aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/generic/patches-4.4/090-MIPS-c-r4k-Use-IPI-calls-for-CM-indexed-cache-ops.patch
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/generic/patches-4.4/090-MIPS-c-r4k-Use-IPI-calls-for-CM-indexed-cache-ops.patch')
-rw-r--r--target/linux/generic/patches-4.4/090-MIPS-c-r4k-Use-IPI-calls-for-CM-indexed-cache-ops.patch317
1 files changed, 0 insertions, 317 deletions
diff --git a/target/linux/generic/patches-4.4/090-MIPS-c-r4k-Use-IPI-calls-for-CM-indexed-cache-ops.patch b/target/linux/generic/patches-4.4/090-MIPS-c-r4k-Use-IPI-calls-for-CM-indexed-cache-ops.patch
deleted file mode 100644
index 0c1c0a4509..0000000000
--- a/target/linux/generic/patches-4.4/090-MIPS-c-r4k-Use-IPI-calls-for-CM-indexed-cache-ops.patch
+++ /dev/null
@@ -1,317 +0,0 @@
-From: James Hogan <james.hogan@imgtec.com>
-Date: Mon, 25 Jan 2016 21:30:00 +0000
-Subject: [PATCH] MIPS: c-r4k: Use IPI calls for CM indexed cache ops
-
-The Coherence Manager (CM) can propagate address-based ("hit") cache
-operations to other cores in the coherent system, alleviating software
-of the need to use IPI calls, however indexed cache operations are not
-propagated since doing so makes no sense for separate caches.
-
-r4k_on_each_cpu() previously had a special case for CONFIG_MIPS_MT_SMP,
-intended to avoid the IPIs when the only other CPUs in the system were
-other VPEs in the same core, and hence sharing the same caches. This was
-changed by commit cccf34e9411c ("MIPS: c-r4k: Fix cache flushing for MT
-cores") to apparently handle multi-core multi-VPE systems, but it
-focussed mainly on hit cache ops, so the IPI calls were still disabled
-entirely for CM systems.
-
-This doesn't normally cause problems, but tests can be written to hit
-these corner cases by using multiple threads, or changing task
-affinities to force the process to migrate cores. For example the
-failure of mprotect RW->RX to globally sync icaches (via
-flush_cache_range) can be detected by modifying and mprotecting a code
-page on one core, and migrating to a different core to execute from it.
-
-Most of the functions called by r4k_on_each_cpu() perform cache
-operations exclusively with a single addressing-type (virtual address vs
-indexed), so add a type argument and modify the callers to pass in
-R4K_USER (user virtual addressing), R4K_KERN (global kernel virtual
-addressing) or R4K_INDEX (index into cache).
-
-local_r4k_flush_icache_range() is split up, to allow it to be called
-from the rest of the kernel, or from r4k_flush_icache_range() where it
-will choose either indexed or hit cache operations based on the size of
-the range and the cache sizes.
-
-local_r4k_flush_kernel_vmap_range() is split into two functions, each of
-which uses cache operations with a single addressing-type, with
-r4k_flush_kernel_vmap_range() making the decision whether to use indexed
-cache ops or not.
-
-Signed-off-by: James Hogan <james.hogan@imgtec.com>
-Cc: Ralf Baechle <ralf@linux-mips.org>
-Cc: Paul Burton <paul.burton@imgtec.com>
-Cc: Leonid Yegoshin <leonid.yegoshin@imgtec.com>
-Cc: linux-mips@linux-mips.org
----
-
---- a/arch/mips/mm/c-r4k.c
-+++ b/arch/mips/mm/c-r4k.c
-@@ -40,6 +40,50 @@
- #include <asm/mips-cm.h>
-
- /*
-+ * Bits describing what cache ops an IPI callback function may perform.
-+ *
-+ * R4K_USER - Virtual user address based cache operations.
-+ * Ineffective on other CPUs.
-+ * R4K_KERN - Virtual kernel address based cache operations (including kmap).
-+ * Effective on other CPUs.
-+ * R4K_INDEX - Index based cache operations.
-+ * Effective on other CPUs.
-+ */
-+
-+#define R4K_USER BIT(0)
-+#define R4K_KERN BIT(1)
-+#define R4K_INDEX BIT(2)
-+
-+#ifdef CONFIG_SMP
-+/* The Coherence manager propagates address-based cache ops to other cores */
-+#define r4k_hit_globalized mips_cm_present()
-+#define r4k_index_globalized 0
-+#else
-+/* If there's only 1 CPU, then all cache ops are globalized to that 1 CPU */
-+#define r4k_hit_globalized 1
-+#define r4k_index_globalized 1
-+#endif
-+
-+/**
-+ * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
-+ * @type: Type of cache operations (R4K_USER, R4K_KERN or R4K_INDEX).
