aboutsummaryrefslogtreecommitdiffstats
path: root/package/linux/kernel-source/include/proto
diff options
context:
space:
mode:
Diffstat (limited to 'package/linux/kernel-source/include/proto')
0 files changed, 0 insertions, 0 deletions
18 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
/*
 * heap.c: fns for verifying and printing the Intel(r) TXT heap data structs
 *
 * Copyright (c) 2003-2011, Intel Corporation
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the Intel Corporation nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */

#ifndef IS_INCLUDED
#include <config.h>
#include <efibase.h>
#include <types.h>
#include <stdbool.h>
#include <compiler.h>
#include <processor.h>
#include <string.h>
#include <printk.h>
#include <uuid.h>
#include <mle.h>
#include <misc.h>
#include <hash.h>
#include <tpm.h>
#include <txt/mtrrs.h>
#include <txt/config_regs.h>
#include <txt/heap.h>
#endif

/*
 * extended data elements
 */

/* HEAP_BIOS_SPEC_VER_ELEMENT */
static void print_bios_spec_ver_elt(const heap_ext_data_element_t *elt)
{
    const heap_bios_spec_ver_elt_t *bios_spec_ver_elt =
        (const heap_bios_spec_ver_elt_t *)elt->data;

    printk(TBOOT_INFO"\t\t BIOS_SPEC_VER:\n");
    printk(TBOOT_INFO"\t\t     major: 0x%x\n", bios_spec_ver_elt->spec_ver_major);
    printk(TBOOT_INFO"\t\t     minor: 0x%x\n", bios_spec_ver_elt->spec_ver_minor);
    printk(TBOOT_INFO"\t\t     rev: 0x%x\n", bios_spec_ver_elt->spec_ver_rev);
}

static bool verify_bios_spec_ver_elt(const heap_ext_data_element_t *elt)
{
    const heap_bios_spec_ver_elt_t *bios_spec_ver_elt =
        (const heap_bios_spec_ver_elt_t *)elt->data;

    if ( elt->size != sizeof(*elt) + sizeof(*bios_spec_ver_elt) ) {
        printk(TBOOT_ERR"HEAP_BIOS_SPEC_VER element has wrong size (%u)\n", elt->size);
        return false;
    }

    /* any values are allowed */
    return true;
}

/* HEAP_ACM_ELEMENT */
static void print_acm_elt(const heap_ext_data_element_t *elt)
{
    const heap_acm_elt_t *acm_elt = (const heap_acm_elt_t *)elt->data;
    unsigned int i;

    printk(TBOOT_DETA"\t\t ACM:\n");
    printk(TBOOT_DETA"\t\t     num_acms: %u\n", acm_elt->num_acms);
    for ( i = 0; i < acm_elt->num_acms; i++ )
        printk(TBOOT_DETA"\t\t     acm_addrs[%u]: 0x%jx\n", i, acm_elt->acm_addrs[i]);
}

static bool verify_acm_elt(const heap_ext_data_element_t *elt)
{
    const heap_acm_elt_t *acm_elt = (const heap_acm_elt_t *)elt->data;
    unsigned int i;

    if ( elt->size != sizeof(*elt) + sizeof(*acm_elt) +
         acm_elt->num_acms*sizeof(uint64_t) ) {
        printk(TBOOT_ERR"HEAP_ACM element has wrong size (%u)\n", elt->size);
        return false;
    }

    /* no addrs is not error, but print warning */
    if ( acm_elt->num_acms == 0 )
        printk(TBOOT_WARN"HEAP_ACM element has no ACM addrs\n");

    for ( i = 0; i < acm_elt->num_acms; i++ ) {
        if ( acm_elt->acm_addrs[i] == 0 ) {
            printk(TBOOT_ERR"HEAP_ACM element ACM addr (%u) is NULL\n", i);
            return false;
        }

        if ( acm_elt->acm_addrs[i] >= 0x100000000UL ) {
            printk(TBOOT_ERR"HEAP_ACM element ACM addr (%u) is >4GB (0x%jx)\n", i,
                   acm_elt->acm_addrs[i]);
            return false;
        }

