aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/oxnas/files/drivers/ata/sata_oxnas.c
diff options
context:
space:
mode:
authorJames <>2015-11-04 11:49:21 +0000
committerJames <>2015-11-04 11:49:21 +0000
commit716ca530e1c4515d8683c9d5be3d56b301758b66 (patch)
tree700eb5bcc1a462a5f21dcec15ce7c97ecfefa772 /target/linux/oxnas/files/drivers/ata/sata_oxnas.c
downloadtrunk-47381-master.tar.gz
trunk-47381-master.tar.bz2
trunk-47381-master.zip
trunk-47381HEADmaster
Diffstat (limited to 'target/linux/oxnas/files/drivers/ata/sata_oxnas.c')
-rw-r--r--target/linux/oxnas/files/drivers/ata/sata_oxnas.c2477
1 files changed, 2477 insertions, 0 deletions
diff --git a/target/linux/oxnas/files/drivers/ata/sata_oxnas.c b/target/linux/oxnas/files/drivers/ata/sata_oxnas.c
new file mode 100644
index 0000000..291a06f
--- /dev/null
+++ b/target/linux/oxnas/files/drivers/ata/sata_oxnas.c
@@ -0,0 +1,2477 @@
+/*
+ * sata_oxnas
+ * A driver to interface the 934 based sata core present in the ox820
+ * with libata and scsi
+ * based on sata_oxnas driver by Ma Haijun <mahaijuns@gmail.com>
+ * based on ox820 sata code by:
+ * Copyright (c) 2007 Oxford Semiconductor Ltd.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/ata.h>
+#include <linux/libata.h>
+#include <linux/of_platform.h>
+#include <linux/delay.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/of_address.h>
+#include <linux/of_irq.h>
+#include <linux/clk.h>
+#include <linux/reset.h>
+
+#include <mach/utils.h>
+
+/* sgdma request structure */
+struct sgdma_request {
+ volatile u32 qualifier;
+ volatile u32 control;
+ dma_addr_t src_pa;
+ dma_addr_t dst_pa;
+} __packed __aligned(4);
+
+
+/* Controller information */
+enum {
+ SATA_OXNAS_MAX_PRD = 254,
+ SATA_OXNAS_DMA_SIZE = SATA_OXNAS_MAX_PRD *
+ sizeof(struct ata_bmdma_prd) +
+ sizeof(struct sgdma_request),
+ SATA_OXNAS_MAX_PORTS = 2,
+ /** The different Oxsemi SATA core version numbers */
+ SATA_OXNAS_CORE_VERSION = 0x1f3,
+ SATA_OXNAS_IRQ_FLAG = IRQF_SHARED,
+ SATA_OXNAS_HOST_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_PIO_DMA |
+ ATA_FLAG_NO_ATAPI /*| ATA_FLAG_NCQ*/),
+ SATA_OXNAS_QUEUE_DEPTH = 32,
+
+ SATA_OXNAS_DMA_BOUNDARY = 0xFFFFFFFF,
+};
+
+
+/*
+ * SATA Port Registers
+ */
+enum {
+ /** sata host port register offsets */
+ ORB1 = 0x00,
+ ORB2 = 0x04,
+ ORB3 = 0x08,
+ ORB4 = 0x0C,
+ ORB5 = 0x10,
+ MASTER_STATUS = 0x10,
+ FIS_CTRL = 0x18,
+ FIS_DATA = 0x1C,
+ INT_STATUS = 0x30,
+ INT_CLEAR = 0x30,
+ INT_ENABLE = 0x34,
+ INT_DISABLE = 0x38,
+ VERSION = 0x3C,
+ SATA_CONTROL = 0x5C,
+ SATA_COMMAND = 0x60,
+ HID_FEATURES = 0x64,
+ PORT_CONTROL = 0x68,
+ DRIVE_CONTROL = 0x6C,
+ /** These registers allow access to the link layer registers
+ that reside in a different clock domain to the processor bus */
+ LINK_DATA = 0x70,
+ LINK_RD_ADDR = 0x74,
+ LINK_WR_ADDR = 0x78,
+ LINK_CONTROL = 0x7C,
+ /* window control */
+ WIN1LO = 0x80,
+ WIN1HI = 0x84,
+ WIN2LO = 0x88,
+ WIN2HI = 0x8C,
+ WIN0_CONTROL = 0x90,
+};
+
+/** sata port register bits */
+enum{
+ /**
+ * commands to issue in the master status to tell it to move shadow ,
+ * registers to the actual device ,
+ */
+ SATA_OPCODE_MASK = 0x00000007,
+ CMD_WRITE_TO_ORB_REGS_NO_COMMAND = 0x4,
+ CMD_WRITE_TO_ORB_REGS = 0x2,
+ CMD_SYNC_ESCAPE = 0x7,
+ CMD_CORE_BUSY = (1 << 7),
+ CMD_DRIVE_SELECT_SHIFT = 12,
+ CMD_DRIVE_SELECT_MASK = (0xf << CMD_DRIVE_SELECT_SHIFT),
+
+ /** interrupt bits */
+ INT_END_OF_CMD = 1 << 0,
+ INT_LINK_SERROR = 1 << 1,
+ INT_ERROR = 1 << 2,
+ INT_LINK_IRQ = 1 << 3,
+ INT_REG_ACCESS_ERR = 1 << 7,
+ INT_BIST_FIS = 1 << 11,
+ INT_MASKABLE = INT_END_OF_CMD |
+ INT_LINK_SERROR |
+ INT_ERROR |
+ INT_LINK_IRQ |
+ INT_REG_ACCESS_ERR |
+ INT_BIST_FIS,
+ INT_WANT = INT_END_OF_CMD |
+ INT_LINK_SERROR |
+ INT_REG_ACCESS_ERR |
+ INT_ERROR,
+ INT_ERRORS = INT_LINK_SERROR |
+ INT_REG_ACCESS_ERR |
+ INT_ERROR,
+
+ /** raw interrupt bits, unmaskable, but do not generate interrupts */
+ RAW_END_OF_CMD = INT_END_OF_CMD << 16,
+ RAW_LINK_SERROR = INT_LINK_SERROR << 16,
+ RAW_ERROR = INT_ERROR << 16,
+ RAW_LINK_IRQ = INT_LINK_IRQ << 16,
+ RAW_REG_ACCESS_ERR = INT_REG_ACCESS_ERR << 16,
+ RAW_BIST_FIS = INT_BIST_FIS << 16,
+ RAW_WANT = INT_WANT << 16,
+ RAW_ERRORS = INT_ERRORS << 16,
+
+ /**
+ * variables to write to the device control register to set the current
+ * device, ie. master or slave.
