.3at PoE powered 5G outdoor (IP68) CPE
with integrated directional 5G/LTE antennas.
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 256 MB
- Flash: 128 MB MB NAND (MX30LF1G18AC)
- WiFi: MediaTek MT7603E
- Switch: 1 LAN port (Gigabiti)
- 5G/LTE: Quectel RG502Q-EA connected by USB3 to SoC
- SIM: 2 micro-SIM slots under transparent cover
- Buttons: Reset, WLAN under same cover
- LEDs: Multicolour green/red/yellow under same cover (visible)
- Power: 802.3at PoE via LAN port
The device is built as an outdoor ethernet to 5G/LTE bridge or
router. The Wifi interface is intended for installation and/or
temporary management purposes only.
UART Serial:
57600N1
Located on populated 5 pin header J5:
[o] GND
[ ] key - no pin
[o] RX
[o] TX
[o] 3.3V Vcc
Remove the SIM/button/LED cover, the WLAN button and 12 screws
holding the back plate and antenna cover together. The GPS antenna
is fixed to the cover, so be careful with the cable. Remove 4
screws fixing the antenna board to the main board, again being
careful with the cables.
A bluetooth TTL adapter is recommended for permanent console
access, to keep the router water and dustproof. The 3.3V pin is
able to power such an adapter.
MAC addresses:
OpenWrt OEM Address Found as
lan eth2 08:26:97:*:*:BC Factory 0xe000 (hex), label
wlan0 ra0 08:26:97:*:*:BD Factory 0x4 (hex)
wwan0 usb0 random
WARNING!!
ISP managed firmware might at any time update itself to a version
where all known workarounds have been disabled. Never boot an ISP
managed firmware with a SIM in any of the slots if you intend to use
the router with OpenWrt. The bootloader lock can only be disabled with
root access to running firmware. The flash chip is physically
inaccessible without soldering.
Installation from OEM web GUI:
- Log in as "supervisor" on https://172.17.1.1/
- Upload OpenWrt initramfs-recovery.bin image on the
Maintenance -> Firmware page
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- (optional) Copy OpenWrt to the recovery partition. See below
- Sysupgrade to the OpenWrt sysupgrade image and reboot
Installation from OEM ssh:
- Log in as "root" on 172.17.1.1 port 22022
- scp OpenWrt initramfs-recovery.bin image to 172.17.1.1:/tmp
- Prepare bootloader config by running:
nvram setro uboot DebugFlag 0x1
nvram setro uboot CheckBypass 0
nvram commit
- Run "mtd_write -w write initramfs-recovery.bin Kernel" and reboot
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- (optional) Copy OpenWrt to the recovery partition. See below
- Sysupgrade to the OpenWrt sysupgrade image and reboot
Copying OpenWrt to the recovery partition:
- Verify that you are running a working OpenWrt recovery image
from flash
- ssh to root@192.168.1.1 and run:
fw_setenv CheckBypass 0
mtd -r erase Kernel2
- Wait while the bootloader mirrors Image1 to Image2
NOTE: This should only be done after successfully booting the OpenWrt
recovery image from the primary partition during installation. Do
not do this after having sysupgraded OpenWrt! Reinstalling the
recovery image on normal upgrades is not required or recommended.
Installation from Z-Loader:
- Halt boot by pressing Escape on console
- Set up a tftp server to serve the OpenWrt initramfs-recovery.bin
image at 10.10.10.3
- Type "ATNR 1,initramfs-recovery.bin" at the "ZLB>" prompt
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- Sysupgrade to the OpenWrt sysupgrade image
NOTE: ATNR will write the recovery image to both primary and recovery
partitions in one go.
Booting from RAM:
- Halt boot by pressing Escape on console
- Type "ATGU" at the "ZLB>" prompt to enter the U-Boot menu
- Press "4" to select "4: Entr boot command line interface."
- Set up a tftp server to serve the OpenWrt initramfs-recovery.bin
image at 10.10.10.3
- Load it using "tftpboot 0x88000000 initramfs-recovery.bin"
- Boot with "bootm 0x8800017C" to skip the 380 (0x17C) bytes ZyXEL
header
This method can also be used to RAM boot OEM firmware. The warning
regarding OEM applies! Never boot an unknown OEM firmware, or any OEM
firmware with a SIM in any slot.
NOTE: U-Boot configuration is incomplete (on some devices?). You may
have to configure a working mac address before running tftp using
"setenv eth0addr <mac>"
Unlocking the bootloader:
If you are unebale to halt boot, then the bootloader is locked.