        /* not going to check if ACM addrs are valid ACMs */
    }

    return true;
}

/* HEAP_CUSTOM_ELEMENT */
static void print_custom_elt(const heap_ext_data_element_t *elt)
{
    const heap_custom_elt_t *custom_elt = (const heap_custom_elt_t *)elt->data;

    printk(TBOOT_DETA"\t\t CUSTOM:\n");
    printk(TBOOT_DETA"\t\t     size: %u\n", elt->size);
    printk(TBOOT_DETA"\t\t     uuid: "); print_uuid(&custom_elt->uuid);            
    printk(TBOOT_DETA"\n");
}

static bool verify_custom_elt(const heap_ext_data_element_t *elt)
{
    const heap_custom_elt_t *custom_elt = (const heap_custom_elt_t *)elt->data;

    if ( elt->size < sizeof(*elt) + sizeof(*custom_elt) ) {
        printk(TBOOT_ERR"HEAP_CUSTOM element has wrong size (%u)\n", elt->size);
        return false;
    }

    /* any values are allowed */
    return true;
}

/* HEAP_EVENT_LOG_POINTER_ELEMENT */
static inline void print_heap_hash(const sha1_hash_t hash)
{
    print_hash((const tb_hash_t *)hash, TB_HALG_SHA1);
}

void print_event(const tpm12_pcr_event_t *evt)
{
    printk(TBOOT_DETA"\t\t\t Event:\n");
    printk(TBOOT_DETA"\t\t\t     PCRIndex: %u\n", evt->pcr_index);
    printk(TBOOT_DETA"\t\t\t         Type: 0x%x\n", evt->type);
    printk(TBOOT_DETA"\t\t\t       Digest: ");
    print_heap_hash(evt->digest);
    printk(TBOOT_DETA"\t\t\t         Data: %u bytes", evt->data_size);
    print_hex("\t\t\t         ", evt->data, evt->data_size);
}

static void print_evt_log(const event_log_container_t *elog)
{
    printk(TBOOT_DETA"\t\t\t Event Log Container:\n");
    printk(TBOOT_DETA"\t\t\t     Signature: %s\n", elog->signature);
    printk(TBOOT_DETA"\t\t\t  ContainerVer: %u.%u\n",
           elog->container_ver_major, elog->container_ver_minor);
    printk(TBOOT_DETA"\t\t\t   PCREventVer: %u.%u\n",
           elog->pcr_event_ver_major, elog->pcr_event_ver_minor);
    printk(TBOOT_DETA"\t\t\t          Size: %u\n", elog->size);
    printk(TBOOT_DETA"\t\t\t  EventsOffset: [%u,%u)\n",
           elog->pcr_events_offset, elog->next_event_offset);

    const tpm12_pcr_event_t *curr, *next;
    curr = (tpm12_pcr_event_t *)((void*)elog + elog->pcr_events_offset);
    next = (tpm12_pcr_event_t *)((void*)elog + elog->next_event_offset);

    while ( curr < next ) {
        print_event(curr);
        curr = (void *)curr + sizeof(*curr) + curr->data_size;
    }
}

static bool verify_evt_log(const event_log_container_t *elog)
{
    if ( elog == NULL ) {
        printk(TBOOT_ERR"Event log container pointer is NULL\n");
        return false;
    }

    if ( memcmp(elog->signature, EVTLOG_SIGNATURE, sizeof(elog->signature)) ) {
        printk(TBOOT_ERR"Bad event log container signature: %s\n", elog->signature);
        return false;
    }

    if ( elog->size != MAX_EVENT_LOG_SIZE ) {
        printk(TBOOT_ERR"Bad event log container size: 0x%x\n", elog->size);
        return false;
    }