+ */
+ DR_CON_48 = 2,
+ DR_CON_28 = 0,
+
+ SATA_CTL_ERR_MASK = 0x00000016,
+
+};
+
+/* ATA SGDMA register offsets */
+enum {
+ SGDMA_CONTROL = 0x0,
+ SGDMA_STATUS = 0x4,
+ SGDMA_REQUESTPTR = 0x8,
+ SGDMA_RESETS = 0xC,
+ SGDMA_CORESIZE = 0x10,
+};
+
+/* DMA controller register offsets */
+enum {
+ DMA_CONTROL = 0x0,
+ DMA_CORESIZE = 0x20,
+
+ DMA_CONTROL_RESET = (1 << 12),
+};
+
+enum {
+ /* see DMA core docs for the values. Out means from memory (bus A) out
+ * to disk (bus B) */
+ SGDMA_REQCTL0OUT = 0x0497c03d,
+ /* burst mode disabled when no micro code used */
+ SGDMA_REQCTL0IN = 0x0493a3c1,
+ SGDMA_REQCTL1OUT = 0x0497c07d,
+ SGDMA_REQCTL1IN = 0x0497a3c5,
+ SGDMA_CONTROL_NOGO = 0x3e,
+ SGDMA_CONTROL_GO = SGDMA_CONTROL_NOGO | 1,
+ SGDMA_ERRORMASK = 0x3f,
+ SGDMA_BUSY = 0x80,
+
+ SGDMA_RESETS_CTRL = 1 << 0,
+ SGDMA_RESETS_ARBT = 1 << 1,
+ SGDMA_RESETS_AHB = 1 << 2,
+ SGDMA_RESETS_ALL = SGDMA_RESETS_CTRL |
+ SGDMA_RESETS_ARBT |
+ SGDMA_RESETS_AHB,
+
+ /* Final EOTs */
+ SGDMA_REQQUAL = 0x00220001,
+
+};
+
+/** SATA core register offsets */
+enum {
+ DM_DBG1 = 0x000,
+ RAID_SET = 0x004,
+ DM_DBG2 = 0x008,
+ DATACOUNT_PORT0 = 0x010,
+ DATACOUNT_PORT1 = 0x014,
+ CORE_INT_STATUS = 0x030,
+ CORE_INT_CLEAR = 0x030,
+ CORE_INT_ENABLE = 0x034,
+ CORE_INT_DISABLE = 0x038,
+ CORE_REBUILD_ENABLE = 0x050,
+ CORE_FAILED_PORT_R = 0x054,
+ DEVICE_CONTROL = 0x068,
+ EXCESS = 0x06C,
+ RAID_SIZE_LOW = 0x070,
+ RAID_SIZE_HIGH = 0x074,
+ PORT_ERROR_MASK = 0x078,
+ IDLE_STATUS = 0x07C,
+ RAID_CONTROL = 0x090,
+ DATA_PLANE_CTRL = 0x0AC,
+ CORE_DATAPLANE_STAT = 0x0b8,
+ PROC_PC = 0x100,
+ CONFIG_IN = 0x3d8,
+ PROC_START = 0x3f0,
+ PROC_RESET = 0x3f4,
+ UCODE_STORE = 0x1000,
+ RAID_WP_BOT_LOW = 0x1FF0,
+ RAID_WP_BOT_HIGH = 0x1FF4,
+ RAID_WP_TOP_LOW = 0x1FF8,
+ RAID_WP_TOP_HIGH = 0x1FFC,
+ DATA_MUX_RAM0 = 0x8000,
+ DATA_MUX_RAM1 = 0xA000,
+ PORT_SIZE = 0x10000,
+};
+
+enum {
+ /* Sata core debug1 register bits */
+ CORE_PORT0_DATA_DIR_BIT = 20,
+ CORE_PORT1_DATA_DIR_BIT = 21,
+ CORE_PORT0_DATA_DIR = 1 << CORE_PORT0_DATA_DIR_BIT,
+ CORE_PORT1_DATA_DIR = 1 << CORE_PORT1_DATA_DIR_BIT,
+
+ /** sata core control register bits */
+ SCTL_CLR_ERR = 0x00003016,
+ RAID_CLR_ERR = 0x0000011e,
+
+ /* Interrupts direct from the ports */
+ NORMAL_INTS_WANTED = 0x00000303,
+
+ /* shift these left by port number */
+ COREINT_HOST = 0x00000001,
+ COREINT_END = 0x00000100,
+ CORERAW_HOST = COREINT_HOST << 16,
+ CORERAW_END = COREINT_END << 16,
+
+ /* Interrupts from the RAID controller only */
+ RAID_INTS_WANTED = 0x00008300,
+
+ /* The bits in the IDLE_STATUS that, when set indicate an idle core */
+ IDLE_CORES = (1 << 18) | (1 << 19),
+
+ /* Data plane control error-mask mask and bit, these bit in the data
+ * plane control mask out errors from the ports that prevent the SGDMA
+ * care from sending an interrupt */
+ DPC_ERROR_MASK = 0x00000300,
+ DPC_ERROR_MASK_BIT = 0x00000100,
+ /* enable jbod micro-code */
+ DPC_JBOD_UCODE = 1 << 0,
+ DPC_FIS_SWCH = 1 << 1,
+
+ /** Device Control register bits */
+ DEVICE_CONTROL_DMABT = 1 << 4,
+ DEVICE_CONTROL_ABORT = 1 << 2,
+ DEVICE_CONTROL_PAD = 1 << 3,
+ DEVICE_CONTROL_PADPAT = 1 << 16,
+ DEVICE_CONTROL_PRTRST = 1 << 8,
+ DEVICE_CONTROL_RAMRST = 1 << 12,
+ DEVICE_CONTROL_ATA_ERR_OVERRIDE = 1 << 28,
+
+ /** oxsemi HW raid modes */
+ OXNASSATA_NOTRAID = 0,
+ OXNASSATA_RAID0 = 1,
+ OXNASSATA_RAID1 = 2,
+ /** OX820 specific HW-RAID register values */
+ RAID_TWODISKS = 3,
+ UNKNOWN_MODE = ~0,
+
+ CONFIG_IN_RESUME = 2,
+};
+
+/* SATA PHY Registers */
+enum {
+ PHY_STAT = 0x00,
+ PHY_DATA = 0x04,
+};
+
+enum {
+ STAT_READ_VALID = (1 << 21),
+ STAT_CR_ACK = (1 << 20),
+ STAT_CR_READ = (1 << 19),
+ STAT_CR_WRITE = (1 << 18),
+ STAT_CAP_DATA = (1 << 17),
+ STAT_CAP_ADDR = (1 << 16),
+
+ STAT_ACK_ANY = STAT_CR_ACK |
+ STAT_CR_READ |
+ STAT_CR_WRITE |
+ STAT_CAP_DATA |
+ STAT_CAP_ADDR,
+
+ CR_READ_ENABLE = (1 << 16),
+ CR_WRITE_ENABLE = (1 << 17),
+ CR_CAP_DATA = (1 << 18),
+};
+
+enum {
+ /* Link layer registers */
+ SERROR_IRQ_MASK = 5,
+};
+
+enum {
+ OXNAS_SATA_SOFTRESET = 1,
+ OXNAS_SATA_REINIT = 2,
+};
+
+enum {
+ OXNAS_SATA_UCODE_RAID0,
+ OXNAS_SATA_UCODE_RAID1,
+ OXNAS_SATA_UCODE_JBOD,
+ OXNAS_SATA_UCODE_NONE,
+};
+
+enum {
+ SATA_UNLOCKED,
+ SATA_WRITER,
+ SATA_READER,
+ SATA_REBUILD,
+ SATA_HWRAID,
+ SATA_SCSI_STACK
+};
+
+typedef irqreturn_t (*oxnas_sata_isr_callback_t)(int, unsigned long, int);
+
+struct sata_oxnas_host_priv {
+ void __iomem *port_base;
+ void __iomem *dmactl_base;
+ void __iomem *sgdma_base;
+ void __iomem *core_base;
+ void __iomem *phy_base;
+ dma_addr_t dma_base;
+ void __iomem *dma_base_va;
+ size_t dma_size;
+ int irq;
+ int n_ports;
+ int current_ucode;
+ u32 port_frozen;
+ u32 port_in_eh;
+ struct clk *clk;
+ struct reset_control *rst_sata;
+ struct reset_control *rst_link;
+ struct reset_control *rst_phy;
+ spinlock_t phy_lock;
+ spinlock_t core_lock;
+ int core_locked;
+ int reentrant_port_no;
+ int hw_lock_count;
+ int direct_lock_count;
+ void *locker_uid;
+ int current_locker_type;
+ int scsi_nonblocking_attempts;
+ oxnas_sata_isr_callback_t isr_callback;
