aboutsummaryrefslogtreecommitdiffstats
path: root/package/kernel/linux/modules/netsupport.mk
diff options
context:
space:
mode:
Diffstat (limited to 'package/kernel/linux/modules/netsupport.mk')
0 files changed, 0 insertions, 0 deletions
2' href='#n92'>92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
#include <string.h>
#include "hal.h"

#if (SAMA_USE_SDMMC == TRUE)
#include "sama_sdmmc_lld.h"
#include "ch_sdmmc_device.h"
#include "ch_sdmmc_cmds.h"
#include "ch_sdmmc_sd.h"
#include "ch_sdmmc_sdio.h"

static uint8_t PerformSingleTransfer(SdmmcDriver *driver,uint32_t address, uint8_t * pData, uint8_t isRead);
static uint8_t MoveToTransferState(SdmmcDriver *driver,uint32_t address,uint16_t * nbBlocks, uint8_t * pData, uint8_t isRead);
static uint8_t _StopCmd(SdmmcDriver *driver);
static uint8_t _WaitUntilReady(SdmmcDriver *driver, uint32_t last_dev_status);
static uint8_t SdGetTimingFunction(uint8_t mode);
static void SdSelectSlowerTiming(bool high_sig, uint8_t * mode);

#if SAMA_SDMMC_TRACE == 1
struct stringEntry_s
{
	const uint8_t key;
	const char *name;
};
const char sdmmcInvalidCode[] = "!Invalid!";
const struct stringEntry_s sdmmcRCodeNames[] = {
	{ SDMMC_OK,		"OK",			},
	{ SDMMC_LOCKED,		"ERR_LOCKED",		},
	{ SDMMC_BUSY,		"ERR_BUSY",		},
	{ SDMMC_NO_RESPONSE,	"ERR_NO_RESPONSE",	},
	{ SDMMC_CHANGED,		"OK_CHANGED",		},
	{ SDMMC_ERR,			"ERROR",		},
	{ SDMMC_ERR_IO,			"ERR_IO",		},
	{ SDMMC_ERR_RESP,		"ERR_RESP",		},
	{ SDMMC_NOT_INITIALIZED,	"ERR_NOT_INITIALIZED",	},
	{ SDMMC_PARAM,		"ERR_PARAM",		},
	{ SDMMC_STATE,		"ERR_STATE",		},
	{ SDMMC_USER_CANCEL,	"ERR_USER_CANCEL",	},
	{ SDMMC_NOT_SUPPORTED,	"ERR_NO_SUPPORT",	},
};

const struct stringEntry_s sdmmcIOCtrlNames[] = {
	{ SDMMC_IOCTL_BUSY_CHECK,	"BUSY_CHECK",		},
	{ SDMMC_IOCTL_POWER,		"POWER",		},
	{ SDMMC_IOCTL_CANCEL_CMD,	"CANCEL_CMD",		},
	{ SDMMC_IOCTL_RESET,		"RESET",		},
	{ SDMMC_IOCTL_SET_CLOCK,	"SET_CLOCK",		},
	{ SDMMC_IOCTL_SET_BUSMODE,	"SET_BUSMODE",		},
	{ SDMMC_IOCTL_SET_HSMODE,	"SET_HSMODE",		},
	{ SDMMC_IOCTL_SET_BOOTMODE,	"SET_BOOTMODE",		},
	{ SDMMC_IOCTL_SET_LENPREFIX,	"SET_LENPREFIX",	},
	{ SDMMC_IOCTL_GET_CLOCK,	"GET_CLOCK",		},
	{ SDMMC_IOCTL_GET_BUSMODE,	"GET_BUSMODE",		},
	{ SDMMC_IOCTL_GET_HSMODE,	"GET_HSMODE",		},
	{ SDMMC_IOCTL_GET_BOOTMODE,	"GET_BOOTMODE",		},
	{ SDMMC_IOCTL_GET_XFERCOMPL,	"GET_XFERCOMPL",	},
	{ SDMMC_IOCTL_GET_DEVICE,	"GET_DEVICE",		},
};

const char * SD_StringifyRetCode(uint32_t dwRCode)
{
	const uint8_t bound = ARRAY_SIZE(sdmmcRCodeNames);
	uint8_t ix;

	for (ix = 0; ix < bound; ix++) {
		if (dwRCode == (uint32_t)sdmmcRCodeNames[ix].key)
			return sdmmcRCodeNames[ix].name;
	}

	return sdmmcInvalidCode;
}

const char * SD_StringifyIOCtrl(uint32_t dwCtrl)
{
	const uint8_t bound = ARRAY_SIZE(sdmmcIOCtrlNames);
	uint8_t ix;

	for (ix = 0; ix < bound; ix++) {
		if (dwCtrl == (uint32_t)sdmmcIOCtrlNames[ix].key)
			return sdmmcIOCtrlNames[ix].name;
	}

	return sdmmcInvalidCode;
}
#endif


/**
 * Read Blocks of data in a buffer pointed by pData. The buffer size must be at
 * least 512 byte long. This function checks the SD card status register and
 * address the card if required before sending the read command.
 * \return 0 if successful; otherwise returns an \ref sdmmc_rc "error code".
 * \param pSd      Pointer to a SD card driver instance.
 * \param address  Address of the block to read.
 * \param pData    Data buffer whose size is at least the block size. It shall
 * follow the peripheral and DMA alignment requirements.
 * \param length   Number of blocks to be read.
 * \param pCallback Pointer to callback function that invoked when read done.
 *                  0 to start a blocked read.
 * \param pArgs     Pointer to callback function arguments.
 */
uint8_t SD_Read(SdmmcDriver *driver,uint32_t address,void *pData, uint32_t length)
{
	uint8_t *out = NULL;
	uint32_t remaining, blk_no;
	uint16_t limited;
	uint8_t error = SDMMC_OK;


	for (blk_no = address, remaining = length, out = (uint8_t *)pData;
	    remaining != 0 && error == SDMMC_OK;
	    blk_no += limited, remaining -= limited,
	    out += (uint32_t)limited * (uint32_t)driver->card.wCurrBlockLen)
	{
		limited = (uint16_t)min_u32(remaining, 65535);
		error = MoveToTransferState(driver, blk_no, &limited, out, 1);
	}
	//debug
	TRACE_DEBUG_3("SDrd(%lu,%lu) %s\n\r", address, length, SD_StringifyRetCode(error));
	return error;
}