The OEM firmware locks the bootloader on every boot by setting
DebugFlag to 0. Setting it to 1 is therefore only temporary
when OEM firmware is installed.
- Run "nvram setro uboot DebugFlag 0x1; nvram commit" in OEM firmware
- Run "fw_setenv DebugFlag 0x1" in OpenWrt
NOTE:
OpenWrt does this automatically on first boot if necessary
NOTE2:
Setting the flag to 0x1 avoids the reset to 0 in known OEM
versions, but this might change.
WARNING:
Writing anything to flash while the bootloader is locked is
considered extremely risky. Errors might cause a permanent
brick!
Enabling management access from LAN:
Temporary workaround to allow installing OpenWrt if OEM firmware
has disabled LAN management:
- Connect to console
- Log in as "root"
- Run "iptables -I INPUT -i br0 -j ACCEPT"
Notes on the OEM/bootloader dual partition scheme
The dual partition scheme on this device uses Image2 as a recovery
image only. The device will always boot from Image1, but the
bootloader might copy Image2 to Image1 under specific conditions. This
scheme prevents repurposing of the space occupied by Image2 in any
useful way.
Validation of primary and recovery images is controlled by the
variables CheckBypass, Image1Stable, and Image1Try.
The bootloader sets CheckBypass to 0 and reboots if Image1 fails
validation.
If CheckBypass is 0 and Image1 is invalid then Image2 is copied to
Image1.
If CheckBypass is 0 and Image2 is invalid, then Image1 is copied to
Image2.
If CheckBypass is 1 then all tests are skipped and Image1 is booted
unconditionally. CheckBypass is set to 1 after each successful
validation of Image1.
Image1Try is incremented if Image1Stable is 0, and Image2 is copied to
Image1 if Image1Try is 3 or larger. But the bootloader only tests
Image1Try if CheckBypass is 0, which is impossible unless the booted
image sets it to 0 before failing.
The system is therefore not resilient against runtime errors like
failure to mount the rootfs, unless the kernel image sets CheckBypass
to 0 before failing. This is not yet implemented in OpenWrt.
Setting Image1Stable to 1 prevents the bootloader from updating
Image1Try on every boot, saving unnecessary writes to the environment
partition.
Keeping an OpenWrt initramfs recovery as Image2 is recommended
primarily to avoid unwanted OEM firmware boots on failure. Ref the
warning above. It enables console-less recovery in case of some
failures to boot from Image1.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
|
|
|
|
|
|
|
|
| |
Some targets select HZ=100, others HZ=250. There's no reason to select a higher
timer frequency (and 100 Hz are available in every architecture), so change all
targets to 100 Hz.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
|
|
|
|
|
|
|
| |
For the targets which enable ubifs, these symbols are already part of the
generic kconfigs. Drop them from the target kconfigs.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
| |
MIPS Coherent Processor Systems (CPS), which include the MT7621 SoC, support
deep sleep idle states and have a specific cpuidle driver for them.
Enable support for it, while also switching from constant timer ticks to the
idle dynticks model, with the TEO governor.
Run-tested on a Redmi AC2100.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
So far, board.d files were having execute bit set and contained a
shebang. However, they are just sourced in board_detect, with an
apparantly unnecessary check for execute permission beforehand.
Replace this check by one for existance and make the board.d files
"normal" files, as would be expected in /etc anyway.
Note:
This removes an apparantly unused '#!/bin/sh /etc/rc.common' in
target/linux/bcm47xx/base-files/etc/board.d/01_network
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
| |
Run-tested on Ubiquiti EdgeRouter X.
Compile tested on all other subtargets.
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
|
|
|
|
|
|
| |
Strict copy, no changes made.
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
|
|
|
|
|
|
|
|
|
| |
This reverts commit b4aad29a1d7ad77d67073c1c54b28c429c64ed9b.
This was accidentally folded into a single commit. Remove it and
apply it properly again.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
| |
This config symbol should not be defined in target configs.
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Enable testing kernel.
Delete upstreamed patches:
0098-disable_cm.patch can be dropped, upstream fixed CM handling.
Fix compile errors by using new kernel APIs.
Fix fuzz by manually editing patches to ensure the code goes in the
right place.
For 721-NET-no-auto-carrier-off-support.patch, revert upstream commit
a307593a6 to keep the OpenWrt ralink driver operational.
Add mt7621-pci-phy patch to select REGMAP_MMIO as discussed in PR #3693
and #3952.