+ void *isr_arg;
+ wait_queue_head_t fast_wait_queue;
+ wait_queue_head_t scsi_wait_queue;
+};
+
+
+struct sata_oxnas_port_priv {
+ void __iomem *port_base;
+ void __iomem *dmactl_base;
+ void __iomem *sgdma_base;
+ void __iomem *core_base;
+ struct sgdma_request *sgdma_request;
+ dma_addr_t sgdma_request_pa;
+};
+
+static u8 sata_oxnas_check_status(struct ata_port *ap);
+static int sata_oxnas_cleanup(struct ata_host *ah);
+static void sata_oxnas_tf_load(struct ata_port *ap,
+ const struct ata_taskfile *tf);
+static void sata_oxnas_irq_on(struct ata_port *ap);
+static void sata_oxnas_post_reset_init(struct ata_port *ap);
+
+static int sata_oxnas_acquire_hw(struct ata_port *ap, int may_sleep,
+ int timeout_jiffies);
+static void sata_oxnas_release_hw(struct ata_port *ap);
+
+static const void *HW_LOCKER_UID = (void *)0xdeadbeef;
+
+/***************************************************************************
+* ASIC access
+***************************************************************************/
+static void wait_cr_ack(void __iomem *phy_base)
+{
+ while ((ioread32(phy_base + PHY_STAT) >> 16) & 0x1f)
+ ; /* wait for an ack bit to be set */
+}
+
+static u16 read_cr(void __iomem *phy_base, u16 address)
+{
+ iowrite32((u32)address, phy_base + PHY_STAT);
+ wait_cr_ack(phy_base);
+ iowrite32(CR_READ_ENABLE, phy_base + PHY_DATA);
+ wait_cr_ack(phy_base);
+ return (u16)ioread32(phy_base + PHY_STAT);
+}
+
+static void write_cr(void __iomem *phy_base, u16 data, u16 address)
+{
+ iowrite32((u32)address, phy_base + PHY_STAT);
+ wait_cr_ack(phy_base);
+ iowrite32((data | CR_CAP_DATA), phy_base + PHY_DATA);
+ wait_cr_ack(phy_base);
+ iowrite32(CR_WRITE_ENABLE, phy_base + PHY_DATA);
+ wait_cr_ack(phy_base);
+}
+
+#define PH_GAIN 2
+#define FR_GAIN 3
+#define PH_GAIN_OFFSET 6
+#define FR_GAIN_OFFSET 8
+#define PH_GAIN_MASK (0x3 << PH_GAIN_OFFSET)
+#define FR_GAIN_MASK (0x3 << FR_GAIN_OFFSET)
+#define USE_INT_SETTING (1<<5)
+
+void workaround5458(struct ata_host *ah)
+{
+ struct sata_oxnas_host_priv *hd = ah->private_data;
+ void __iomem *phy_base = hd->phy_base;
+ u16 rx_control;
+ unsigned i;
+
+ for (i = 0; i < 2; i++) {
+ rx_control = read_cr(phy_base, 0x201d + (i << 8));
+ rx_control &= ~(PH_GAIN_MASK | FR_GAIN_MASK);
+ rx_control |= PH_GAIN << PH_GAIN_OFFSET;
+ rx_control |= (FR_GAIN << FR_GAIN_OFFSET) | USE_INT_SETTING;
+ write_cr(phy_base, rx_control, 0x201d+(i<<8));
+ }
+}
+
+/**
+ * allows access to the link layer registers
+ * @param link_reg the link layer register to access (oxsemi indexing ie
+ * 00 = static config, 04 = phy ctrl)
+ */
+void sata_oxnas_link_write(struct ata_port *ap, unsigned int link_reg, u32 val)
+{
+ struct sata_oxnas_port_priv *pd = ap->private_data;
+ struct sata_oxnas_host_priv *hd = ap->host->private_data;
+ void __iomem *port_base = pd->port_base;
+ u32 patience;
+ unsigned long flags;
+
+ DPRINTK("P%d [0x%02x]->0x%08x\n", ap->port_no, link_reg, val);
+
+ spin_lock_irqsave(&hd->phy_lock, flags);
+ iowrite32(val, port_base + LINK_DATA);
+
+ /* accessed twice as a work around for a bug in the SATA abp bridge
+ * hardware (bug 6828) */
+ iowrite32(link_reg , port_base + LINK_WR_ADDR);
+ ioread32(port_base + LINK_WR_ADDR);
+
+ for (patience = 0x100000; patience > 0; --patience) {
+ if (ioread32(port_base + LINK_CONTROL) & 0x00000001)
+ break;
+ }
+ spin_unlock_irqrestore(&hd->phy_lock, flags);
+}
+
+static int sata_oxnas_scr_write_port(struct ata_port *ap, unsigned int sc_reg,
+ u32 val)
+{
+ sata_oxnas_link_write(ap, 0x20 + (sc_reg * 4), val);
+ return 0;
+}
+
+static int sata_oxnas_scr_write(struct ata_link *link, unsigned int sc_reg,
+ u32 val)
+{
+ return sata_oxnas_scr_write_port(link->ap, sc_reg, val);
+}
+
+u32 sata_oxnas_link_read(struct ata_port *ap, unsigned int link_reg)
+{
+ struct sata_oxnas_port_priv *pd = ap->private_data;
+ struct sata_oxnas_host_priv *hd = ap->host->private_data;
+ void __iomem *port_base = pd->port_base;
+ u32 result;
+ u32 patience;
+ unsigned long flags;
+
+ spin_lock_irqsave(&hd->phy_lock, flags);
+ /* accessed twice as a work around for a bug in the SATA abp bridge
+ * hardware (bug 6828) */
+ iowrite32(link_reg, port_base + LINK_RD_ADDR);
+ ioread32(port_base + LINK_RD_ADDR);
+
+ for (patience = 0x100000; patience > 0; --patience) {
+ if (ioread32(port_base + LINK_CONTROL) & 0x00000001)
+ break;
+ }
+ if (patience == 0)
+ DPRINTK("link read timed out for port %d\n", ap->port_no);
+
+ result = ioread32(port_base + LINK_DATA);
+ spin_unlock_irqrestore(&hd->phy_lock, flags);
+
+ return result;
+}
+
+static int sata_oxnas_scr_read_port(struct ata_port *ap, unsigned int sc_reg,
+ u32 *val)
+{
+ *val = sata_oxnas_link_read(ap, 0x20 + (sc_reg*4));
+ return 0;
+}
+
+static int sata_oxnas_scr_read(struct ata_link *link,
+ unsigned int sc_reg, u32 *val)
+{
+ return sata_oxnas_scr_read_port(link->ap, sc_reg, val);
+}
+
+/**
+ * sata_oxnas_irq_clear is called during probe just before the interrupt handler is
+ * registered, to be sure hardware is quiet. It clears and masks interrupt bits
+ * in the SATA core.