/**
 * Write Blocks of data in a buffer pointed by pData. The buffer size must be at
 * least 512 byte long. This function checks the SD card status register and
 * address the card if required before sending the read command.
 * \return 0 if successful; otherwise returns an \ref sdmmc_rc "error code".
 * \param pSd      Pointer to a SD card driver instance.
 * \param address  Address of the block to write.
 * \param pData    Data buffer whose size is at least the block size. It shall
 * follow the peripheral and DMA alignment requirements.
 * \param length   Number of blocks to be write.
 * \param pCallback Pointer to callback function that invoked when write done.
 *                  0 to start a blocked write.
 * \param pArgs     Pointer to callback function arguments.
 */
uint8_t SD_Write(SdmmcDriver *driver,uint32_t address,const void *pData,uint32_t length)
{
	uint8_t *in = NULL;
	uint32_t remaining, blk_no;
	uint16_t limited;
	uint8_t error = SDMMC_OK;

//	assert(pSd != NULL);
//	assert(pData != NULL);

	for (blk_no = address, remaining = length, in = (uint8_t *)pData;
	    remaining != 0 && error == SDMMC_OK;
	    blk_no += limited, remaining -= limited,
	    in += (uint32_t)limited * (uint32_t)driver->card.wCurrBlockLen) {
		limited = (uint16_t)min_u32(remaining, 65535);
		error = MoveToTransferState(driver, blk_no, &limited, in, 0);
	}
	//debug
	TRACE_DEBUG_3("SDwr(%lu,%lu) %s\n\r", address, length, SD_StringifyRetCode(error));
	return error;
}

/**
 * Read Blocks of data in a buffer pointed by pData. The buffer size must be at
 * least 512 byte long. This function checks the SD card status register and
 * address the card if required before sending the read command.
 * \return 0 if successful; otherwise returns an \ref sdmmc_rc "error code".
 * \param pSd  Pointer to a SD card driver instance.
 * \param address  Address of the block to read.
 * \param nbBlocks Number of blocks to be read.
 * \param pData    Data buffer whose size is at least the block size. It shall
 * follow the peripheral and DMA alignment requirements.
 */
uint8_t SD_ReadBlocks(SdmmcDriver *driver, uint32_t address, void *pData, uint32_t nbBlocks)
{
	uint8_t error = 0;
	uint8_t *pBytes = (uint8_t *) pData;


	//debug
	TRACE_DEBUG_2("RdBlks(%lu,%lu)\n\r", address, nbBlocks);

	while (nbBlocks--) {
		error = PerformSingleTransfer(driver, address, pBytes, 1);
		if (error)
			break;
		address += 1;
		pBytes = &pBytes[512];
	}
	return error;
}

/**
 * Write Block of data pointed by pData. The buffer size must be at
 * least 512 byte long. This function checks the SD card status register and
 * address the card if required before sending the read command.
 * \return 0 if successful; otherwise returns an \ref sdmmc_rc "error code".
 * \param pSd  Pointer to a SD card driver instance.
 * \param address  Address of block to write.
 * \param nbBlocks Number of blocks to be read
 * \param pData    Data buffer whose size is at least the block size. It shall
 * follow the peripheral and DMA alignment requirements.
 */
uint8_t SD_WriteBlocks(SdmmcDriver *driver, uint32_t address, const void *pData, uint32_t nbBlocks)
{
	uint8_t error = 0;
	uint8_t *pB = (uint8_t *) pData;


	//debug
	TRACE_DEBUG_2("WrBlks(%lu,%lu)\n\r", address, nbBlocks);

	while (nbBlocks--) {
		error = PerformSingleTransfer(driver, address, pB, 0);
		if (error)
			break;
		address += 1;
		pB = &pB[512];
	}
	return error;
}

uint8_t SD_GetStatus(SdmmcDriver *driver)
{
	uint32_t rc;

	const sSdCard * pSd = &driver->card;

	driver->control_param = 0;

	rc = sdmmc_device_control(driver,SDMMC_IOCTL_GET_DEVICE);

	if (rc != SDMMC_OK || !driver->control_param)
		return SDMMC_NOT_SUPPORTED;

	return pSd->bStatus == SDMMC_NOT_SUPPORTED ? SDMMC_ERR : pSd->bStatus;
}

uint8_t SdDecideBuswidth(SdmmcDriver *drv)
{
	uint8_t error, busWidth = 1;
	const uint8_t sd = (drv->card.bCardType & CARD_TYPE_bmSDMMC)  == CARD_TYPE_bmSD;
	const uint8_t io = (drv->card.bCardType & CARD_TYPE_bmSDIO) != 0;

	if (io)
		busWidth = 1;   /* SDIO => 1 bit only. TODO: assign CCCR. */
	else if (sd) {
		busWidth = 4;   /* default to 4-bit mode */
		error = HwSetBusWidth(drv, busWidth);
		if (error)
			busWidth = 1;
	}
	/* Switch to selected bus mode */
	if (sd && busWidth > 1)
		error = Acmd6(drv, busWidth);
	else
		error = HwSetBusWidth(drv, busWidth);
	if (error)
		return error;
	drv->card.bBusMode = busWidth;
	return 0;
}


uint8_t SdEnableHighSpeed(SdmmcDriver *drv)
{
	SdCmd6Arg request = {
		.acc_mode	= 0xf,
		.cmd_sys	= 0xf,
		.drv_strgth	= 0xf,
		.pwr_limit	= 0xf,
		.func_grp5	= 0xf,
		.func_grp6	= 0xf,
		.set		= 0,
	};
	uint32_t status;
	uint16_t mode_mask, val;
	uint8_t mode = drv->card.bCardSigLevel ? SDMMC_TIM_SD_DS : SDMMC_TIM_SD_SDR12;
	uint8_t error, mode_func, pwr_func = SD_SWITCH_ST_MAX_PWR_1_44W;
	const bool has_io = drv->card.bCardType & CARD_TYPE_bmSDIO ? true : false;
	const bool has_mem = drv->card.bCardType & CARD_TYPE_bmSD ? true : false;
	const bool has_switch = SD_CSD_CCC(drv->card.CSD) & 1 << 10 ? true : false;
	bool sfs_v1 = false;

	//assert(sizeof(pSd->sandbox1) >= 512 / 8);