Rename patches to follow the 3-digit classification from the OpenWrt
Developer Guide.
Run automatic quilt refresh.
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
|
|
|
|
|
|
| |
Automatic refresh by running make kernel_oldconfig on each target.
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Netgear R6800 and R6700v2 devices have a Semtech SX1503 GPIO
expander controlling the device LEDs. This expander was initially
supported on 4.14, but support was lost in the transition to 5.4.
Since this driver cannot be built as a kernel module, enable it in the
kernel config for all mt7621 devices.
Run-tested on a Netgear R6800.
Cc: Stijn Segers <foss@volatilesystems.org>
Cc: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Tested-by: Stijn Segers <foss@volatilesystems.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The TP-Link EAP235-Wall is a wall-mounted, PoE-powered AC1200 access
point with four gigabit ethernet ports.
When connecting to the device's serial port, it is strongly advised to
use an isolated UART adapter. This prevents linking different power
domains created by the PoE power supply, which may damage your devices.
The device's U-Boot supports saving modified environments with
`saveenv`. However, there is no u-boot-env partition, and saving
modifications will cause the partition table to be overwritten. This is
not an issue for running OpenWrt, but will prevent the vendor FW from
functioning properly.
Device specifications:
* SoC: MT7621DAT
* RAM: 128MiB
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (MT7603EN): b/g/n, 2x2
* Wireless 5GHz (MT7613BEN): a/n/ac, 2x2
* Ethernet: 4× GbE
* Back side: ETH0, PoE PD port
* Bottom side: ETH1, ETH2, ETH3
* Single white device LED
* LED button, reset button (available for failsafe)
* PoE pass-through on port ETH3 (enabled with GPIO)
Datasheet of the flash chip specifies a maximum frequency of 33MHz, but
that didn't work. 20MHz gives no errors with reading (flash dump) or
writing (sysupgrade).
Device mac addresses:
Stock firmware uses the same MAC address for ethernet (on device label)
and 2.4GHz wireless. The 5GHz wireless address is incremented by one.
This address is stored in the 'info' ('default-mac') partition at an
offset of 8 bytes.
From OEM ifconfig:
eth a4:2b:b0:...:88
ra0 a4:2b:b0:...:88
rai0 a4:2b:b0:...:89
Flashing instructions:
* Enable SSH in the web interface, and SSH into the target device
* run `cliclientd stopcs`, this should return "success"
* upload the factory image via the web interface
Debricking:
U-boot can be interrupted during boot, serial console is 57600 baud, 8n1
This allows installing a sysupgrade image, or fixing the device in
another way.
* Access serial header from the side of the board, close to ETH3,
pin-out is (1:TX, 2:RX, 3:GND, 4:3.3V), with pin 1 closest to ETH3.
* Interrupt bootloader by holding '4' during boot, which drops the
bootloader into its shell
* Change default 'serverip' and 'ipaddr' variables (optional)
* Download initramfs with `tftpboot`, and boot image with `bootm`
# tftpboot 84000000 openwrt-initramfs.bin
# bootm
Revert to stock:
Using the tplink-safeloader utility from the firmware-utils package,
TP-Link's firmware image can be converted to an OpenWrt-compatible
sysupgrade image:
$ ./staging_dir/host/bin/tplink-safeloader -B EAP235-WALL-V1 \
-z EAP235-WALLv1_XXX_up_signed.bin -o eap235-sysupgrade.bin
This can then be flashed using the OpenWrt sysupgrade interface. The
image will appear to be incompatible and must be force flashed, without
keeping the current configuration.
Known issues:
- DFS support is incomplete (known issue with MT7613)
- MT7613 radio may stop responding when idling, reboot required.
This was an issue with the ddc75ff704 version of mt76, but appears to
have improved/disappeared with bc3963764d.
Error notice example:
[ 7099.554067] mt7615e 0000:02:00.0: Message 73 (seq 1) timeout
Hardware was kindly provided for porting by Stijn Segers.
Tested-by: Stijn Segers <foss@volatilesystems.org>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
JCG Y2 is an AC1300M router
Hardware specs:
SoC: MediaTek MT7621AT
Flash: Winbond W25Q128JVSQ 16MiB
RAM: Nanya NT5CB128M16 256MiB
WLAN: 2.4/5 GHz 2T2R (1x MediaTek MT7615)
Ethernet: 10/100/1000 Mbps x5
LED: POWER, INTERNET, 2.4G, 5G
Button: Reset
Power: DC 12V,1A
Flash instructions:
Upload factory.bin in stock firmware's upgrade page.