+ *
+ * @param ap hardware with the registers in
+ */
+static void sata_oxnas_irq_clear(struct ata_port *ap)
+{
+ struct sata_oxnas_port_priv *port_priv = ap->private_data;
+
+ /* clear pending interrupts */
+ iowrite32(~0, port_priv->port_base + INT_CLEAR);
+ iowrite32(COREINT_END, port_priv->core_base + CORE_INT_CLEAR);
+}
+
+/**
+ * qc_issue is used to make a command active, once the hardware and S/G tables
+ * have been prepared. IDE BMDMA drivers use the helper function
+ * ata_qc_issue_prot() for taskfile protocol-based dispatch. More advanced
+ * drivers roll their own ->qc_issue implementation, using this as the
+ * "issue new ATA command to hardware" hook.
+ * @param qc the queued command to issue
+ */
+static unsigned int sata_oxnas_qc_issue(struct ata_queued_cmd *qc)
+{
+ struct sata_oxnas_port_priv *pd = qc->ap->private_data;
+ struct sata_oxnas_host_priv *hd = qc->ap->host->private_data;
+
+ void __iomem *port_base = pd->port_base;
+ void __iomem *core_base = pd->core_base;
+ int port_no = qc->ap->port_no;
+ int no_microcode = (hd->current_ucode == UNKNOWN_MODE);
+ u32 reg;
+
+ /* check the core is idle */
+ if (ioread32(port_base + SATA_COMMAND) & CMD_CORE_BUSY) {
+ int count = 0;
+
+ DPRINTK("core busy for a command on port %d\n",
+ qc->ap->port_no);
+ do {
+ mdelay(1);
+ if (++count > 100) {
+ DPRINTK("core busy for a command on port %d\n",
+ qc->ap->port_no);
+ /* CrazyDumpDebug(); */
+ sata_oxnas_cleanup(qc->ap->host);
+ }
+ } while (ioread32(port_base + SATA_COMMAND) & CMD_CORE_BUSY);
+ }
+
+ /* enable passing of error signals to DMA sub-core by clearing the
+ * appropriate bit */
+ reg = ioread32(core_base + DATA_PLANE_CTRL);
+ if (no_microcode)
+ reg |= (DPC_ERROR_MASK_BIT | (DPC_ERROR_MASK_BIT << 1));
+ reg &= ~(DPC_ERROR_MASK_BIT << port_no);
+ iowrite32(reg, core_base + DATA_PLANE_CTRL);
+
+ /* Disable all interrupts for ports and RAID controller */
+ iowrite32(~0, port_base + INT_DISABLE);
+
+ /* Disable all interrupts for core */
+ iowrite32(~0, core_base + CORE_INT_DISABLE);
+ wmb();
+
+ /* Load the command settings into the orb registers */
+ sata_oxnas_tf_load(qc->ap, &qc->tf);
+
+ /* both pio and dma commands use dma */
+ if (ata_is_dma(qc->tf.protocol) || ata_is_pio(qc->tf.protocol)) {
+ /* Start the DMA */
+ iowrite32(SGDMA_CONTROL_GO, pd->sgdma_base + SGDMA_CONTROL);
+ wmb();
+ }
+
+ /* enable End of command interrupt */
+ iowrite32(INT_WANT, port_base + INT_ENABLE);
+ iowrite32(COREINT_END, core_base + CORE_INT_ENABLE);
+ wmb();
+
+ /* Start the command */
+ reg = ioread32(port_base + SATA_COMMAND);
+ reg &= ~SATA_OPCODE_MASK;
+ reg |= CMD_WRITE_TO_ORB_REGS;
+ iowrite32(reg , port_base + SATA_COMMAND);
+ wmb();
+
+ return 0;
+}
+
+/**
+ * Will schedule the libATA error handler on the premise that there has
+ * been a hotplug event on the port specified
+ */
+void sata_oxnas_checkforhotplug(struct ata_port *ap)
+{
+ DPRINTK("ENTER\n");
+
+ ata_ehi_hotplugged(&ap->link.eh_info);
+ ata_port_freeze(ap);
+}
+
+
+/**************************************************************************/
+/* Locking */
+/**************************************************************************/
+/**
+ * The underlying function that controls access to the sata core
+ *
+ * @return non-zero indicates that you have acquired exclusive access to the
+ * sata core.