    /* no need to check versions */

    if ( elog->pcr_events_offset < sizeof(*elog) ||
         elog->next_event_offset < elog->pcr_events_offset ||
         elog->next_event_offset > elog->size ) {
        printk(TBOOT_ERR"Bad events offset range: [%u, %u)\n",
               elog->pcr_events_offset, elog->next_event_offset);
        return false;
    }

    return true;
}

static void print_evt_log_ptr_elt(const heap_ext_data_element_t *elt)
{
    const heap_event_log_ptr_elt_t *elog_elt =
              (const heap_event_log_ptr_elt_t *)elt->data;

    printk(TBOOT_DETA"\t\t EVENT_LOG_POINTER:\n");
    printk(TBOOT_DETA"\t\t       size: %u\n", elt->size);
    printk(TBOOT_DETA"\t\t  elog_addr: 0x%jx\n", elog_elt->event_log_phys_addr);

    if ( elog_elt->event_log_phys_addr )
        print_evt_log((event_log_container_t *)(unsigned long long)
                      elog_elt->event_log_phys_addr);
}

static bool verify_evt_log_ptr_elt(const heap_ext_data_element_t *elt)
{
    const heap_event_log_ptr_elt_t *elog_elt =
              (const heap_event_log_ptr_elt_t *)elt->data;

    if ( elt->size != sizeof(*elt) + sizeof(*elog_elt) ) {
        printk(TBOOT_ERR"HEAP_EVENT_LOG_POINTER element has wrong size (%u)\n",
               elt->size);
        return false;
    }

    return verify_evt_log((event_log_container_t *)(unsigned long long)
                          elog_elt->event_log_phys_addr);
}

void print_event_2(void *evt, uint16_t alg)
{
    uint32_t hash_size, data_size; 
    void *next = evt;

    hash_size = get_hash_size(alg); 
    if ( hash_size == 0 )
        return;

    printk(TBOOT_DETA"\t\t\t Event:\n");
    printk(TBOOT_DETA"\t\t\t     PCRIndex: %u\n", *((uint32_t *)next));

    if ( *((uint32_t *)next) > 24 && *((uint32_t *)next) != 0xFF ) {
         printk(TBOOT_DETA"\t\t\t           Wrong Event Log.\n");
         return;
    }

    next += sizeof(uint32_t);
    printk(TBOOT_DETA"\t\t\t         Type: 0x%x\n", *((uint32_t *)next));

    if ( *((uint32_t *)next) > 0xFFF ) {
        printk(TBOOT_DETA"\t\t\t           Wrong Event Log.\n");
        return;
    }

    next += sizeof(uint32_t);
    printk(TBOOT_DETA"\t\t\t       Digest: ");
    print_hex(NULL, (uint8_t *)next, hash_size);
    next += hash_size;
    data_size = *(uint32_t *)next;
    printk(TBOOT_DETA"\t\t\t         Data: %u bytes", data_size);
    if ( data_size > 4096 ) {
        printk(TBOOT_DETA"\t\t\t           Wrong Event Log.\n");
        return;
    }

    next += sizeof(uint32_t);
    if ( data_size )
         print_hex("\t\t\t         ", (uint8_t *)next, data_size);
    else
         printk(TBOOT_DETA"\n");
}

static void print_evt_log_ptr_elt_2(const heap_ext_data_element_t *elt)
{
    unsigned int i;
    const heap_event_log_ptr_elt2_t *elog_elt =
              (const heap_event_log_ptr_elt2_t *)elt->data;
    const heap_event_log_descr_t *log_descr;

    printk(TBOOT_DETA"\t\t EVENT_LOG_PTR:\n");
    printk(TBOOT_DETA"\t\t       size: %u\n", elt->size);
    printk(TBOOT_DETA"\t\t      count: %d\n", elog_elt->count);

    for ( i=0; i<elog_elt->count; i++ ) {
        log_descr = &elog_elt->event_log_descr[i];
        printk(TBOOT_DETA"\t\t\t Log Descrption:\n");
        printk(TBOOT_DETA"\t\t\t             Alg: %u\n", log_descr->alg);
        printk(TBOOT_DETA"\t\t\t            Size: %u\n", log_descr->size);
        printk(TBOOT_DETA"\t\t\t    EventsOffset: [%u,%u)\n",
                log_descr->pcr_events_offset,
                log_descr->next_event_offset);

