aboutsummaryrefslogtreecommitdiffstats
path: root/package/kernel/button-hotplug/src/Kconfig
Commit message (Expand)AuthorAgeFilesLines
* packages: clean up the package folderJohn Crispin2013-06-211-0/+2
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
.. hazmat::

RSA
===

.. currentmodule:: cryptography.hazmat.primitives.asymmetric.rsa

`RSA`_ is a `public-key`_ algorithm for encrypting and signing messages.

Generation
~~~~~~~~~~

.. function:: generate_private_key(public_exponent, key_size, backend)

    .. versionadded:: 0.5

    Generate an RSA private key using the provided ``backend``.

    :param int public_exponent: The public exponent of the new key.
        Usually one of the small Fermat primes 3, 5, 17, 257, 65537. If in
        doubt you should `use 65537`_.
    :param int key_size: The length of the modulus in bits. For keys
        generated in 2014 it is strongly recommended to be
        `at least 2048`_ (See page 41). It must not be less than 512.
        Some backends may have additional limitations.
    :param backend: A
        :class:`~cryptography.hazmat.backends.interfaces.RSABackend`
        provider.
    :return: A :class:`~cryptography.hazmat.primitives.interfaces.RSAPrivateKey`
        provider.

    :raises cryptography.exceptions.UnsupportedAlgorithm: This is raised if
        the provided ``backend`` does not implement
        :class:`~cryptography.hazmat.backends.interfaces.RSABackend`

Signing
~~~~~~~

Using a :class:`~cryptography.hazmat.primitives.interfaces.RSAPrivateKey`
provider.

.. doctest::

    >>> from cryptography.hazmat.backends import default_backend
    >>> from cryptography.hazmat.primitives import hashes
    >>> from cryptography.hazmat.primitives.asymmetric import rsa, padding
    >>> private_key = rsa.generate_private_key(
    ...     public_exponent=65537,
    ...     key_size=2048,
    ...     backend=default_backend()
    ... )
    >>> signer = private_key.signer(
    ...     padding.PSS(
    ...         mgf=padding.MGF1(hashes.SHA256()),
    ...         salt_length=padding.PSS.MAX_LENGTH
    ...     ),
    ...     hashes.SHA256()
    ... )
    >>> signer.update(b"this is some data I'd like")
    >>> signer.update(b" to sign")
    >>> signature = signer.finalize()


Verification
~~~~~~~~~~~~

Using a :class:`~cryptography.hazmat.primitives.interfaces.RSAPublicKey`
provider.

.. doctest::

    >>> public_key = private_key.public_key()
    >>> verifier = public_key.verifier(
    ...     signature,
    ...     padding.PSS(
    ...         mgf=padding.MGF1(hashes.SHA256()),
    ...         salt_length=padding.PSS.MAX_LENGTH
    ...     ),
    ...     hashes.SHA256()
    ... )
    >>> data = b"this is some data I'd like to sign"
    >>> verifier.update(data)
    >>> verifier.verify()

Encryption
~~~~~~~~~~

Using a :class:`~cryptography.hazmat.primitives.interfaces.RSAPublicKey`
provider.

.. doctest::

    >>> from cryptography.hazmat.backends import default_backend
    >>> from cryptography.hazmat.primitives import hashes
    >>> from cryptography.hazmat.primitives.asymmetric import padding

    >>> # Generate a key
    >>> private_key = rsa.generate_private_key(
    ...     public_exponent=65537,
    ...     key_size=2048,
    ...     backend=default_backend()
    ... )
    >>> public_key = private_key.public_key()
    >>> # encrypt some data
    >>> ciphertext = public_key.encrypt(
    ...     b"encrypted data",
    ...     padding.OAEP(
    ...         mgf=padding.MGF1(algorithm=hashes.SHA1()),
    ...         algorithm=hashes.SHA1(),
    ...         label=None
    ...     )
    ... )

Decryption
~~~~~~~~~~

Using a :class:`~cryptography.hazmat.primitives.interfaces.RSAPrivateKey`
provider.

.. doctest::

    >>> plaintext = private_key.decrypt(
    ...     ciphertext,
    ...     padding.OAEP(
    ...         mgf=padding.MGF1(algorithm=hashes.SHA1()),
    ...         algorithm=hashes.SHA1(),
    ...         label=None
    ...     )
    ... )

Numbers
~~~~~~~

These classes hold the constituent components of an RSA key. They are useful
only when more traditional :doc:`/hazmat/primitives/asymmetric/serialization`
is unavailable.