+ */
+static int __acquire_sata_core(
+ struct ata_host *ah,
+ int port_no,
+ oxnas_sata_isr_callback_t callback,
+ void *arg,
+ int may_sleep,
+ int timeout_jiffies,
+ int hw_access,
+ void *uid,
+ int locker_type)
+{
+ unsigned long end = jiffies + timeout_jiffies;
+ int acquired = 0;
+ unsigned long flags;
+ int timed_out = 0;
+ struct sata_oxnas_host_priv *hd;
+
+ DEFINE_WAIT(wait);
+
+ if (!ah)
+ return acquired;
+
+ hd = ah->private_data;
+
+ spin_lock_irqsave(&hd->core_lock, flags);
+
+ DPRINTK("Entered uid %p, port %d, h/w count %d, d count %d, "
+ "callback %p, hw_access %d, core_locked %d, "
+ "reentrant_port_no %d, isr_callback %p\n",
+ uid, port_no, hd->hw_lock_count, hd->direct_lock_count,
+ callback, hw_access, hd->core_locked, hd->reentrant_port_no,
+ hd->isr_callback);
+
+ while (!timed_out) {
+ if (hd->core_locked ||
+ (!hw_access && hd->scsi_nonblocking_attempts)) {
+ /* Can only allow access if from SCSI/SATA stack and if
+ * reentrant access is allowed and this access is to the
+ * same port for which the lock is current held
+ */
+ if (hw_access && (port_no == hd->reentrant_port_no)) {
+ BUG_ON(!hd->hw_lock_count);
+ ++(hd->hw_lock_count);
+
+ DPRINTK("Allow SCSI/SATA re-entrant access to "
+ "uid %p port %d\n", uid, port_no);
+ acquired = 1;
+ break;
+ } else if (!hw_access) {
+ if ((locker_type == SATA_READER) &&
+ (hd->current_locker_type == SATA_READER)) {
+ WARN(1,
+ "Already locked by reader, "
+ "uid %p, locker_uid %p, "
+ "port %d, h/w count %d, "
+ "d count %d, hw_access %d\n",
+ uid, hd->locker_uid, port_no,
+ hd->hw_lock_count,
+ hd->direct_lock_count,
+ hw_access);
+ goto check_uid;
+ }
+
+ if ((locker_type != SATA_READER) &&
+ (locker_type != SATA_WRITER)) {
+ goto wait_for_lock;
+ }
+
+check_uid:
+ WARN(uid == hd->locker_uid, "Attempt to lock "
+ "by locker type %d uid %p, already "
+ "locked by locker type %d with "
+ "locker_uid %p, port %d, "
+ "h/w count %d, d count %d, "
+ "hw_access %d\n", locker_type, uid,
+ hd->current_locker_type,
+ hd->locker_uid, port_no,
+ hd->hw_lock_count,
+ hd->direct_lock_count, hw_access);
+ }
+ } else {
+ WARN(hd->hw_lock_count || hd->direct_lock_count,
+ "Core unlocked but counts non-zero: uid %p, "
+ "locker_uid %p, port %d, h/w count %d, "
+ "d count %d, hw_access %d\n", uid,
+ hd->locker_uid, port_no, hd->hw_lock_count,
+ hd->direct_lock_count, hw_access);
+
+ BUG_ON(hd->current_locker_type != SATA_UNLOCKED);
+
+ WARN(hd->locker_uid, "Attempt to lock uid %p when "
+ "locker_uid %p is non-zero, port %d, "
+ "h/w count %d, d count %d, hw_access %d\n",
+ uid, hd->locker_uid, port_no, hd->hw_lock_count,
+ hd->direct_lock_count, hw_access);
+
+ if (!hw_access) {
+ /* Direct access attempting to acquire
+ * non-contented lock
+ */
+ /* Must have callback for direct access */
+ BUG_ON(!callback);
+ /* Sanity check lock state */
+ BUG_ON(hd->reentrant_port_no != -1);
+
+ hd->isr_callback = callback;
+ hd->isr_arg = arg;
+ ++(hd->direct_lock_count);
+
+ hd->current_locker_type = locker_type;
+ } else {
+ /* SCSI/SATA attempting to acquire
+ * non-contented lock
+ */
+ /* No callbacks for SCSI/SATA access */
+ BUG_ON(callback);
+ /* No callback args for SCSI/SATA access */
+ BUG_ON(arg);
+
+ /* Sanity check lock state */
+ BUG_ON(hd->isr_callback);
+ BUG_ON(hd->isr_arg);
+
+ ++(hd->hw_lock_count);
+ hd->reentrant_port_no = port_no;
+
+ hd->current_locker_type = SATA_SCSI_STACK;
+ }
+
+ hd->core_locked = 1;
+ hd->locker_uid = uid;
+ acquired = 1;
+ break;
+ }
+
+wait_for_lock:
+ if (!may_sleep) {
+ DPRINTK("Denying for uid %p locker_type %d, "
+ "hw_access %d, port %d, current_locker_type %d as "
+ "cannot sleep\n", uid, locker_type, hw_access, port_no,
+ hd->current_locker_type);
+
+ if (hw_access)
+ ++(hd->scsi_nonblocking_attempts);
+
+ break;
+ }
+
+ /* Core is locked and we're allowed to sleep, so wait to be
+ * awoken when the core is unlocked
+ */
+ for (;;) {
+ prepare_to_wait(hw_access ? &hd->scsi_wait_queue :
+ &hd->fast_wait_queue,
+ &wait, TASK_UNINTERRUPTIBLE);
+ if (!hd->core_locked &&
+ !(!hw_access && hd->scsi_nonblocking_attempts)) {
+ /* We're going to use variables that will have
+ * been changed by the waker prior to clearing
+ * core_locked so we need to ensure we see
+ * changes to all those variables
+ */
+ smp_rmb();
+ break;
+ }
+ if (time_after(jiffies, end)) {
+ printk(KERN_WARNING "__acquire_sata_core() "
+ "uid %p failing for port %d timed out, "
+ "locker_uid %p, h/w count %d, "
+ "d count %d, callback %p, hw_access %d, "
+ "core_locked %d, reentrant_port_no %d, "
+ "isr_callback %p, isr_arg %p\n", uid,
+ port_no, hd->locker_uid,
+ hd->hw_lock_count,
+ hd->direct_lock_count, callback,
+ hw_access, hd->core_locked,
+ hd->reentrant_port_no, hd->isr_callback,
+ hd->isr_arg);
+ timed_out = 1;
+ break;
+ }
+ spin_unlock_irqrestore(&hd->core_lock, flags);
+ if (!schedule_timeout(4*HZ)) {
+ printk(KERN_INFO "__acquire_sata_core() uid %p, "
+ "locker_uid %p, timed-out of "
+ "schedule(), checking overall timeout\n",
+ uid, hd->locker_uid);
+ }
+ spin_lock_irqsave(&hd->core_lock, flags);
+ }
+ finish_wait(hw_access ? &hd->scsi_wait_queue :
+ &hd->fast_wait_queue, &wait);
+ }
+
+ if (hw_access && acquired) {
+ if (hd->scsi_nonblocking_attempts)
+ hd->scsi_nonblocking_attempts = 0;
+
+ /* Wake any other SCSI/SATA waiters so they can get reentrant
+ * access to the same port if appropriate. This is because if
+ * the SATA core is locked by fast access, or SCSI/SATA access
+ * to other port, then can have >1 SCSI/SATA waiters on the wait
+ * list so want to give reentrant accessors a chance to get
+ * access ASAP
+ */
+ if (!list_empty(&hd->scsi_wait_queue.task_list))
+ wake_up(&hd->scsi_wait_queue);
+ }
+
+ DPRINTK("Leaving uid %p with acquired = %d, port %d, callback %p\n",
+ uid, acquired, port_no, callback);
+
+ spin_unlock_irqrestore(&hd->core_lock, flags);
+
+ return acquired;
+}
+
+int sata_core_has_fast_waiters(struct ata_host *ah)
+{
+ int has_waiters;
+ unsigned long flags;
+ struct sata_oxnas_host_priv *hd = ah->private_data;
+
+ spin_lock_irqsave(&hd->core_lock, flags);
+ has_waiters = !list_empty(&hd->fast_wait_queue.task_list);
+ spin_unlock_irqrestore(&hd->core_lock, flags);
+
+ return has_waiters;
+}
+EXPORT_SYMBOL(sata_core_has_fast_waiters);
+
+int sata_core_has_scsi_waiters(struct ata_host *ah)
+{
+ int has_waiters;
+ unsigned long flags;
+ struct sata_oxnas_host_priv *hd = ah->private_data;
+
+ spin_lock_irqsave(&hd->core_lock, flags);
+ has_waiters = hd->scsi_nonblocking_attempts ||
+ !list_empty(&hd->scsi_wait_queue.task_list);
+ spin_unlock_irqrestore(&hd->core_lock, flags);
+
+ return has_waiters;
+}
+EXPORT_SYMBOL(sata_core_has_scsi_waiters);
+
+/*
+ * ata_port operation to gain ownership of the SATA hardware prior to issuing
+ * a command against a SATA host. Allows any number of users of the port against
+ * which the lock was first acquired, thus enforcing that only one SATA core
+ * port may be operated on at once.