MAC addresses map:
0x0004 *:c8 wlan2g/wlan5g/label
0xe000 *:c7 lan
0xe006 *:c6 wan
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
|
|
|
|
|
|
|
| |
shellcheck recommends || and && over "-a" and "-o" because the
latter are not well defined.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I-O DATA WN-DX1200GR is a 2.4/5 GHz band 11ac (WiFi-5) router, based on
MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 128 MiB
- Flash : raw NAND 128 MiB
- WLAN : 2.4/5 GHz 2T2R
- 2.4 GHz : MediaTek MT7603E
- 5 GHz : MediaTek MT7613BE
- Ethernet : 10/100/1000 Mbps x5
- Switch : MediaTek MT7530 (SoC)
- LEDs/keys : 2x/3x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J5: 3.3V, TX, RX, NC, GND from triangle-mark
- 57600n8
- Power : 12 VDC, 1 A
Flash instruction using initramfs image:
1. Boot WN-DX1200GR normally
2. Access to "http://192.168.0.1/" and open firmware update page
("ファームウェア")
3. Select the OpenWrt initramfs image and click update ("更新") button
to perform firmware update
4. On the initramfs image, perform sysupgrade with the
squashfs-sysupgrade image
5. Wait ~120 seconds to complete flashing
Notes:
- currently, mt7615e driver in mt76 doesn't fully support MT7613
(MT7663) wifi chip
- the eeprom data in flash is not used by mt7615e driver and the
driver reports the tx-power up to 3dBm
- the correct MAC address for MT7613BE in eeprom data cannot be
assigned to the phy
- last 0x80000 (512 KiB) in NAND flash is not used on stock firmware
- stock firmware requires "customized uImage header" (called as "combo
image") by MSTC (MitraStar Technology Corp.), but U-Boot doesn't
- uImage magic ( 0x0 - 0x3 ) : 0x434F4D43 ("COMC")
- header crc32 ( 0x4 - 0x7 ) : with "data length" and "data crc32"
- image name (0x20 - 0x37) : model ID and firmware versions
- data length (0x38 - 0x3b) : kernel + rootfs
- data crc32 (0x3c - 0x3f) : kernel + rootfs
MAC addresses:
LAN: 50:41:B9:xx:xx:08 (Ubootenv, ethaddr (text) / Factory, 0x1E000 (hex))
WAN: 50:41:B9:xx:xx:0A (Factory, 0x1E006 (hex))
2.4GHz: 50:41:B9:xx:xx:08 (Factory, 0x4 (hex))
5GHz: 50:41:B9:xx:xx:09 (Factory, 0x8004 (hex))
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[add check whether dflag_offset is set]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ELECOM WRC-2533GHBK-I is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 128 MiB
- Flash : SPI-NOR 16 MiB
- WLAN : 2.4/5 GHz 4T4R (2x MediaTek MT7615)
- Ethernet : 10/100/1000 Mbps x5
- Switch : MediaTek MT7530 (SoC)
- LED/keys : 4x/3x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J4: 3.3V, RX, GND, TX from SoC side
- 57600n8
- Power : 12VDC, 1.5A
Flash instruction using factory image:
1. Boot WRC-2533GHBK-I normally
2. Access to "http://192.168.2.1/" and open firmware update page
("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~150 seconds to complete flashing
MAC addresses:
LAN : BC:5C:4C:xx:xx:89 (Config, ethaddr (text))
WAN : BC:5C:4C:xx:xx:88 (Config, wanaddr (text))
2.4GHz : BC:5C:4C:xx:xx:8A (Factory, 0x4 (hex))
5GHz : BC:5C:4C:xx:xx:8B (Factory, 0x8004 (hex))
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On a platform with many very different devices, like found on ramips,
the generic profiles seem like remnants of the past that do not
have a real use anymore.
Remove them to have one thing less to maintain.
Actually, rt288x didn't have a default profile in the first place.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Paul Spooren <mail@aparcar.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Xiaomi Mi Router 4 is the same as Xiaomi Mi Router 3G, except for
the RAM (256Mib→128Mib), LEDs and gpio (MiNet button).