#ifndef SDMMC_TRIM_SDIO
	/* TODO consider the UHS-I timing modes for SDIO devices too */
	if (has_io && !(has_mem && !has_switch)
	    && HwIsTimingSupported(drv, SDMMC_TIM_SD_HS)) {
		/* Check CIA.HS */
		status = 0;
		error = Cmd52(drv, 0, SDIO_CIA, 0, SDIO_HS_REG, &status);
		if (error)
			return SDMMC_ERR;
		if (status & SDIO_SHS) {
			/* Enable High Speed timing mode */
			status = SDIO_EHS;
			error = Cmd52(drv, 1, SDIO_CIA, 1, SDIO_HS_REG,
			    &status);
			if (error || !(status & SDIO_EHS))
				return SDMMC_ERR;
			mode = SDMMC_TIM_SD_HS;
		}
	}
#endif

	if (!has_mem || !has_switch)
		goto Apply;
	/* Search for the fastest supported timing mode */
	error = SdCmd6(drv, &request, drv->card.sandbox1, &status);
	if (error || status & STATUS_SWITCH_ERROR)
		return SDMMC_ERR;
	sfs_v1 = SD_SWITCH_ST_DATA_STRUCT_VER(drv->card.sandbox1) >= 0x01;
	mode_mask = SD_SWITCH_ST_FUN_GRP1_INFO(drv->card.sandbox1);
	TRACE_DEBUG_1("Device timing functions: 0x%04x\n\r", mode_mask);
	if (has_io && mode == SDMMC_TIM_SD_HS
	    && !(mode_mask & 1 << SD_SWITCH_ST_ACC_HS))
		return SDMMC_NOT_SUPPORTED;
	else if (has_io) {
		/* Have SDMEM use the same timing mode as SDIO */
	} else if (mode_mask & 1 << SD_SWITCH_ST_ACC_SDR104
	    && HwIsTimingSupported(drv, SDMMC_TIM_SD_SDR104))
		mode = SDMMC_TIM_SD_SDR104;
	else if (mode_mask & 1 << SD_SWITCH_ST_ACC_DDR50
	    && HwIsTimingSupported(drv, SDMMC_TIM_SD_DDR50))
		mode = SDMMC_TIM_SD_DDR50;
	else if (mode_mask & 1 << SD_SWITCH_ST_ACC_SDR50
	    && HwIsTimingSupported(drv, SDMMC_TIM_SD_SDR50))
		mode = SDMMC_TIM_SD_SDR50;
	else if (mode_mask & 1 << SD_SWITCH_ST_ACC_HS
	    && HwIsTimingSupported(drv, SDMMC_TIM_SD_HS))
		mode = SDMMC_TIM_SD_HS;
	else
		mode = SDMMC_TIM_SD_DS;
	/* Verify current signaling level is the one expected by the device */
	if ((mode >= SDMMC_TIM_SD_SDR50 && drv->card.bCardSigLevel != 0)
	    || (mode < SDMMC_TIM_SD_SDR50 && drv->card.bCardSigLevel == 0))
		return SDMMC_STATE;
	/* Check the electrical power requirements of this device */
	val = SD_SWITCH_ST_FUN_GRP4_INFO(drv->card.sandbox1);
	TRACE_DEBUG_2("Device pwr & strength functions: 0x%04x & 0x%04x\n\r", val,
	    SD_SWITCH_ST_FUN_GRP3_INFO(drv->card.sandbox1));
	if (!(val & 1 << SD_SWITCH_ST_MAX_PWR_1_44W))
		pwr_func = SD_SWITCH_ST_MAX_PWR_0_72W;
	request.acc_mode = mode_func = SdGetTimingFunction(mode);
	request.drv_strgth = SD_SWITCH_ST_OUT_DRV_B;
	request.pwr_limit = SD_SWITCH_ST_MAX_PWR_0_72W;
	error = SdCmd6(drv, &request, drv->card.sandbox1, &status);
	if (error || status & STATUS_SWITCH_ERROR)
		return SDMMC_ERR;
	val = SD_SWITCH_ST_MAX_CURR_CONSUMPTION(drv->card.sandbox1);
	TRACE_DEBUG_1("Device max current: %u mA\n\r", val);
	if (val == 0 || val > (1440 * 10) / 36)
		SdSelectSlowerTiming(drv->card.bCardSigLevel != 0, &mode);
	else if (sfs_v1) {
		val = SD_SWITCH_ST_FUN_GRP4_BUSY(drv->card.sandbox1);
		if (val & 1 << SD_SWITCH_ST_MAX_PWR_1_44W)
			pwr_func = SD_SWITCH_ST_MAX_PWR_0_72W;
		val = SD_SWITCH_ST_FUN_GRP1_BUSY(drv->card.sandbox1);
		if (val & 1 << mode_func)
			SdSelectSlowerTiming(drv->card.bCardSigLevel != 0, &mode);
	}

	/* Select device output Driver Type B, i.e. 50 ohm nominal output
	 * impedance.
	 * FIXME select the optimal device output Driver Type, which depends on
	 * board design. An oscilloscope should be used to observe signal
	 * integrity, then among the driver types that meet rise and fall time
	 * requirements, the weakest should be selected.
	 */
	request.acc_mode = 0xf;
	request.pwr_limit = 0xf;
	request.set = 1;
	error = SdCmd6(drv, &request, drv->card.sandbox1, &status);
	if (error || status & STATUS_SWITCH_ERROR)
		return SDMMC_ERR;
	val = SD_SWITCH_ST_FUN_GRP3_RC(drv->card.sandbox1);
	if (val != request.drv_strgth)
		SdSelectSlowerTiming(drv->card.bCardSigLevel != 0, &mode);

Switch:
	/* Now switch the memory device to the candidating mode */
	request.acc_mode = mode_func = SdGetTimingFunction(mode);
	request.cmd_sys = 0x0;
	request.drv_strgth = 0xf;
	request.pwr_limit = pwr_func;
	error = SdCmd6(drv, &request, drv->card.sandbox1, &status);
	if (error || status & STATUS_SWITCH_ERROR)
		return SDMMC_ERR;
	val = SD_SWITCH_ST_FUN_GRP1_RC(drv->card.sandbox1);
	while (val != mode_func && val != SD_SWITCH_ST_FUN_GRP_RC_ERROR) {
		/* FIXME break upon timeout condition */
		request.acc_mode = 0xf;
		request.cmd_sys = 0xf;
		request.pwr_limit = 0xf;
		request.set = 0;
		error = SdCmd6(drv, &request, drv->card.sandbox1, &status);
		if (error || status & STATUS_SWITCH_ERROR)
			return SDMMC_ERR;
		val = SD_SWITCH_ST_FUN_GRP1_RC(drv->card.sandbox1);
		if (val != mode_func && sfs_v1
		    && !(SD_SWITCH_ST_FUN_GRP1_BUSY(drv->card.sandbox1)
		    & 1 << mode_func))
			break;
	}