-+ *
-+ * Returns: 1 if the cache operation @type should be done on every core in
-+ * the system.
-+ * 0 if the cache operation @type is globalized and only needs to
-+ * be performed on a simple CPU.
-+ */
-+static inline bool r4k_op_needs_ipi(unsigned int type)
-+{
-+ /*
-+ * If hardware doesn't globalize the required cache ops we must use IPIs
-+ * to do so.
-+ */
-+ return (type & R4K_KERN && !r4k_hit_globalized) ||
-+ (type & R4K_INDEX && !r4k_index_globalized);
-+}
-+
-+/*
- * Special Variant of smp_call_function for use by cache functions:
- *
- * o No return value
-@@ -48,19 +92,11 @@
- * primary cache.
- * o doesn't disable interrupts on the local CPU
- */
--static inline void r4k_on_each_cpu(void (*func) (void *info), void *info)
-+static inline void r4k_on_each_cpu(unsigned int type,
-+ void (*func) (void *info), void *info)
- {
- preempt_disable();
--
-- /*
-- * The Coherent Manager propagates address-based cache ops to other
-- * cores but not index-based ops. However, r4k_on_each_cpu is used
-- * in both cases so there is no easy way to tell what kind of op is
-- * executed to the other cores. The best we can probably do is
-- * to restrict that call when a CM is not present because both
-- * CM-based SMP protocols (CMP & CPS) restrict index-based cache ops.
-- */
-- if (!mips_cm_present())
-+ if (r4k_op_needs_ipi(type))
- smp_call_function_many(&cpu_foreign_map, func, info, 1);
- func(info);
- preempt_enable();
-@@ -456,7 +492,7 @@ static inline void local_r4k___flush_cac
-
- static void r4k___flush_cache_all(void)
- {
-- r4k_on_each_cpu(local_r4k___flush_cache_all, NULL);
-+ r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
- }
-
- static inline int has_valid_asid(const struct mm_struct *mm)
-@@ -503,7 +539,7 @@ static void r4k_flush_cache_range(struct
- int exec = vma->vm_flags & VM_EXEC;
-
- if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
-- r4k_on_each_cpu(local_r4k_flush_cache_range, vma);
-+ r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
- }
-
- static inline void local_r4k_flush_cache_mm(void * args)
-@@ -535,7 +571,7 @@ static void r4k_flush_cache_mm(struct mm
- if (!cpu_has_dc_aliases)
- return;
-
-- r4k_on_each_cpu(local_r4k_flush_cache_mm, mm);
-+ r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
- }
-
- struct flush_cache_page_args {
-@@ -629,7 +665,7 @@ static void r4k_flush_cache_page(struct
- args.addr = addr;
- args.pfn = pfn;
-
-- r4k_on_each_cpu(local_r4k_flush_cache_page, &args);
-+ r4k_on_each_cpu(R4K_KERN, local_r4k_flush_cache_page, &args);
- }
-
- static inline void local_r4k_flush_data_cache_page(void * addr)
-@@ -642,18 +678,23 @@ static void r4k_flush_data_cache_page(un
- if (in_atomic())
- local_r4k_flush_data_cache_page((void *)addr);
- else
-- r4k_on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr);
-+ r4k_on_each_cpu(R4K_KERN, local_r4k_flush_data_cache_page,
-+ (void *) addr);
- }
-
- struct flush_icache_range_args {
- unsigned long start;
- unsigned long end;
-+ unsigned int type;
- };
-
--static inline void local_r4k_flush_icache_range(unsigned long start, unsigned long end)
-+static inline void __local_r4k_flush_icache_range(unsigned long start,
-+ unsigned long end,
-+ unsigned int type)
- {
- if (!cpu_has_ic_fills_f_dc) {
-- if (end - start >= dcache_size) {
-+ if (type == R4K_INDEX ||
-+ (type & R4K_INDEX && end - start >= dcache_size)) {
- r4k_blast_dcache();
- } else {
- R4600_HIT_CACHEOP_WAR_IMPL;
-@@ -661,7 +702,8 @@ static inline void local_r4k_flush_icach
- }
- }
-
-- if (end - start > icache_size)
-+ if (type == R4K_INDEX ||
-+ (type & R4K_INDEX && end - start > icache_size))
- r4k_blast_icache();
- else {
- switch (boot_cpu_type()) {
-@@ -687,23 +729,59 @@ static inline void local_r4k_flush_icach
- #endif
- }
-
-+static inline void local_r4k_flush_icache_range(unsigned long start,
-+ unsigned long end)
-+{
-+ __local_r4k_flush_icache_range(start, end, R4K_KERN | R4K_INDEX);
-+}
-+
- static inline void local_r4k_flush_icache_range_ipi(void *args)
- {
- struct flush_icache_range_args *fir_args = args;
- unsigned long start = fir_args->start;
- unsigned long end = fir_args->end;
-+ unsigned int type = fir_args->type;
-
-- local_r4k_flush_icache_range(start, end);
-+ __local_r4k_flush_icache_range(start, end, type);
- }
-
- static void r4k_flush_icache_range(unsigned long start, unsigned long end)
- {
- struct flush_icache_range_args args;
-+ unsigned long size, cache_size;
-
- args.start = start;
- args.end = end;
-+ args.type = R4K_KERN | R4K_INDEX;
-
-- r4k_on_each_cpu(local_r4k_flush_icache_range_ipi, &args);
-+ if (in_atomic()) {
-+ /*
-+ * We can't do blocking IPI calls from atomic context, so fall
-+ * back to pure address-based cache ops if they globalize.