Specifications:
Power: 12 VDC, 1 A
Connector type: barrel
CPU1: MediaTek MT7621A (880 MHz, 4 cores)
FLA1: 128 MiB (ESMT F59L1G81MA)
RAM1: 128 MiB (ESMT M15T1G1664A)
WI1 chip1: MediaTek MT7603EN
WI1 802dot11 protocols: bgn
WI1 MIMO config: 2x2:2
WI1 antenna connector: U.FL
WI2 chip1: MediaTek MT7612EN
WI2 802dot11 protocols: an+ac
WI2 MIMO config: 2x2:2
WI2 antenna connector: U.FL
ETH chip1: MediaTek MT7621A
Switch: MediaTek MT7621A
UART Serial
[o] TX
[o] GND
[o] RX
[ ] VCC - Do not connect it
MAC addresses as verified by OEM firmware:
use address source
LAN *:c2 factory 0xe000 (label)
WAN *:c3 factory 0xe006
2g *:c4 factory 0x0000
5g *:c5 factory 0x8000
Flashing instructions:
1.Create a simple http server (nginx etc)
2.set uart enable
To enable writing to the console, you must reset to factory settings
Then you see uboot boot, press the keyboard 4 button (enter uboot command line)
If it is not successful, repeat the above operation of restoring the factory settings.
After entering the uboot command line, type:
setenv uart_en 1
saveenv
boot
3.use shell in uart
cd /tmp
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin kernel1
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin rootfs0
nvram set flag_try_sys1_failed=1
nvram commit
reboot
4.login to the router http://192.168.1.1/
Installation via Software exploit
Find the instructions in the https://github.com/acecilia/OpenWRTInvasion
Signed-off-by: Dmytro Oz <sequentiality@gmail.com>
[commit message facelift, rebase onto shared DTSI/common device
definition, bump uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
| |
The removed config symbols are already enabled by the generic kernel
configuration (or by default), while the added ones are forcefully
enabled by the specific architecture.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Hardware
--------
MediaTek MT7621AT
256M DDR3
32M SPI-NOR
MediaTek MT7603 2T2R 802.11n 2.4GHz
MediaTek MT7915 2T2R 802.11ax 5GHz
Not Working
-----------
- Bluetooth (connected to UART3)
UART
----
UART is located in the lower left corner of the board. Pinout is
0 - 3V3 (don't connect)
1 - RX
2 - TX
3 - GND
Console is 115200 8N1.
Boot
----
1. Connect to the serial console and connect power.
2. Double-press ESC when prompted
3. Set the fdt address
$ fdt addr $(fdtcontroladdr)
4. Remove the signature node from the control FDT
$ fdt rm /signature
5. Transfer and boot the OpenWrt initramfs image to the device.
Make sure to name the file C0A80114.img and have it reachable at
192.168.1.1/24
$ tftpboot; bootm
Installation
------------
1. Connect to the booted device at 192.168.1.20 using username/password
"ubnt".
2. Update the bootloader environment.
$ fw_setenv devmode TRUE
$ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr);
fdt rm /signature; bootubnt"
$ fw_setenv bootcmd "run boot_openwrt"
3. Transfer the OpenWrt sysupgrade image to the device using SCP.
4. Check the mtd partition number for bs / kernel0 / kernel1
$ cat /proc/mtd
5. Set the bootselect flag to boot from kernel0
$ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4
6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1
$ dd if=openwrt.bin of=/dev/mtdblock6
$ dd if=openwrt.bin of=/dev/mtdblock7
7. Reboot the device. It should boot into OpenWrt.
Below are the original installation instructions prior to the discovery
of "devmode=TRUE". They are not required for installation and are
documentation only.
The bootloader employs signature verification on the FIT image
configurations. This way, booting unauthorized image without patching
the bootloader is not possible. Manually configuring the bootcmd in the
U-Boot envronment won't work, as this is restored to the default value
if modified.
The bootloader is made up of three different parts.
1. The SPL performing early board initialization and providing a XModem
recovery in case the PBL is missing
2. The PBL being the primary U-Boot application and containing the
control FDT. It is LZMA packed with a uImage header.
3. A Ubiquiti standalone U-Boot application providing the main boot
routine as well as their recovery mechanism.
In a perfect world, we would only replace the PBL, as the SPL does not
perform checks on the PBLs integrity. However, as the PBL is in the same
eraseblock as the SPL, we need to at least rewrite both.
The bootloader will only verify integrity in case it has a "signature"
node in it's control device-tree. Renaming the signature node to
something else will prevent this from happening.
Warning: These instructions are based on the firmware intially
shipped with the device and potentially brick your device in a way it
can only be recovered using a SPI flasher.
Only (!) proceed if you understand this!
1. Extract the bootloader from the U-Boot partition using the OpenWrt
initramfs image.