	if (val != mode_func && (mode == SDMMC_TIM_SD_DS || mode == SDMMC_TIM_SD_SDR12))
		return SDMMC_ERR;
	else if (val != mode_func) {
		SdSelectSlowerTiming(drv->card.bCardSigLevel != 0, &mode);
		goto Switch;
	}

	val = SD_SWITCH_ST_FUN_GRP4_RC(drv->card.sandbox1);

	if (val != pwr_func) {
		TRACE_DEBUG_1("Device power limit 0x%x\n\r", val);
	}

Apply:
	error = HwSetHsMode(drv, mode);
	if (error == SDMMC_OK)
		drv->card.bSpeedMode = mode;
	else
		return SDMMC_ERR;
	return SDMMC_OK;
}


void SdGetExtInformation(SdmmcDriver *drv)
{
	uint32_t card_status;
	uint8_t error;

	error = Acmd51(drv, drv->card.SCR, &card_status);

	if (error == SDMMC_OK) {
		card_status &= ~STATUS_READY_FOR_DATA;
		if (card_status != (STATUS_APP_CMD | STATUS_TRAN)) {
			TRACE_DEBUG_1("SCR st %lx\n\r", card_status);
		}
	}

	error = Acmd13(drv, drv->card.SSR, &card_status);

	if (error == SDMMC_OK) {
		card_status &= ~STATUS_READY_FOR_DATA;
		if (card_status != (STATUS_APP_CMD | STATUS_TRAN)) {
			TRACE_DEBUG_1("SSR st %lx\n\r", card_status);
		}
	}
}



/**
 * Reset SD/MMC driver runtime parameters.
 */
void SdParamReset(sSdCard * pSd)
{
	pSd->dwTotalSize = 0;
	pSd->dwNbBlocks = 0;
	pSd->wBlockSize = 0;

	pSd->wCurrBlockLen = 0;
	pSd->dwCurrSpeed = 0;
	pSd->wAddress = 0;

	pSd->bCardType = 0;
	pSd->bCardSigLevel = 2;
	pSd->bSpeedMode = SDMMC_TIM_MMC_BC;
	pSd->bBusMode = 1;
	pSd->bStatus = SDMMC_NOT_INITIALIZED;
	pSd->bSetBlkCnt = 0;
	pSd->bStopMultXfer = 0;


	/* Clear our device register cache */
	memset(pSd->CID, 0, 16);
	memset(pSd->CSD, 0, 16);
	memset(pSd->EXT, 0, EXT_SIZE);
	memset(pSd->SSR, 0, SSR_SIZE);
	memset(pSd->SCR, 0, SCR_SIZE);
}

/**
 * Query whether the card is writeprotected or not by mechanical
 write protect switch.
 * \param pSd Pointer to \ref sSdCard instance.
 * \return an \ref sdmmc_rc "error code", as follows:
 * - SDMMC_LOCKED if the device has been mechanical write protected.
 * - SDMMC_OK if the card is not write-protected.
 */
uint8_t SD_GetWpStatus(SdmmcDriver *driver)
{
	uint32_t rc;

	driver->control_param = 0;

    rc = sdmmc_device_control(driver,SDMMC_IOCTL_GET_WP);

	if (rc != SDMMC_OK)
		return SDMMC_NOT_SUPPORTED;
    if (!driver->control_param)
		return SDMMC_LOCKED;
	else
		return SDMMC_OK;
}


/**
 * From a wide-width device register extract the requested field.
 * \param reg  Contents of the register
 * \param reg_len  Length of the register, in bits
 * \param field_start  Offset (address of the least significant bit) of the
 * requested field, in bits
 * \param field_len  Length of the requested field, in bits
 * \return The value of the field.
 */
uint32_t SD_GetField(const uint8_t *reg, uint16_t reg_len, uint16_t field_start,
            uint8_t field_len)
{
	uint32_t val = 0;
	uint8_t byte, expected_bits = field_len, new_bits;

	//assert(reg);
	//assert(reg_len % 8 == 0);
	//assert(field_len != 0 && field_len <= 32 && field_len <= reg_len);
	//assert(field_start <= reg_len - field_len);

	reg += (reg_len - field_start - field_len) / 8;
	while (expected_bits) {
		byte = *reg;
		new_bits = (field_start + expected_bits) % 8;
		if (new_bits)
			byte &= (1 << new_bits) - 1;
		else
			new_bits = 8;
		if (new_bits <= expected_bits)
			val |= (uint32_t)byte << (expected_bits - new_bits);
		else {
			byte >>= new_bits - expected_bits;
			val |= byte;
			new_bits = expected_bits;
		}
		expected_bits -= new_bits;
		reg++;
	}
	//assert((val & ~0 << field_len) == 0);
	return val;
}

static uint8_t SdGetTimingFunction(uint8_t mode) {
	if (mode == SDMMC_TIM_SD_SDR104)
		return SD_SWITCH_ST_ACC_SDR104;
	else if (mode == SDMMC_TIM_SD_DDR50)
		return SD_SWITCH_ST_ACC_DDR50;
	else if (mode == SDMMC_TIM_SD_SDR50)
		return SD_SWITCH_ST_ACC_SDR50;
	else if (mode == SDMMC_TIM_SD_HS || mode == SDMMC_TIM_SD_SDR25)
		return SD_SWITCH_ST_ACC_HS;
	else
		return SD_SWITCH_ST_ACC_DS;
}

static void SdSelectSlowerTiming(bool high_sig, uint8_t * mode)
{
	if (high_sig)
		*mode = SDMMC_TIM_SD_DS;
	else if (*mode > SDMMC_TIM_SD_SDR50)
		*mode = SDMMC_TIM_SD_SDR50;
	else if (*mode > SDMMC_TIM_SD_SDR25)
		*mode = SDMMC_TIM_SD_SDR25;
	else
		*mode = SDMMC_TIM_SD_SDR12;
}

uint32_t SD_GetTotalSizeKB(const sSdCard * pSd)
{
	//assert(pSd != NULL);

	if (pSd->dwTotalSize == 0xFFFFFFFF)
		return (pSd->dwNbBlocks / 1024) * pSd->wBlockSize;
	else
		return pSd->dwTotalSize / 1024;
}


void SD_DumpStatus(const sSdCard *pSd)
{
	char text[40] = "";
	char mode[20] = "";
	char vers[7] = { ' ', 'v', '1', '.', '0', '\0', '\0' };