        if (log_descr->pcr_events_offset == log_descr->next_event_offset) {
            printk(TBOOT_DETA"\t\t\t              No Event Log.\n");
            continue;
        }

        uint32_t hash_size, data_size; 
        hash_size = get_hash_size(log_descr->alg); 
        if ( hash_size == 0 )
            return;

        void *curr, *next;

        curr = (void *)(unsigned long long)log_descr->phys_addr +
                log_descr->pcr_events_offset;
        next = (void *)(unsigned long long)log_descr->phys_addr +
                log_descr->next_event_offset;

        //It is required for each of the non-SHA1 event log the first entry to be the following
        //TPM1.2 style TCG_PCR_EVENT record specifying type of the log:
        //TCG_PCR_EVENT.PCRIndex = 0
        //TCG_PCR_EVENT.EventType = 0x03 // EV_NO_ACTION per TCG EFI
                                       // Platform specification
        //TCG_PCR_EVENT.Digest = {00…00} // 20 zeros
        //TCG_PCR_EVENT.EventDataSize = sizeof(TCG_LOG_DESCRIPTOR).
        //TCG_PCR_EVENT.EventData = TCG_LOG_DESCRIPTOR
        //The digest of this record MUST NOT be extended into any PCR.

        if (log_descr->alg != TB_HALG_SHA1){
            print_event_2(curr, TB_HALG_SHA1);
            curr += sizeof(tpm12_pcr_event_t) + sizeof(tpm20_log_descr_t);
        }

        while ( curr < next ) {
            print_event_2(curr, log_descr->alg);
            data_size = *(uint32_t *)(curr + 2*sizeof(uint32_t) + hash_size);
            curr += 3*sizeof(uint32_t) + hash_size + data_size;
        }
    }
}

static bool verify_evt_log_ptr_elt_2(const heap_ext_data_element_t *elt)
{
    if ( !elt )
        return false;

    return true;
}

static void print_ext_data_elts(const heap_ext_data_element_t elts[])
{
    const heap_ext_data_element_t *elt = elts;

    printk(TBOOT_DETA"\t ext_data_elts[]:\n");
    while ( elt->type != HEAP_EXTDATA_TYPE_END ) {
        switch ( elt->type ) {
            case HEAP_EXTDATA_TYPE_BIOS_SPEC_VER:
                print_bios_spec_ver_elt(elt);
                break;
            case HEAP_EXTDATA_TYPE_ACM:
                print_acm_elt(elt);
                break;
            case HEAP_EXTDATA_TYPE_CUSTOM:
                print_custom_elt(elt);
                break;
            case HEAP_EXTDATA_TYPE_TPM_EVENT_LOG_PTR:
                print_evt_log_ptr_elt(elt);
                break;
            case HEAP_EXTDATA_TYPE_TPM_EVENT_LOG_PTR_2:
                print_evt_log_ptr_elt_2(elt);
                break;
            default:
                printk(TBOOT_WARN"\t\t unknown element:  type: %u, size: %u\n",
                       elt->type, elt->size);
                break;
        }
        elt = (void *)elt + elt->size;
    }
}

static bool verify_ext_data_elts(const heap_ext_data_element_t elts[],
                                 size_t elts_size)
{
    const heap_ext_data_element_t *elt = elts;