2. Split the bootloader into it's 3 components:
$ dd if=bootloader.bin of=spl.bin bs=1 skip=0 count=45056
$ dd if=bootloader.bin of=pbl.uimage bs=1 skip=45056 count=143360
$ dd if=bootloader.bin of=ubnt.uimage bs=1 skip=188416
3. Strip the uImage header from the PBL
$ dd if=pbl.uimage of=pbl.lzma bs=64 skip=1
4. Decompress the PBL
$ lzma -d pbl.lzma --single-stream
The decompressed PBL sha256sum should be
d8b406c65240d260cf15be5f97f40c1d6d1b6e61ec3abed37bb841c90fcc1235
5. Open the decompressed PBL using your favorite hexeditor. Locate the
control FDT at offset 0x4CED0 (0xD00DFEED). At offset 0x4D5BC, the
label for the signature node is located. Rename the "signature"
string at this offset to "signaturr".
The patched PBL sha256sum should be
d028e374cdb40ba44b6e3cef2e4e8a8c16a3b85eb15d9544d24fdd10eed64c97
6. Compress the patched PBL
$ lzma -z pbl --lzma1=dict=67108864
The resulting pbl.lzma file should have the sha256sum
7ae6118928fa0d0b3fe4ff81abd80ecfd9ba2944cb0f0a462b6ae65913088b42
7. Create the PBL uimage
$ SOURCE_DATE_EPOCH=1607909492 mkimage -A mips -O u-boot -C lzma
-n "U-Boot 2018.03 [UniFi,v1.1.40.71]" -a 84000000 -e 84000000
-T firmware -d pbl.lzma patched_pbl.uimage
The resulting patched_pbl.uimage should have the sha256sum
b90d7fa2dcc6814180d3943530d8d6b0d6a03636113c94e99af34f196d3cf2ce
8. Reassemble the complete bootloader
$ dd if=patched_pbl.uimage of=aligned_pbl.uimage bs=143360 count=1
conv=sync
$ cat spl.bin > patched_uboot.bin
$ cat aligned_pbl.uimage >> patched_uboot.bin
$ cat ubnt.uimage >> patched_uboot.bin
The resulting patched_uboot.bin should have the sha256sum
3e1186f33b88a525687285c2a8b22e8786787b31d4648b8eee66c672222aa76b
9. Transfer your patched bootloader to the device. Also install the
kmod-mtd-rw package using opkg and load it.
$ insmod mtd-rw.ko i_want_a_brick=1
Write the patched bootloader to mtd0
$ mtd write patched_uboot.bin u-boot
10. Erase the kernel1 partition, as the bootloader might otherwise
decide to boot from there.
$ mtd erase kernel1
11. Transfer the OpenWrt sysupgrade image to the device and install
using sysupgrade.
FIT configurations
------------------
In the future, the MT7621 UniFi6 family can be supported by a single
OpenWrt image.
config@1: U6 Lite
config@2: U6 IW
config@3: U6 Mesh
config@4: U6 Extender
config@5: U6 LR-EA (Early Access - GA is MT7622)
Signed-off-by: David Bauer <mail@david-bauer.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 128 MB (DDR3)
- Flash: 16 MB (SPI NOR)
- WiFi: MediaTek MT7615N (x2)
- Switch: 1 WAN, 4 LAN (Gigabit)
- Ports: 1 USB 2.0, 1 USB 3.0
- Buttons: Reset, WiFi Toggle, WPS
- LEDs: Power, Internet, WiFi 2.4G WiFi 5G, USB 2.0, USB 3.0
The R1 revision is identical to the A1 revision except
- No Config2 Parition, therefore
- factory partition resized to 64k from 128K
- Firmware partition offset is 0x50000 not 0x60000
- Firmware partitions size increased by 64K
- Firmware partition type is "denx,uimage", not "sge,uimage"
- Padding of image creation "uimage-padhdr 96" removed
Installation:
- Older firmware versions: put the factory image on a USB stick, turn on
the telnet console, and flash using the following cmd
"fw_updater Linux /mnt/usb_X_X/firmware.bin"
- D-Link FailsafeUI:
Power down the router, press and hold the reset button, then
re-plug it. Keep the reset button pressed until the internet LED stops
flashing, then jack into any lan port and manually assign a static IP
address in 192.168.0.0/24 other than 192.168.0.0 (e.g. 192.168.0.2)
and go to http://192.168.0.1
Flash with the factory image.
Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
|
|
|
|
|
|
| |
Move some disabled config options found in lantiq target to generic.