	//assert(pSd != NULL);

	if (pSd->bCardType & CARD_TYPE_bmHC)
		strcat(text, "High-capacity ");
	if (pSd->bCardType & CARD_TYPE_bmSDIO
	    && pSd->bCardType & CARD_TYPE_bmSD)
		strcat(text, "SDIO combo card");
	else if (pSd->bCardType & CARD_TYPE_bmSDIO)
		strcat(text, "SDIO device");
	else if (pSd->bCardType & CARD_TYPE_bmSD)
		strcat(text, "SD card");
#ifndef SDMMC_TRIM_MMC
	else if (pSd->bCardType & CARD_TYPE_bmMMC)
		strcat(text, "MMC device");
#endif
	else
		strcat(text, "unrecognized device");

	if (pSd->bCardType & CARD_TYPE_bmMMC) {
#ifndef SDMMC_TRIM_MMC
		const uint8_t csd = MMC_CSD_SPEC_VERS(pSd->CSD);
		const uint8_t ext = MMC_EXT_EXT_CSD_REV(pSd->EXT);

		if (csd == MMC_CSD_SPEC_VERS_1_4)
			vers[4] = '4';
		else if (csd == MMC_CSD_SPEC_VERS_2_0) {
			vers[2] = '2';
			vers[4] = 'x';
		}
		else if (csd == MMC_CSD_SPEC_VERS_3_1) {
			vers[2] = '3';
			vers[4] = 'x';
		}
		else if (csd == MMC_CSD_SPEC_VERS_4_0) {
			vers[2] = ext <= 6 ? '4' : '5';
			if (ext <= 4)
				vers[4] = '0' + ext;
			else if (ext == 5) {
				vers[4] = '4';
				vers[5] = '1';
			}
			else if (ext == 6) {
				vers[4] = '5';
				vers[5] = 'x';
			}
			else if (ext == 7)
				vers[5] = 'x';
			else if (ext == 8)
				vers[4] = '1';
			else
				vers[4] = 'x';
		}
		else if (csd != MMC_CSD_SPEC_VERS_1_0)
			vers[2] = vers[4] = '?';
		strcat(text, vers);
#endif
	}
	else if (pSd->bCardType & CARD_TYPE_bmSD
	    && SD_SCR_STRUCTURE(pSd->SCR) == SD_SCR_STRUCTURE_1_0) {
		if (SD_SCR_SD_SPEC(pSd->SCR) == SD_SCR_SD_SPEC_1_0)
			vers[5] = 'x';
		else if (SD_SCR_SD_SPEC(pSd->SCR) == SD_SCR_SD_SPEC_1_10) {
			vers[4] = '1';
			vers[5] = '0';
		}
		else if (SD_SCR_SD_SPEC(pSd->SCR) == SD_SCR_SD_SPEC_2_00) {
			if (SD_SCR_SD_SPEC4(pSd->SCR) == SD_SCR_SD_SPEC_4_X) {
				vers[2] = '4';
				vers[4] = vers[5] = 'x';
			}
			else if (SD_SCR_SD_SPEC3(pSd->SCR)
			    == SD_SCR_SD_SPEC_3_0) {
				vers[2] = '3';
				vers[5] = 'x';
			}
			else {
				vers[2] = '2';
				vers[5] = '0';
			}
		}
		else
			vers[2] = vers[4] = '?';
		strcat(text, vers);
	}

	if (pSd->bSpeedMode == SDMMC_TIM_MMC_BC)
		strcat(mode, "Backward-compatible");
#ifndef SDMMC_TRIM_MMC
	else if (pSd->bSpeedMode == SDMMC_TIM_MMC_HS_SDR)
		strcat(mode, "HS SDR");
	else if (pSd->bSpeedMode == SDMMC_TIM_MMC_HS_DDR)
		strcat(mode, "HS DDR");
	else if (pSd->bSpeedMode == SDMMC_TIM_MMC_HS200)
		strcat(mode, "HS200");
#endif
	else if (pSd->bSpeedMode == SDMMC_TIM_SD_DS)
		strcat(mode, "DS");
	else if (pSd->bSpeedMode == SDMMC_TIM_SD_HS)
		strcat(mode, "HS");
	else if (pSd->bSpeedMode >= SDMMC_TIM_SD_SDR12
	    && pSd->bSpeedMode <= SDMMC_TIM_SD_SDR104) {
		char uhs_mode[10] = "UHS-I SDR";

		if (pSd->bSpeedMode == SDMMC_TIM_SD_DDR50)
			uhs_mode[6] = 'D';
		strcat(mode, uhs_mode);
		if (pSd->bSpeedMode == SDMMC_TIM_SD_SDR12)
			strcat(mode, "12");
		else if (pSd->bSpeedMode == SDMMC_TIM_SD_SDR25)
			strcat(mode, "25");
		else if (pSd->bSpeedMode == SDMMC_TIM_SD_SDR50
		    || pSd->bSpeedMode == SDMMC_TIM_SD_DDR50)
			strcat(mode, "50");
		else
			strcat(mode, "104");
	}

	TRACE_DEBUG_4("%s, %u-bit data, in %s mode at %lu kHz\n\r", text, pSd->bBusMode, mode, (pSd->dwCurrSpeed / 1000UL) );

	if (pSd->bCardType & CARD_TYPE_bmSDMMC) {
		TRACE_DEBUG_3("Device memory size: %lu MiB, %lu * %uB\n\r", SD_GetTotalSizeKB(pSd) / 1024ul, pSd->dwNbBlocks,pSd->wBlockSize);

	}

}


/**
 * Display the content of the CID register
 * \param pSd  Pointer to SdCard instance.
 */
void SD_DumpCID(const sSdCard *pSd)
{
	const uint8_t sd_device = (pSd->bCardType & CARD_TYPE_bmSDMMC)  == CARD_TYPE_bmSD;

	/* Function-only SDIO devices have no CID register */
	if ((pSd->bCardType & CARD_TYPE_bmSDMMC) == CARD_TYPE_bmUNKNOWN)
		return;