    while ( true ) {
        if ( elts_size < sizeof(*elt) ) {
            printk(TBOOT_ERR"heap ext data elements too small\n");
            return false;
        }
        if ( elts_size < elt->size || elt->size == 0 ) {
            printk(TBOOT_ERR"invalid element size:  type: %u, size: %u\n",
                   elt->type, elt->size);
            return false;
        }
        switch ( elt->type ) {
            case HEAP_EXTDATA_TYPE_END:
                return true;
            case HEAP_EXTDATA_TYPE_BIOS_SPEC_VER:
                if ( !verify_bios_spec_ver_elt(elt) )
                    return false;
                break;
            case HEAP_EXTDATA_TYPE_ACM:
                if ( !verify_acm_elt(elt) )
                    return false;
                break;
            case HEAP_EXTDATA_TYPE_CUSTOM:
                if ( !verify_custom_elt(elt) )
                    return false;
                break;
            case HEAP_EXTDATA_TYPE_TPM_EVENT_LOG_PTR:
                if ( !verify_evt_log_ptr_elt(elt) )
                    return false;
                break;
            case HEAP_EXTDATA_TYPE_TPM_EVENT_LOG_PTR_2:
                if ( !verify_evt_log_ptr_elt_2(elt) )
                    return false;
                break;
            default:
                printk(TBOOT_WARN"unknown element:  type: %u, size: %u\n", elt->type,
                       elt->size);
                break;
        }
        elts_size -= elt->size;
        elt = (void *)elt + elt->size;
    }
    return true;
}


static void print_bios_data(const bios_data_t *bios_data, uint64_t size)
{
    printk(TBOOT_DETA"bios_data (@%p, %jx):\n", bios_data,
           *((uint64_t *)bios_data - 1));
    printk(TBOOT_DETA"\t version: %u\n", bios_data->version);
    printk(TBOOT_DETA"\t bios_sinit_size: 0x%x (%u)\n", bios_data->bios_sinit_size,
           bios_data->bios_sinit_size);
    printk(TBOOT_DETA"\t lcp_pd_base: 0x%jx\n", bios_data->lcp_pd_base);
    printk(TBOOT_DETA"\t lcp_pd_size: 0x%jx (%ju)\n", bios_data->lcp_pd_size,
           bios_data->lcp_pd_size);
    printk(TBOOT_DETA"\t num_logical_procs: %u\n", bios_data->num_logical_procs);
    if ( bios_data->version >= 3 )
        printk(TBOOT_DETA"\t flags: 0x%08jx\n", bios_data->flags);
    if ( bios_data->version >= 4 && size > sizeof(*bios_data) + sizeof(size) )
        print_ext_data_elts(bios_data->ext_data_elts);
}

bool verify_bios_data(const txt_heap_t *txt_heap)
{
    uint64_t heap_base = read_pub_config_reg(TXTCR_HEAP_BASE);
    uint64_t heap_size = read_pub_config_reg(TXTCR_HEAP_SIZE);
    printk(TBOOT_DETA"TXT.HEAP.BASE: 0x%jx\n", heap_base);
    printk(TBOOT_DETA"TXT.HEAP.SIZE: 0x%jx (%ju)\n", heap_size, heap_size);

    /* verify that heap base/size are valid */
    if ( txt_heap == NULL || heap_base == 0 || heap_size == 0 )
        return false;

    /* check size */
    uint64_t size = get_bios_data_size(txt_heap);
    if ( size == 0 ) {
        printk(TBOOT_ERR"BIOS data size is 0\n");
        return false;
    }
    if ( size > heap_size ) {
        printk(TBOOT_ERR"BIOS data size is larger than heap size "
               "(%jx, heap size=%jx)\n", size, heap_size);
        return false;
    }

    bios_data_t *bios_data = get_bios_data_start(txt_heap);

    /* check version */
    if ( bios_data->version < 2 ) {
        printk(TBOOT_ERR"unsupported BIOS data version (%u)\n", bios_data->version);
        return false;
    }
    /* we assume backwards compatibility but print a warning */
    if ( bios_data->version > 4 )
        printk(TBOOT_WARN"unsupported BIOS data version (%u)\n", bios_data->version);