+ */
+static int sata_oxnas_acquire_hw(
+ struct ata_port *ap,
+ int may_sleep,
+ int timeout_jiffies)
+{
+ return __acquire_sata_core(ap->host, ap->port_no, NULL, 0, may_sleep,
+ timeout_jiffies, 1, (void *)HW_LOCKER_UID,
+ SATA_SCSI_STACK);
+}
+
+/*
+ * operation to release ownership of the SATA hardware
+ */
+static void sata_oxnas_release_hw(struct ata_port *ap)
+{
+ unsigned long flags;
+ int released = 0;
+ struct sata_oxnas_host_priv *hd = ap->host->private_data;
+
+ spin_lock_irqsave(&hd->core_lock, flags);
+
+ DPRINTK("Entered port_no = %d, h/w count %d, d count %d, "
+ "core locked = %d, reentrant_port_no = %d, isr_callback %p\n",
+ ap->port_no, hd->hw_lock_count, hd->direct_lock_count,
+ hd->core_locked, hd->reentrant_port_no, hd->isr_callback);
+
+ if (!hd->core_locked) {
+ /* Nobody holds the SATA lock */
+ printk(KERN_WARNING "Nobody holds SATA lock, port_no %d\n",
+ ap->port_no);
+ released = 1;
+ } else if (!hd->hw_lock_count) {
+ /* SCSI/SATA has released without holding the lock */
+ printk(KERN_WARNING "SCSI/SATA does not hold SATA lock, "
+ "port_no %d\n", ap->port_no);
+ } else {
+ /* Trap incorrect usage */
+ BUG_ON(hd->reentrant_port_no == -1);
+ BUG_ON(ap->port_no != hd->reentrant_port_no);
+ BUG_ON(hd->direct_lock_count);
+ BUG_ON(hd->current_locker_type != SATA_SCSI_STACK);
+
+ WARN(!hd->locker_uid || (hd->locker_uid != HW_LOCKER_UID),
+ "Invalid locker uid %p, h/w count %d, d count %d, "
+ "reentrant_port_no %d, core_locked %d, "
+ "isr_callback %p\n", hd->locker_uid, hd->hw_lock_count,
+ hd->direct_lock_count, hd->reentrant_port_no,
+ hd->core_locked, hd->isr_callback);
+
+ if (--(hd->hw_lock_count)) {
+ DPRINTK("Still nested port_no %d\n", ap->port_no);
+ } else {
+ DPRINTK("Release port_no %d\n", ap->port_no);
+ hd->reentrant_port_no = -1;
+ hd->isr_callback = NULL;
+ hd->current_locker_type = SATA_UNLOCKED;
+ hd->locker_uid = 0;
+ hd->core_locked = 0;
+ released = 1;
+ wake_up(!list_empty(&hd->scsi_wait_queue.task_list) ?
+ &hd->scsi_wait_queue :
+ &hd->fast_wait_queue);
+ }
+ }
+
+ DPRINTK("Leaving, port_no %d, count %d\n", ap->port_no,
+ hd->hw_lock_count);
+
+ spin_unlock_irqrestore(&hd->core_lock, flags);
+
+ /* CONFIG_SATA_OX820_DIRECT_HWRAID */
+ /* if (released)
+ ox820hwraid_restart_queue();
+ } */
+}
+
+static inline int sata_oxnas_is_host_frozen(struct ata_host *ah)
+{
+ struct sata_oxnas_host_priv *hd = ah->private_data;
+
+ smp_rmb();
+ return hd->port_in_eh || hd->port_frozen;
+}
+
+
+static inline u32 sata_oxnas_hostportbusy(struct ata_port *ap)
+{
+ struct sata_oxnas_host_priv *hd = ap->host->private_data;
+
+ return (ioread32(hd->port_base + SATA_COMMAND) & CMD_CORE_BUSY) ||
+ (hd->n_ports > 1 &&
+ (ioread32(hd->port_base + PORT_SIZE + SATA_COMMAND) &
+ CMD_CORE_BUSY));
+}
+
+static inline u32 sata_oxnas_hostdmabusy(struct ata_port *ap)
+{
+ struct sata_oxnas_port_priv *pd = ap->private_data;
+
+ return ioread32(pd->sgdma_base + SGDMA_STATUS) & SGDMA_BUSY;
+}
+
+
+/**
+ * Turns on the cores clock and resets it
+ */
+static void sata_oxnas_reset_core(struct ata_host *ah)
+{
+ struct sata_oxnas_host_priv *host_priv = ah->private_data;
+ int n;
+
+ DPRINTK("ENTER\n");
+ clk_prepare_enable(host_priv->clk);
+
+ reset_control_assert(host_priv->rst_sata);
+ reset_control_assert(host_priv->rst_link);
+ reset_control_assert(host_priv->rst_phy);
+
+ udelay(50);
+
+ /* un-reset the PHY, then Link and Controller */
+ reset_control_deassert(host_priv->rst_phy);
+ udelay(50);
+
+ reset_control_deassert(host_priv->rst_sata);
+ reset_control_deassert(host_priv->rst_link);
+ udelay(50);
+
+ workaround5458(ah);
+ /* tune for sata compatibility */
+ sata_oxnas_link_write(ah->ports[0], 0x60, 0x2988);
+
+ for (n = 0; n < host_priv->n_ports; n++) {
+ /* each port in turn */
+ sata_oxnas_link_write(ah->ports[n], 0x70, 0x55629);
+ }
+ udelay(50);
+}
+
+
+/**
+ * Called after an identify device command has worked out what kind of device
+ * is on the port
+ *
+ * @param port The port to configure
+ * @param pdev The hardware associated with controlling the port
+ */
+static void sata_oxnas_dev_config(struct ata_device *pdev)
+{
+ struct sata_oxnas_port_priv *pd = pdev->link->ap->private_data;
+ void __iomem *port_base = pd->port_base;
+ u32 reg;
+
+ DPRINTK("ENTER\n");
+ /* Set the bits to put the port into 28 or 48-bit node */
+ reg = ioread32(port_base + DRIVE_CONTROL);
+ reg &= ~3;
+ reg |= (pdev->flags & ATA_DFLAG_LBA48) ? DR_CON_48 : DR_CON_28;