	TRACE("Card IDentification\r\n");
	TRACE_1("MID 0x%02X\r\n", SD_CID_MID(pSd->CID));

	if (sd_device) {
		TRACE_2("OID %c%c\r\n", (char) SD_CID_OID1(pSd->CID),(char) SD_CID_OID0(pSd->CID));
		TRACE_5("PNM %c%c%c%c%c\r\n", (char) SD_CID_PNM4(pSd->CID),
		    (char) SD_CID_PNM3(pSd->CID), (char) SD_CID_PNM2(pSd->CID),
		    (char) SD_CID_PNM1(pSd->CID), (char) SD_CID_PNM0(pSd->CID));
		TRACE_2("PRV %u.%u\r\n", SD_CID_PRV1(pSd->CID),
		    SD_CID_PRV0(pSd->CID));
		TRACE_4("PSN 0x%02X%02X%02X%02X\r\n", SD_CID_PSN3(pSd->CID),
		    SD_CID_PSN2(pSd->CID), SD_CID_PSN1(pSd->CID),
		    SD_CID_PSN0(pSd->CID));
		TRACE_2("MDT %u/%02u\r\n", 2000 + SD_CID_MDT_Y(pSd->CID),
		    SD_CID_MDT_M(pSd->CID));
	}
#ifndef SDMMC_TRIM_MMC
	else {
		uint16_t year = 1997 + MMC_CID_MDT_Y(pSd->CID);

		if (MMC_EXT_EXT_CSD_REV(pSd->EXT) >= 3) {
			TRACE_1("CBX %u\r\n", eMMC_CID_CBX(pSd->CID));
			TRACE_1("OID 0x%02X\r\n", eMMC_CID_OID(pSd->CID));
		}
		else {
			TRACE_1("OID 0x%04X\r\n", MMC_CID_OID(pSd->CID));
		}
		TRACE_6("PNM %c%c%c%c%c%c\r\n",
		    (char) MMC_CID_PNM5(pSd->CID),
		    (char) MMC_CID_PNM4(pSd->CID),
		    (char) MMC_CID_PNM3(pSd->CID),
		    (char) MMC_CID_PNM2(pSd->CID),
		    (char) MMC_CID_PNM1(pSd->CID),
		    (char) MMC_CID_PNM0(pSd->CID));
		TRACE_2("PRV %u.%u\r\n", MMC_CID_PRV1(pSd->CID),
		    MMC_CID_PRV0(pSd->CID));
		TRACE_4("PSN 0x%02X%02X%02X%02X\r\n", MMC_CID_PSN3(pSd->CID),
		    MMC_CID_PSN2(pSd->CID), MMC_CID_PSN1(pSd->CID),
		    MMC_CID_PSN0(pSd->CID));
		if (MMC_EXT_EXT_CSD_REV(pSd->EXT) > 4 && year < 2010)
			year = year - 1997 + 2013;
		TRACE_2("MDT %u/%02u\r\n", year, MMC_CID_MDT_M(pSd->CID));
	}
#endif

	TRACE_1("CRC 0x%02X\r\n", SD_CID_CRC(pSd->CID));
}


/**
 * Display the content of the SCR register
 * \param pSCR  Pointer to SCR data.
 */
void SD_DumpSCR(const uint8_t *pSCR)
{
	(void)pSCR;

	_PrintTitle("SD Card Configuration");
	_PrintField("SCR_STRUCT 0x%X\r\n", SD_SCR_STRUCTURE(pSCR));
	_PrintField("SD_SPEC 0x%X\r\n", SD_SCR_SD_SPEC(pSCR));
	_PrintField("SD_SPEC3 %u\r\n", SD_SCR_SD_SPEC3(pSCR));
	_PrintField("SD_SPEC4 %u\r\n", SD_SCR_SD_SPEC4(pSCR));
	_PrintField("DATA_ST_AFTER_ER %u\r\n",
	    SD_SCR_DATA_STAT_AFTER_ERASE(pSCR));
	_PrintField("SD_SEC 0x%X\r\n", SD_SCR_SD_SECURITY(pSCR));
	_PrintField("EX_SEC 0x%X\r\n", SD_SCR_EX_SECURITY(pSCR));
	_PrintField("SD_BUS_WIDTHS 0x%X\r\n", SD_SCR_SD_BUS_WIDTHS(pSCR));
	_PrintField("CMD20 %u\r\n", SD_SCR_CMD20_SUPPORT(pSCR));
	_PrintField("CMD23 %u\r\n", SD_SCR_CMD23_SUPPORT(pSCR));
	_PrintField("CMD48/49 %u\r\n", SD_SCR_CMD48_SUPPORT(pSCR));
	_PrintField("CMD58/59 %u\r\n", SD_SCR_CMD58_SUPPORT(pSCR));
}

/**
 * Display the content of the SD Status Register
 * \param pSSR  Pointer to SSR data.
 */
void SD_DumpSSR(const uint8_t *pSSR)
{
	(void)pSSR;
	_PrintTitle("SD Status");
	_PrintField("DAT_BUS_WIDTH 0x%X\r\n", SD_SSR_DAT_BUS_WIDTH(pSSR));
	_PrintField("SEC_MODE %u\r\n", SD_SSR_SECURED_MODE(pSSR));
	_PrintField("SD_CARD_TYPE 0x%04X\r\n", SD_SSR_CARD_TYPE(pSSR));
	_PrintField("PAREA_SIZE %lu\r\n",
	    SD_SSR_SIZE_OF_PROTECTED_AREA(pSSR));
	_PrintField("SPD_CLASS 0x%02X\r\n", SD_SSR_SPEED_CLASS(pSSR));
	_PrintField("UHS_SPD_GRADE 0x%X\r\n", SD_SSR_UHS_SPEED_GRADE(pSSR));
	_PrintField("PE_MOVE %u MB/sec\r\n", SD_SSR_PERFORMANCE_MOVE(pSSR));
	_PrintField("AU_SIZE 0x%X\r\n", SD_SSR_AU_SIZE(pSSR));
	_PrintField("UHS_AU_SIZE 0x%X\r\n", SD_SSR_UHS_AU_SIZE(pSSR));
	_PrintField("ER_SIZE %u AU\r\n", SD_SSR_ERASE_SIZE(pSSR));
	_PrintField("ER_TIMEOUT %u sec\r\n", SD_SSR_ERASE_TIMEOUT(pSSR));
	_PrintField("ER_OFFS %u sec\r\n", SD_SSR_ERASE_OFFSET(pSSR));
}


/**
 * Display the content of the CSD register
 * \param pSd  Pointer to SdCard instance.
 */
void SD_DumpCSD(const sSdCard *pSd)
{
	const uint8_t sd_device = (pSd->bCardType & CARD_TYPE_bmSDMMC)
	    == CARD_TYPE_bmSD;
	const uint8_t sd_csd_v2 = sd_device
	    && SD_CSD_STRUCTURE(pSd->CSD) >= 0x1;