.. class:: RSAPublicNumbers(e, n)

    .. versionadded:: 0.5

    The collection of integers that make up an RSA public key.

    .. attribute:: n

        :type: int

        The public modulus.

    .. attribute:: e

        :type: int

        The public exponent.

    .. method:: public_key(backend)

        :param backend: A
            :class:`~cryptography.hazmat.backends.interfaces.RSABackend`
            provider.

        :returns: A new instance of a
            :class:`~cryptography.hazmat.primitives.interfaces.RSAPublicKey`
            provider.

.. class:: RSAPrivateNumbers(p, q, d, dmp1, dmq1, iqmp, public_numbers)

    .. versionadded:: 0.5

    The collection of integers that make up an RSA private key.

    .. warning::

        With the exception of the integers contained in the
        :class:`RSAPublicNumbers` all attributes of this class must be kept
        secret. Revealing them will compromise the security of any
        cryptographic operations performed with a key loaded from them.

    .. attribute:: public_numbers

        :type: :class:`~cryptography.hazmat.primitives.rsa.RSAPublicNumbers`

        The :class:`RSAPublicNumbers` which makes up the RSA public key
        associated with this RSA private key.

    .. attribute:: p

        :type: int

        ``p``, one of the two primes composing the :attr:`modulus`.

    .. attribute:: q

        :type: int

        ``q``, one of the two primes composing the :attr:`modulus`.

    .. attribute:: d

        :type: int

        The private exponent. Alias for :attr:`private_exponent`.

    .. attribute:: dmp1

        :type: int

        A `Chinese remainder theorem`_ coefficient used to speed up RSA
        operations. Calculated as: d mod (p-1)

    .. attribute:: dmq1

        :type: int

        A `Chinese remainder theorem`_ coefficient used to speed up RSA
        operations. Calculated as: d mod (q-1)

    .. attribute:: iqmp

        :type: int

        A `Chinese remainder theorem`_ coefficient used to speed up RSA
        operations. Calculated as: q\ :sup:`-1` mod p

    .. method:: private_key(backend)

        :param backend: A new instance of a
            :class:`~cryptography.hazmat.backends.interfaces.RSABackend`
            provider.

        :returns: A
            :class:`~cryptography.hazmat.primitives.interfaces.RSAPrivateKey`
            provider.

Handling partial RSA private keys
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you are trying to load RSA private keys yourself you may find that not all
parameters required by ``RSAPrivateNumbers`` are available. In particular the
`Chinese Remainder Theorem`_ (CRT) values ``dmp1``, ``dmq1``, ``iqmp`` may be
missing or present in a different form. For example `OpenPGP`_ does not include
the ``iqmp``, ``dmp1`` or ``dmq1`` parameters.

The following functions are provided for users who want to work with keys like
this without having to do the math themselves.

.. function:: rsa_crt_iqmp(p, q)

    .. versionadded:: 0.4

    Generates the ``iqmp`` (also known as ``qInv``) parameter from the RSA
    primes ``p`` and ``q``.

.. function:: rsa_crt_dmp1(private_exponent, p)

    .. versionadded:: 0.4

    Generates the ``dmp1`` parameter from the RSA private exponent and prime
    ``p``.

.. function:: rsa_crt_dmq1(private_exponent, q)

    .. versionadded:: 0.4

    Generates the ``dmq1`` parameter from the RSA private exponent and prime
    ``q``.


.. _`RSA`: https://en.wikipedia.org/wiki/RSA_(cryptosystem)
.. _`public-key`: https://en.wikipedia.org/wiki/Public-key_cryptography
.. _`use 65537`: http://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
.. _`at least 2048`: http://www.ecrypt.eu.org/documents/D.SPA.20.pdf
.. _`OpenPGP`: https://en.wikipedia.org/wiki/Pretty_Good_Privacy
.. _`Chinese Remainder Theorem`: https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Using_the_Chinese_remainder_algorithm