+ iowrite32(reg, port_base + DRIVE_CONTROL);
+
+ /* if this is an ATA-6 disk, put port into ATA-5 auto translate mode */
+ if (pdev->flags & ATA_DFLAG_LBA48) {
+ reg = ioread32(port_base + PORT_CONTROL);
+ reg |= 2;
+ iowrite32(reg, port_base + PORT_CONTROL);
+ }
+}
+/**
+ * called to write a taskfile into the ORB registers
+ * @param ap hardware with the registers in
+ * @param tf taskfile to write to the registers
+ */
+static void sata_oxnas_tf_load(struct ata_port *ap,
+ const struct ata_taskfile *tf)
+{
+ u32 count = 0;
+ u32 Orb1 = 0;
+ u32 Orb2 = 0;
+ u32 Orb3 = 0;
+ u32 Orb4 = 0;
+ u32 Command_Reg;
+
+ struct sata_oxnas_port_priv *port_priv = ap->private_data;
+ void __iomem *port_base = port_priv->port_base;
+ unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
+
+ /* wait a maximum of 10ms for the core to be idle */
+ do {
+ Command_Reg = ioread32(port_base + SATA_COMMAND);
+ if (!(Command_Reg & CMD_CORE_BUSY))
+ break;
+ count++;
+ udelay(50);
+ } while (count < 200);
+
+ /* check if the ctl register has interrupts disabled or enabled and
+ * modify the interrupt enable registers on the ata core as required */
+ if (tf->ctl & ATA_NIEN) {
+ /* interrupts disabled */
+ u32 mask = (COREINT_END << ap->port_no);
+
+ iowrite32(mask, port_priv->core_base + CORE_INT_DISABLE);
+ sata_oxnas_irq_clear(ap);
+ } else {
+ sata_oxnas_irq_on(ap);
+ }
+
+ Orb2 |= (tf->command) << 24;
+
+ /* write 48 or 28 bit tf parameters */
+ if (is_addr) {
+ /* set LBA bit as it's an address */
+ Orb1 |= (tf->device & ATA_LBA) << 24;
+
+ if (tf->flags & ATA_TFLAG_LBA48) {
+ Orb1 |= ATA_LBA << 24;
+ Orb2 |= (tf->hob_nsect) << 8;
+ Orb3 |= (tf->hob_lbal) << 24;
+ Orb4 |= (tf->hob_lbam) << 0;
+ Orb4 |= (tf->hob_lbah) << 8;
+ Orb4 |= (tf->hob_feature) << 16;
+ } else {
+ Orb3 |= (tf->device & 0xf) << 24;
+ }
+
+ /* write 28-bit lba */
+ Orb2 |= (tf->nsect) << 0;
+ Orb2 |= (tf->feature) << 16;
+ Orb3 |= (tf->lbal) << 0;
+ Orb3 |= (tf->lbam) << 8;
+ Orb3 |= (tf->lbah) << 16;
+ Orb4 |= (tf->ctl) << 24;
+ }
+
+ if (tf->flags & ATA_TFLAG_DEVICE)
+ Orb1 |= (tf->device) << 24;
+
+ ap->last_ctl = tf->ctl;
+
+ /* write values to registers */
+ iowrite32(Orb1, port_base + ORB1);
+ iowrite32(Orb2, port_base + ORB2);
+ iowrite32(Orb3, port_base + ORB3);
+ iowrite32(Orb4, port_base + ORB4);
+}
+
+
+void sata_oxnas_set_mode(struct ata_host *ah, u32 mode, u32 force)
+{
+ struct sata_oxnas_host_priv *host_priv = ah->private_data;
+ void __iomem *core_base = host_priv->core_base;
+
+ unsigned int *src;
+ void __iomem *dst;
+ unsigned int progmicrocode = 0;
+ unsigned int changeparameters = 0;
+
+ u32 previous_mode;
+
+ /* these micro-code programs _should_ include the version word */
+
+ /* JBOD */
+ static const unsigned int jbod[] = {
+ 0x07B400AC, 0x0228A280, 0x00200001, 0x00204002, 0x00224001,
+ 0x00EE0009, 0x00724901, 0x01A24903, 0x00E40009, 0x00224001,
+ 0x00621120, 0x0183C908, 0x00E20005, 0x00718908, 0x0198A206,
+ 0x00621124, 0x0183C908, 0x00E20046, 0x00621104, 0x0183C908,
+ 0x00E20015, 0x00EE009D, 0x01A3E301, 0x00E2001B, 0x0183C900,
+ 0x00E2001B, 0x00210001, 0x00EE0020, 0x01A3E302, 0x00E2009D,
+ 0x0183C901, 0x00E2009D, 0x00210002, 0x0235D700, 0x0208A204,
+ 0x0071C908, 0x000F8207, 0x000FC207, 0x0071C920, 0x000F8507,
+ 0x000FC507, 0x0228A240, 0x02269A40, 0x00094004, 0x00621104,
+ 0x0180C908, 0x00E40031, 0x00621112, 0x01A3C801, 0x00E2002B,
+ 0x00294000, 0x0228A220, 0x01A69ABF, 0x002F8000, 0x002FC000,
+ 0x0198A204, 0x0001C022, 0x01B1A220, 0x0001C106, 0x00088007,
+ 0x0183C903, 0x00E2009D, 0x0228A220, 0x0071890C, 0x0208A206,
+ 0x0198A206, 0x0001C022, 0x01B1A220, 0x0001C106, 0x00088007,
+ 0x00EE009D, 0x00621104, 0x0183C908, 0x00E2004A, 0x00EE009D,
+ 0x01A3C901, 0x00E20050, 0x0021E7FF, 0x0183E007, 0x00E2009D,
+ 0x00EE0054, 0x0061600B, 0x0021E7FF, 0x0183C507, 0x00E2009D,
+ 0x01A3E301, 0x00E2005A, 0x0183C900, 0x00E2005A, 0x00210001,
+ 0x00EE005F, 0x01A3E302, 0x00E20005, 0x0183C901, 0x00E20005,
+ 0x00210002, 0x0235D700, 0x0208A204, 0x000F8109, 0x000FC109,
+ 0x0071C918, 0x000F8407, 0x000FC407, 0x0001C022, 0x01A1A2BF,
+ 0x0001C106, 0x00088007, 0x02269A40, 0x00094004, 0x00621112,
+ 0x01A3C801, 0x00E4007F, 0x00621104, 0x0180C908, 0x00E4008D,
+ 0x00621128, 0x0183C908, 0x00E2006C, 0x01A3C901, 0x00E2007B,
+ 0x0021E7FF, 0x0183E007, 0x00E2007F, 0x00EE006C, 0x0061600B,
+ 0x0021E7FF, 0x0183C507, 0x00E4006C, 0x00621111, 0x01A3C801,
+ 0x00E2007F, 0x00621110, 0x01A3C801, 0x00E20082, 0x0228A220,
+ 0x00621119, 0x01A3C801, 0x00E20086, 0x0001C022, 0x01B1A220,