	_PrintTitle("Card-Specific Data");
	_PrintField("CSD_STRUCT 0x%X\r\n", SD_CSD_STRUCTURE(pSd->CSD));
#ifndef SDMMC_TRIM_MMC
	if (!sd_device) {
		_PrintField("SPEC_V 0x%X\r\n", MMC_CSD_SPEC_VERS(pSd->CSD));
	}
#endif
	_PrintField("TAAC 0x%X\r\n", SD_CSD_TAAC(pSd->CSD));
	_PrintField("NSAC 0x%X\r\n", SD_CSD_NSAC(pSd->CSD));
	_PrintField("TRAN_SPD 0x%X\r\n", SD_CSD_TRAN_SPEED(pSd->CSD));
	_PrintField("CCC 0x%X\r\n", SD_CSD_CCC(pSd->CSD));
	_PrintField("RD_BL_LEN 0x%X\r\n", SD_CSD_READ_BL_LEN(pSd->CSD));
	_PrintField("RD_BL_PART %u\r\n", SD_CSD_READ_BL_PARTIAL(pSd->CSD));
	_PrintField("WR_BL_MALIGN %u\r\n", SD_CSD_WRITE_BLK_MISALIGN(pSd->CSD));
	_PrintField("RD_BL_MALIGN %u\r\n", SD_CSD_READ_BLK_MISALIGN(pSd->CSD));
	_PrintField("DSR_IMP %u\r\n", SD_CSD_DSR_IMP(pSd->CSD));
	_PrintField("C_SIZE 0x%lX\r\n", sd_csd_v2 ? SD2_CSD_C_SIZE(pSd->CSD)
	    : SD_CSD_C_SIZE(pSd->CSD));
	if (!sd_csd_v2) {
		_PrintField("RD_CUR_MIN 0x%X\r\n",
		    SD_CSD_VDD_R_CURR_MIN(pSd->CSD));
		_PrintField("RD_CUR_MAX 0x%X\r\n",
		    SD_CSD_VDD_R_CURR_MAX(pSd->CSD));
		_PrintField("WR_CUR_MIN 0x%X\r\n",
		    SD_CSD_VDD_W_CURR_MIN(pSd->CSD));
		_PrintField("WR_CUR_MAX 0x%X\r\n",
		    SD_CSD_VDD_W_CURR_MAX(pSd->CSD));
		_PrintField("C_SIZE_MULT 0x%X\r\n",
		    SD_CSD_C_SIZE_MULT(pSd->CSD));
	}
	if (sd_device) {
		_PrintField("ER_BL_EN %u\r\n", SD_CSD_ERASE_BLK_EN(pSd->CSD));
		_PrintField("SECT_SIZE 0x%X\r\n", SD_CSD_SECTOR_SIZE(pSd->CSD));
	}
#ifndef SDMMC_TRIM_MMC
	else {
		_PrintField("ER_GRP_SIZE 0x%X\r\n",
		    MMC_CSD_ERASE_GRP_SIZE(pSd->CSD));
		_PrintField("ER_GRP_MULT 0x%X\r\n",
		    MMC_CSD_ERASE_GRP_MULT(pSd->CSD));
	}
#endif
#ifdef SDMMC_TRIM_MMC
	_PrintField("WP_GRP_SIZE 0x%X\r\n", SD_CSD_WP_GRP_SIZE(pSd->CSD));
#else
	_PrintField("WP_GRP_SIZE 0x%X\r\n", sd_device ?
	    SD_CSD_WP_GRP_SIZE(pSd->CSD) : MMC_CSD_WP_GRP_SIZE(pSd->CSD));
#endif
	_PrintField("WP_GRP_EN %u\r\n", SD_CSD_WP_GRP_ENABLE(pSd->CSD));
#ifndef SDMMC_TRIM_MMC
	if (!sd_device) {
		_PrintField("DEF_ECC 0x%X\r\n", MMC_CSD_DEFAULT_ECC(pSd->CSD));
	}
#endif
	_PrintField("R2W_FACT 0x%X\r\n", SD_CSD_R2W_FACTOR(pSd->CSD));
	_PrintField("WR_BL_LEN 0x%X\r\n", SD_CSD_WRITE_BL_LEN(pSd->CSD));
	_PrintField("WR_BL_PART %u\r\n", SD_CSD_WRITE_BL_PARTIAL(pSd->CSD));
	_PrintField("FILE_FMT_GRP %u\r\n", SD_CSD_FILE_FORMAT_GRP(pSd->CSD));
	_PrintField("COPY %u\r\n", SD_CSD_COPY(pSd->CSD));
	_PrintField("PERM_WP %u\r\n", SD_CSD_PERM_WRITE_PROTECT(pSd->CSD));
	_PrintField("TMP_WP %u\r\n", SD_CSD_TMP_WRITE_PROTECT(pSd->CSD));
	_PrintField("FILE_FMT 0x%X\r\n", SD_CSD_FILE_FORMAT(pSd->CSD));
#ifndef SDMMC_TRIM_MMC
	if (!sd_device) {
		_PrintField("ECC 0x%X\r\n", MMC_CSD_ECC(pSd->CSD));
	}
#endif
	_PrintField("CRC 0x%X\r\n", SD_CSD_CRC(pSd->CSD));
}