-+ */
-+ if (!r4k_index_globalized && r4k_hit_globalized) {
-+ args.type &= ~R4K_INDEX;
-+ } else {
-+ /* Just do it locally instead. */
-+ local_r4k_flush_icache_range(start, end);
-+ instruction_hazard();
-+ return;
-+ }
-+ } else if (!r4k_index_globalized && r4k_hit_globalized) {
-+ /*
-+ * If address-based cache ops are globalized, then we may be
-+ * able to avoid the IPI for small flushes.
-+ */
-+ size = start - end;
-+ cache_size = icache_size;
-+ if (!cpu_has_ic_fills_f_dc) {
-+ size *= 2;
-+ cache_size += dcache_size;
-+ }
-+ if (size <= cache_size)
-+ args.type &= ~R4K_INDEX;
-+ }
-+ r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
- instruction_hazard();
- }
-
-@@ -823,7 +901,12 @@ static void local_r4k_flush_cache_sigtra
-
- static void r4k_flush_cache_sigtramp(unsigned long addr)
- {
-- r4k_on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr);
-+ /*
-+ * FIXME this is a bit broken when !r4k_hit_globalized, since the user
-+ * code probably won't be mapped on other CPUs, so if the process is
-+ * migrated, it could end up hitting stale icache lines.
-+ */
-+ r4k_on_each_cpu(R4K_USER, local_r4k_flush_cache_sigtramp, (void *)addr);
- }
-
- static void r4k_flush_icache_all(void)
-@@ -837,6 +920,15 @@ struct flush_kernel_vmap_range_args {
- int size;
- };
-
-+static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
-+{
-+ /*
-+ * Aliases only affect the primary caches so don't bother with
-+ * S-caches or T-caches.
-+ */
-+ r4k_blast_dcache();
-+}
-+
- static inline void local_r4k_flush_kernel_vmap_range(void *args)
- {
- struct flush_kernel_vmap_range_args *vmra = args;
-@@ -847,12 +939,8 @@ static inline void local_r4k_flush_kerne
- * Aliases only affect the primary caches so don't bother with
- * S-caches or T-caches.
- */
-- if (cpu_has_safe_index_cacheops && size >= dcache_size)
-- r4k_blast_dcache();
-- else {
-- R4600_HIT_CACHEOP_WAR_IMPL;
-- blast_dcache_range(vaddr, vaddr + size);
-- }
-+ R4600_HIT_CACHEOP_WAR_IMPL;
-+ blast_dcache_range(vaddr, vaddr + size);
- }
-
- static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
-@@ -862,7 +950,12 @@ static void r4k_flush_kernel_vmap_range(
- args.vaddr = (unsigned long) vaddr;
- args.size = size;
-
-- r4k_on_each_cpu(local_r4k_flush_kernel_vmap_range, &args);
-+ if (cpu_has_safe_index_cacheops && size >= dcache_size)
-+ r4k_on_each_cpu(R4K_INDEX,
-+ local_r4k_flush_kernel_vmap_range_index, NULL);
-+ else
-+ r4k_on_each_cpu(R4K_KERN, local_r4k_flush_kernel_vmap_range,
-+ &args);
- }
-
- static inline void rm7k_erratum31(void)