    /* all TXT-capable CPUs support at least 1 core */
    if ( bios_data->num_logical_procs < 1 ) {
        printk(TBOOT_ERR"BIOS data has incorrect num_logical_procs (%u)\n",
               bios_data->num_logical_procs);
        return false;
    }
    else if ( bios_data->num_logical_procs > NR_CPUS ) {
        printk(TBOOT_ERR"BIOS data specifies too many CPUs (%u)\n",
               bios_data->num_logical_procs);
        return false;
    }

    if ( bios_data->version >= 4 && size > sizeof(*bios_data) ) {
        if ( !verify_ext_data_elts(bios_data->ext_data_elts,
                                   size - sizeof(*bios_data)) )
            return false;
    }

    print_bios_data(bios_data, size);

    return true;
}

#ifndef IS_INCLUDED

static void print_os_mle_data(const os_mle_data_t *os_mle_data)
{
    printk(TBOOT_DETA"os_mle_data (@%p, %Lx):\n", os_mle_data,
           *((uint64_t *)os_mle_data - 1));
    printk(TBOOT_DETA"\t version: %u\n", os_mle_data->version);
    /* TBD: perhaps eventually print saved_mtrr_state field */
}

static bool verify_os_mle_data(const txt_heap_t *txt_heap)
{
    uint64_t size, heap_size;
    os_mle_data_t *os_mle_data;

    /* check size */
    heap_size = read_priv_config_reg(TXTCR_HEAP_SIZE);
    size = get_os_mle_data_size(txt_heap);
    if ( size == 0 ) {
        printk(TBOOT_ERR"OS to MLE data size is 0\n");
        return false;
    }
    if ( size > heap_size ) {
        printk(TBOOT_ERR"OS to MLE data size is larger than heap size "
               "(%Lx, heap size=%Lx)\n", size, heap_size);
        return false;
    }
    if ( size != (sizeof(os_mle_data_t) + sizeof(size)) ) {
        printk(TBOOT_ERR"OS to MLE data size (%Lx) is not equal to "
               "os_mle_data_t size (%x)\n", size, sizeof(os_mle_data_t));
        return false;
    }

    os_mle_data = get_os_mle_data_start(txt_heap);

    /* check version */
    /* since this data is from our pre-launch to post-launch code only, it */
    /* should always be this */
    if ( os_mle_data->version != 3 ) {
        printk(TBOOT_ERR"unsupported OS to MLE data version (%u)\n",
               os_mle_data->version);
        return false;
    }

    /* NOTE remove lctx_addr - not really used */

    print_os_mle_data(os_mle_data);

    return true;
}

/*
 * Make sure version is in [MIN_OS_SINIT_DATA_VER, MAX_OS_SINIT_DATA_VER]
 * before calling calc_os_sinit_data_size
 */
uint64_t calc_os_sinit_data_size(uint32_t version)
{
    uint64_t size[] = {
        offsetof(os_sinit_data_t, efi_rsdt_ptr) + sizeof(uint64_t),
        sizeof(os_sinit_data_t) + sizeof(uint64_t),
        sizeof(os_sinit_data_t) + sizeof(uint64_t) +
            2 * sizeof(heap_ext_data_element_t) +
            sizeof(heap_event_log_ptr_elt_t)
    };

    if ( g_tpm->major == TPM20_VER_MAJOR ) {
        u32 count;
        if ( g_tpm->extpol == TB_EXTPOL_AGILE )
            count = g_tpm->banks;
        else if ( g_tpm->extpol == TB_EXTPOL_EMBEDDED )
            count = g_tpm->alg_count;
        else
            count = 1;

        size[2] = sizeof(os_sinit_data_t) + sizeof(uint64_t) +
            2 * sizeof(heap_ext_data_element_t) +
            4 + count*sizeof(heap_event_log_descr_t);
    }

    if ( version >= 6 )
        return size[2];
    else
        return size[version - MIN_OS_SINIT_DATA_VER];
}