Signed-off-by: Aleksander Jan Bajkowski <A.Bajkowski@stud.elka.pw.edu.pl>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit "initramfs: switch to tmpfs to fix ujail" switched initramfs to
now use tmpfs, it causes $(rootfs_type) to now return tmpfs when
running initramfs image instead of being empty.
This broke initramfs detection which is required so that when installing
on MikroTik devices firmware partition would first get erased fully
before writing.
So, lets test for $(rootfs_type) returning "tmpfs" instead.
Fixes: 7fd3c68 ("initramfs: switch to tmpfs to fix ujail)
Signed-off-by: Robert Marko <robimarko@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The GL-MT1300 is a high-performance new generation pocket-sized router
that offers a powerful hardware and first-class cybersecurity protocol
with unique and modern design.
Specifications:
- SoC: MT7621A, Dual-Core @880MHz
- RAM: 256 MB DDR3
- Flash: 32 MB
- Ethernet: 3 x 10/100/1000: 2 x LAN + 1 x WAN
- Wireless: 1 x MT7615D Dual-Band 2.4GHz(400Mbps) + 5GHz(867Mbps)
- USB: 1 x USB 3.0 port
- Slot: 1 x MicroSD card slot
- Button: 1 x Reset button
- Switch: 1 x Mode switch
- LED: 1 x Blue LED + 1 x White LED
MAC addresses based on vendor firmware:
WAN : factory 0x4000
LAN : Mac from factory 0x4000 + 1
2.4GHz : factory 0x4
5GHz : Mac form factory 0x4 + 1
Flashing instructions:
1.Connect to one of LAN ports.
2.Set the static IP on the PC to 192.168.1.2.
3.Press the Reset button and power the device (do not release the button).
After waiting for the blue led to flash 5 times, the white led will
come on and release the button.
4.Browse the 192.168.1.1 web page and update firmware according to web
tips.
5.The blue led will flash when the firmware is being upgraded.
6.The blue led stops blinking to indicate that the firmware upgrade is
complete and U-Boot automatically starts the firmware.
For more information on GL-MT1300, see the OFFICIAL GL.iNet website:
https://www.gl-inet.com/products/gl-mt1300/
Signed-off-by: Xinfa Deng <xinfa.deng@gl-inet.com>
[add input-type for switch, wrap long line in 10_fix_wifi_mac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
| |
This aligns the device/image names of the older Xiaomi Mi Router
devices with their "friendly" model and DEVICE_MODEL properties.
This also reintroduces consistency with the newer devices already
following that scheme.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Specifications:
SoC: MediaTek MT7621ST (880 MHz)
FLASH: 16 MiB (Macronix MX25L12835FM2I-10G)
RAM: 128 MiB (Nanya NT5CB64M16FP-DH)
WiFi: MediaTek MT7603EN bgn 2x2:2
WiFi: MediaTek MT7612EN an 2x2:2
BTN: Reset, WPS
LED: - Power
- WiFi 2.4 GHz
- WiFi 5 GHz
- WAN
- LAN {1-4}
- USB {1-2}
UART: UART is present as pin hole next to the aluminium capacitor.
3V3 - RX - GND - TX / 115200-8N1
3V3 is the nearest on the aluminium capacitor and nut hole (pin1).
USB: 2 ports
POWER: 12VDC, 1.5A (Barrel 5.5x2.1)
Installation:
Via TFTP:
Set your computers IP-Address to 192.168.1.75
Power up the Router with the Reset button pressed.
Release the Reset button after 5 seconds.
Upload OpenWRT sysupgrade image via TFTP:
tftp -4 -v -m binary 192.168.1.1 -c put IMAGE
MAC addresses:
0x4 *:98 2g/wan, label
0x22 *:9c
0x28 *:98
0x8004 *:9c 5g/lan
Though addresses are written to 0x22 and 0x28, it appears that the
vendor firmware actually only uses 0x4 and 0x8004. Thus, we do the
same here.
Signed-off-by: Pavel Chervontsev <cherpash@gmail.com>
[add MAC address overview, add label-mac-device, fix IMAGE_SIZE]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
| |
The GPIO base of MT7621 GPIO 0~31 is 480 on kernel 5.4
Fix the GPIO numbering.
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This device has previously been supported by the image
for Xiaomi Mi Router 3G v2. Since this is not obvious, the
4A is marketed as a new major revision and it also seems to
have a different bootloader, this will be both more tidy and
more helpful for the users.
Apart from that, note that there also is a 100M version of
the device that uses mt7628 platform, so a specifically named
image will also prevent confusion in this area.