/**
 * Display the content of the EXT_CSD register
 * \param pExtCSD Pointer to extended CSD data.
 */
void SD_DumpExtCSD(const uint8_t *pExtCSD)
{
	(void)pExtCSD;
	_PrintTitle("Extended Device Specific Data");
	_PrintField("S_CMD_SET 0x%X\r\n", MMC_EXT_S_CMD_SET(pExtCSD));
	_PrintField("BOOT_INFO 0x%X\r\n", MMC_EXT_BOOT_INFO(pExtCSD));
	_PrintField("BOOT_SIZE_MULTI 0x%X\r\n",
	    MMC_EXT_BOOT_SIZE_MULTI(pExtCSD));
	_PrintField("ACC_SIZE 0x%X\r\n", MMC_EXT_ACC_SIZE(pExtCSD));
	_PrintField("HC_ER_GRP_SIZE 0x%X\r\n",
	    MMC_EXT_HC_ERASE_GRP_SIZE(pExtCSD));
	_PrintField("ER_TIMEOUT_MULT 0x%X\r\n",
	    MMC_EXT_ERASE_TIMEOUT_MULT(pExtCSD));
	_PrintField("REL_WR_SEC_C 0x%X\r\n", MMC_EXT_REL_WR_SEC_C(pExtCSD));
	_PrintField("HC_WP_GRP_SIZE 0x%X\r\n", MMC_EXT_HC_WP_GRP_SIZE(pExtCSD));
	_PrintField("S_C_VCC 0x%X\r\n", MMC_EXT_S_C_VCC(pExtCSD));
	_PrintField("S_C_VCCQ 0x%X\r\n", MMC_EXT_S_C_VCCQ(pExtCSD));
	_PrintField("S_A_TIMEOUT 0x%X\r\n", MMC_EXT_S_A_TIMEOUT(pExtCSD));
	_PrintField("SEC_CNT 0x%lX\r\n", MMC_EXT_SEC_COUNT(pExtCSD));
	_PrintField("MIN_PE_W_8_52 0x%X\r\n", MMC_EXT_MIN_PERF_W_8_52(pExtCSD));
	_PrintField("MIN_PE_R_8_52 0x%X\r\n", MMC_EXT_MIN_PERF_R_8_52(pExtCSD));
	_PrintField("MIN_PE_W_8_26_4_52 0x%X\r\n",
	    MMC_EXT_MIN_PERF_W_8_26_4_52(pExtCSD));
	_PrintField("MIN_PE_R_8_26_4_52 0x%X\r\n",
	    MMC_EXT_MIN_PERF_R_8_26_4_52(pExtCSD));
	_PrintField("MIN_PE_W_4_26 0x%X\r\n", MMC_EXT_MIN_PERF_W_4_26(pExtCSD));
	_PrintField("MIN_PE_R_4_26 0x%X\r\n", MMC_EXT_MIN_PERF_R_4_26(pExtCSD));
	_PrintField("PWR_CL_26_360 0x%X\r\n", MMC_EXT_PWR_CL_26_360(pExtCSD));
	_PrintField("PWR_CL_52_360 0x%X\r\n", MMC_EXT_PWR_CL_52_360(pExtCSD));
	_PrintField("PWR_CL_26_195 0x%X\r\n", MMC_EXT_PWR_CL_26_195(pExtCSD));
	_PrintField("PWR_CL_52_195 0x%X\r\n", MMC_EXT_PWR_CL_52_195(pExtCSD));
	_PrintField("DRV_STR 0x%X\r\n", MMC_EXT_DRV_STRENGTH(pExtCSD));
	_PrintField("CARD_TYPE 0x%X\r\n", MMC_EXT_CARD_TYPE(pExtCSD));
	_PrintField("CSD_STRUCT 0x%X\r\n", MMC_EXT_CSD_STRUCTURE(pExtCSD));
	_PrintField("EXT_CSD_REV 0x%X\r\n", MMC_EXT_EXT_CSD_REV(pExtCSD));
	_PrintField("CMD_SET 0x%X\r\n", MMC_EXT_CMD_SET(pExtCSD));
	_PrintField("CMD_SET_REV 0x%X\r\n", MMC_EXT_CMD_SET_REV(pExtCSD));
	_PrintField("PWR_CLASS 0x%X\r\n", MMC_EXT_POWER_CLASS(pExtCSD));
	_PrintField("HS_TIM 0x%X\r\n", MMC_EXT_HS_TIMING(pExtCSD));
	_PrintField("BUS_WIDTH 0x%X\r\n", MMC_EXT_BUS_WIDTH(pExtCSD));
	_PrintField("ER_MEM_CONT 0x%X\r\n", MMC_EXT_ERASED_MEM_CONT(pExtCSD));
	_PrintField("BOOT_CFG 0x%X\r\n", MMC_EXT_BOOT_CONFIG(pExtCSD));
	_PrintField("BOOT_BUS_WIDTH 0x%X\r\n", MMC_EXT_BOOT_BUS_WIDTH(pExtCSD));
	_PrintField("ER_GRP_DEF 0x%X\r\n", MMC_EXT_ERASE_GROUP_DEF(pExtCSD));
}



/**
 * Transfer a single data block.
 * The device shall be in its Transfer State already.
 * \param pSd      Pointer to a SD card driver instance.
 * \param address  Address of the block to transfer.
 * \param pData    Data buffer, whose size is at least one block size.
 * \param isRead   Either 1 to read data from the device or 0 to write data.
 * \return a \ref sdmmc_rc result code.
 */
static uint8_t PerformSingleTransfer(SdmmcDriver *driver,uint32_t address, uint8_t * pData, uint8_t isRead)
{
	uint8_t result = SDMMC_OK, error;
	uint32_t sdmmc_address, status;

	/* Convert block address into device-expected unit */
	if (driver->card.bCardType & CARD_TYPE_bmHC)
		sdmmc_address = address;
	else if (address <= 0xfffffffful / driver->card.wCurrBlockLen)
		sdmmc_address = address * driver->card.wCurrBlockLen;
	else
		return SDMMC_PARAM;

	if (isRead)
		/* Read a single data block */
		error = Cmd17(driver, pData, sdmmc_address, &status);
	else
		/* Write a single data block */
		error = Cmd24(driver, pData, sdmmc_address, &status);

	if (!error) {
		status = status & (isRead ? STATUS_READ : STATUS_WRITE)
		    & ~STATUS_READY_FOR_DATA & ~STATUS_STATE;
		if (status) {
			//error
			TRACE_1("st %lx\n\r", status);
			error = SDMMC_ERR;
		}
	}
	if (error) {
		//error
		TRACE_ERROR_3("Cmd%u(0x%lx) %s\n\r", isRead ? 17 : 24,sdmmc_address, SD_StringifyRetCode(error));
		result = error;
		error = Cmd13(driver, &status);
		if (error) {
			driver->card.bStatus = error;
			return result;
		}
		error = _WaitUntilReady(driver, status);
		if (error) {
			driver->card.bStatus = error;
			return result;
		}
	}
	return result;
}

/**
 * Move SD card to transfer state. The buffer size must be at
 * least 512 byte long. This function checks the SD card status register and
 * address the card if required before sending the transfer command.
 * Returns 0 if successful; otherwise returns an code describing the error.
 * \param pSd      Pointer to a SD card driver instance.
 * \param address  Address of the block to transfer.
 * \param nbBlocks Pointer to count of blocks to transfer. Pointer to 0
 * for infinite transfer. Upon return, points to the count of blocks actually
 * transferred.
 * \param pData    Data buffer whose size is at least the block size.