void print_os_sinit_data(const os_sinit_data_t *os_sinit_data)
{
    printk(TBOOT_DETA"os_sinit_data (@%p, %Lx):\n", os_sinit_data,
           *((uint64_t *)os_sinit_data - 1));
    printk(TBOOT_DETA"\t version: %u\n", os_sinit_data->version);
    printk(TBOOT_DETA"\t flags: %u\n", os_sinit_data->flags);
    printk(TBOOT_DETA"\t mle_ptab: 0x%Lx\n", os_sinit_data->mle_ptab);
    printk(TBOOT_DETA"\t mle_size: 0x%Lx (%Lu)\n", os_sinit_data->mle_size,
           os_sinit_data->mle_size);
    printk(TBOOT_DETA"\t mle_hdr_base: 0x%Lx\n", os_sinit_data->mle_hdr_base);
    printk(TBOOT_DETA"\t vtd_pmr_lo_base: 0x%Lx\n", os_sinit_data->vtd_pmr_lo_base);
    printk(TBOOT_DETA"\t vtd_pmr_lo_size: 0x%Lx\n", os_sinit_data->vtd_pmr_lo_size);
    printk(TBOOT_DETA"\t vtd_pmr_hi_base: 0x%Lx\n", os_sinit_data->vtd_pmr_hi_base);
    printk(TBOOT_DETA"\t vtd_pmr_hi_size: 0x%Lx\n", os_sinit_data->vtd_pmr_hi_size);
    printk(TBOOT_DETA"\t lcp_po_base: 0x%Lx\n", os_sinit_data->lcp_po_base);
    printk(TBOOT_DETA"\t lcp_po_size: 0x%Lx (%Lu)\n", os_sinit_data->lcp_po_size,
           os_sinit_data->lcp_po_size);
    print_txt_caps("\t ", os_sinit_data->capabilities);
    if ( os_sinit_data->version >= 5 )
        printk(TBOOT_DETA"\t efi_rsdt_ptr: 0x%Lx\n", os_sinit_data->efi_rsdt_ptr);
    if ( os_sinit_data->version >= 6 )
        print_ext_data_elts(os_sinit_data->ext_data_elts);
}

static bool verify_os_sinit_data(const txt_heap_t *txt_heap)
{
    uint64_t size, heap_size;
    os_sinit_data_t *os_sinit_data;

    /* check size */
    heap_size = read_priv_config_reg(TXTCR_HEAP_SIZE);
    size = get_os_sinit_data_size(txt_heap);
    if ( size == 0 ) {
        printk(TBOOT_ERR"OS to SINIT data size is 0\n");
        return false;
    }
    if ( size > heap_size ) {
        printk(TBOOT_ERR"OS to SINIT data size is larger than heap size "
               "(%Lx, heap size=%Lx)\n", size, heap_size);
        return false;
    }

    os_sinit_data = get_os_sinit_data_start(txt_heap);

    /* check version (but since we create this, it should always be OK) */
    if ( os_sinit_data->version < MIN_OS_SINIT_DATA_VER ||
         os_sinit_data->version > MAX_OS_SINIT_DATA_VER ) {
        printk(TBOOT_ERR"unsupported OS to SINIT data version (%u)\n",
               os_sinit_data->version);
        return false;
    }

    if ( size != calc_os_sinit_data_size(os_sinit_data->version) ) {
        printk(TBOOT_ERR"OS to SINIT data size (%Lx) does not match for version (%x)\n",
               size, sizeof(os_sinit_data_t));
        return false;
    }

    if ( os_sinit_data->version >= 6 ) {
        if ( !verify_ext_data_elts(os_sinit_data->ext_data_elts,
                                   size - sizeof(*os_sinit_data)) )
            return false;
    }

    print_os_sinit_data(os_sinit_data);

    return true;
}

static void print_sinit_mdrs(const sinit_mdr_t mdrs[], uint32_t num_mdrs)
{
    unsigned int i;
    static const char *mem_types[] = {"GOOD", "SMRAM OVERLAY",
                                      "SMRAM NON-OVERLAY",
                                      "PCIE EXTENDED CONFIG", "PROTECTED"};

    printk(TBOOT_DETA"\t sinit_mdrs:\n");
    for ( i = 0; i < num_mdrs; i++ ) {
        printk(TBOOT_DETA"\t\t %016Lx - %016Lx ", mdrs[i].base,