Specifications:
- SoC: MediaTek MT7621
- Flash: 16 MiB NOR SPI
- RAM: 128 MiB DDR3
- Ethernet: 3x 10/100/1000 Mbps (switched, 2xLAN + WAN)
- WIFI0: MT7603E 2.4GHz 802.11b/g/n
- WIFI1: MT7612E 5GHz 802.11ac
- Antennas: 4x external (2 per radio), non-detachable
- LEDs: Programmable "power" LED (two-coloured, yellow/blue)
Non-programmable "internet" LED (shows WAN activity)
- Buttons: Reset
Installation:
Bootloader won't accept any serial input unless "boot_wait" u-boot
environment variable is changed to "on".
Vendor firmware won't accept any serial input until "uart_en" is
set to "1".
Using the https://github.com/acecilia/OpenWRTInvasion exploit you
can gain access to shell to enable these options:
To enable uart keyboard actions - 'nvram set uart_en=1'
To make uboot delay boot work - 'nvram set boot_wait=on'
Set boot delay to 5 - 'nvram set bootdelay=5'
Then run 'nvram commit' to make the changes permanent.
Once in the shell (following the OpenWRTInvasion instructions) you
can then run the following to flash OpenWrt and then reboot:
'cd /tmp; curl https://downloads.openwrt.org/...-sysupgrade.bin
--output firmware.bin; mtd -e OS1 -r write firmware.bin OS1'
Suggested-by: David Bentham <db260179@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for D-Link DIR-2640 A1.
Specifications:
* Board: AP-MTKH7-0002
* SoC: MediaTek MT7621AT
* RAM: 256 MB (DDR3)
* Flash: 128 MB (NAND)
* WiFi: MediaTek MT7615N (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 2.0, 1 USB 3.0
* Buttons: Reset, WPS
* LEDs: Power (blue/orange), Internet (blue/orange), WiFi 2.4G (blue),
WiFi 5G (blue), USB 3.0 (blue), USB 2.0 (blue)
Notes:
* WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips
Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
button, then re-plug it. Keep the reset button pressed until the power
LED starts flashing orange, manually assign a static IP address under
the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1
* Some modern browsers may have problems flashing via the Recovery GUI,
if that occurs consider uploading the firmware through cURL:
curl -v -i -F "firmware=@file.bin" 192.168.0.1
MAC addresses:
lan factory 0xe000 *:a7 (label)
wan factory 0xe006 *:aa
2.4 factory 0xe000 +1 *:a8
5.0 factory 0xe000 +2 *:a9
Seems like vendor didn't replace the dummy entries in the calibration data.
Signed-off-by: James McGuire <jamesm51@gmail.com>
[fix device definition title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
| |
- minimal built initramfs: 11MB vmlinux ELF -> 4.5MB vmlinuz
- ~5 seconds for kernel decompression, which was equivalent to the
additional time to load the uncompressed ELF from SPI NOR.
- Removes requirement for lzma-loader, which may have been causing some
image builds to fail to boot on Mikrotik mt7621.
Fixes: FS#3354
Suggested-by: Thibaut VARÈNE <hacks@slashdirt.org>
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While we mostly use the ucidef_set_led_* functions directly in 01_leds
we still have the set_wifi_led function in parallel for several old
devices. This is not only inconsistent with the other definitions,
it also links to the wlan0 interface instead of using a phy trigger
which would be independent of the interface name (and is used for
all newer devices anyway). Apart from that, the standard names
"wifi" and "wifi-led" are not very helpful in a world with different
radio bands either.
Thus, this patch removes the set_wifi_led function and puts the
relevant commands into the cases explicitly. This makes the
mechanism used more evident and will hopefully lead to some future
improvements or at least prevent some copy-pasting of the old
setups.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In ramips, it's not common to use an alias for specifying the WiFi
LED; actually only one device uses this mechanism (TL-WR841N v14).
Particularly since the WiFi LEDs are typically distinguished between
2.4G and 5G etc. it is also not very useful for this target.
Thus, this patch removes the setup lines for this mechanism and
converts the TL-WR841N v14 to the normal setup.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Like in the previous patch for ath79 target, this will remove the
"devicename" from LED labels in ramips as well.
The devicename is removed in DTS files and 01_leds, consolidation
of definitions into DTSI files is done where (easily) possible,
and migration scripts are updated.
For the latter, all existing definitions were actually just
devicename migrations anyway. Therefore, those are removed and
a common migration file is created in target base-files. This is
actually another example of how the devicename removal makes things
easier.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|