+ 0x0001C106, 0x00088007, 0x0198A204, 0x00294000, 0x01A69ABF,
+ 0x002F8000, 0x002FC000, 0x0183C903, 0x00E20005, 0x0228A220,
+ 0x0071890C, 0x0208A206, 0x0198A206, 0x0001C022, 0x01B1A220,
+ 0x0001C106, 0x00088007, 0x00EE009D, 0x00621128, 0x0183C908,
+ 0x00E20005, 0x00621104, 0x0183C908, 0x00E200A6, 0x0062111C,
+ 0x0183C908, 0x00E20005, 0x0071890C, 0x0208A206, 0x0198A206,
+ 0x00718908, 0x0208A206, 0x00EE0005, ~0
+ };
+
+ /* Bi-Modal RAID-0/1 */
+ static const unsigned int raid[] = {
+ 0x00F20145, 0x00EE20FA, 0x00EE20A7, 0x0001C009, 0x00EE0004,
+ 0x00220000, 0x0001000B, 0x037003FF, 0x00700018, 0x037003FE,
+ 0x037043FD, 0x00704118, 0x037043FC, 0x01A3D240, 0x00E20017,
+ 0x00B3C235, 0x00E40018, 0x0093C104, 0x00E80014, 0x0093C004,
+ 0x00E80017, 0x01020000, 0x00274020, 0x00EE0083, 0x0080C904,
+ 0x0093C104, 0x00EA0020, 0x0093C103, 0x00EC001F, 0x00220002,
+ 0x00924104, 0x0005C009, 0x00EE0058, 0x0093CF04, 0x00E80026,
+ 0x00900F01, 0x00600001, 0x00910400, 0x00EE0058, 0x00601604,
+ 0x01A00003, 0x00E2002C, 0x01018000, 0x00274040, 0x00EE0083,
+ 0x0093CF03, 0x00EC0031, 0x00220003, 0x00924F04, 0x0005C009,
+ 0x00810104, 0x00B3C235, 0x00E20037, 0x0022C000, 0x00218210,
+ 0x00EE0039, 0x0022C001, 0x00218200, 0x00600401, 0x00A04901,
+ 0x00604101, 0x01A0C401, 0x00E20040, 0x00216202, 0x00EE0041,
+ 0x00216101, 0x02018506, 0x00EE2141, 0x00904901, 0x00E20049,
+ 0x00A00401, 0x00600001, 0x02E0C301, 0x00EE2141, 0x00216303,
+ 0x037003EE, 0x01A3C001, 0x00E40105, 0x00250080, 0x00204000,
+ 0x002042F1, 0x0004C001, 0x00230001, 0x00100006, 0x02C18605,
+ 0x00100006, 0x01A3D502, 0x00E20055, 0x00EE0053, 0x00004009,
+ 0x00000004, 0x00B3C235, 0x00E40062, 0x0022C001, 0x0020C000,
+ 0x00EE2141, 0x0020C001, 0x00EE2141, 0x00EE006B, 0x0022C000,
+ 0x0060D207, 0x00EE2141, 0x00B3C242, 0x00E20069, 0x01A3D601,
+ 0x00E2006E, 0x02E0C301, 0x00EE2141, 0x00230001, 0x00301303,
+ 0x00EE007B, 0x00218210, 0x01A3C301, 0x00E20073, 0x00216202,
+ 0x00EE0074, 0x00216101, 0x02018506, 0x00214000, 0x037003EE,
+ 0x01A3C001, 0x00E40108, 0x00230001, 0x00100006, 0x00250080,
+ 0x00204000, 0x002042F1, 0x0004C001, 0x00EE007F, 0x0024C000,
+ 0x01A3D1F0, 0x00E20088, 0x00230001, 0x00300000, 0x01A3D202,
+ 0x00E20085, 0x00EE00A5, 0x00B3C800, 0x00E20096, 0x00218000,
+ 0x00924709, 0x0005C009, 0x00B20802, 0x00E40093, 0x037103FD,
+ 0x00710418, 0x037103FC, 0x00EE0006, 0x00220000, 0x0001000F,
+ 0x00EE0006, 0x00800B0C, 0x00B00001, 0x00204000, 0x00208550,
+ 0x00208440, 0x002083E0, 0x00208200, 0x00208100, 0x01008000,
+ 0x037083EE, 0x02008212, 0x02008216, 0x01A3C201, 0x00E400A5,
+ 0x0100C000, 0x00EE20FA, 0x02800000, 0x00208000, 0x00B24C00,
+ 0x00E400AD, 0x00224001, 0x00724910, 0x0005C009, 0x00B3CDC4,
+ 0x00E200D5, 0x00B3CD29, 0x00E200D5, 0x00B3CD20, 0x00E200D5,
+ 0x00B3CD24, 0x00E200D5, 0x00B3CDC5, 0x00E200D2, 0x00B3CD39,
+ 0x00E200D2, 0x00B3CD30, 0x00E200D2, 0x00B3CD34, 0x00E200D2,
+ 0x00B3CDCA, 0x00E200CF, 0x00B3CD35, 0x00E200CF, 0x00B3CDC8,
+ 0x00E200CC, 0x00B3CD25, 0x00E200CC, 0x00B3CD40, 0x00E200CB,
+ 0x00B3CD42, 0x00E200CB, 0x01018000, 0x00EE0083, 0x0025C000,
+ 0x036083EE, 0x0000800D, 0x00EE00D8, 0x036083EE, 0x00208035,
+ 0x00EE00DA, 0x036083EE, 0x00208035, 0x00EE00DA, 0x00208007,
+ 0x036083EE, 0x00208025, 0x036083EF, 0x02400000, 0x01A3D208,
+ 0x00E200D8, 0x0067120A, 0x0021C000, 0x0021C224, 0x00220000,
+ 0x00404B1C, 0x00600105, 0x00800007, 0x0020C00E, 0x00214000,
+ 0x01004000, 0x01A0411F, 0x00404E01, 0x01A3C101, 0x00E200F1,
+ 0x00B20800, 0x00E400D8, 0x00220001, 0x0080490B, 0x00B04101,
+ 0x0040411C, 0x00EE00E1, 0x02269A01, 0x01020000, 0x02275D80,
+ 0x01A3D202, 0x00E200F4, 0x01B75D80, 0x01030000, 0x01B69A01,
+ 0x00EE00D8, 0x01A3D204, 0x00E40104, 0x00224000, 0x0020C00E,
+ 0x0020001E, 0x00214000, 0x01004000, 0x0212490E, 0x00214001,
+ 0x01004000, 0x02400000, 0x00B3D702, 0x00E80112, 0x00EE010E,
+ 0x00B3D702, 0x00E80112, 0x00B3D702, 0x00E4010E, 0x00230001,
+ 0x00EE0140, 0x00200005, 0x036003EE, 0x00204001, 0x00EE0116,
+ 0x00230001, 0x00100006, 0x02C18605, 0x00100006, 0x01A3D1F0,
+ 0x00E40083, 0x037003EE, 0x01A3C002, 0x00E20121, 0x0020A300,
+ 0x0183D102, 0x00E20124, 0x037003EE, 0x01A00005, 0x036003EE,
+ 0x01A0910F, 0x00B3C20F, 0x00E2012F, 0x01A3D502, 0x00E20116,
+ 0x01A3C002, 0x00E20116, 0x00B3D702, 0x00E4012C, 0x00300000,
+ 0x00EE011F, 0x02C18605, 0x00100006, 0x00EE0116, 0x01A3D1F0,
+ 0x00E40083, 0x037003EE, 0x01A3C004, 0x00E20088, 0x00200003,
+ 0x036003EE, 0x01A3D502, 0x00E20136, 0x00230001, 0x00B3C101,
+ 0x00E4012C, 0x00100006, 0x02C18605, 0x00100006, 0x00204000,
+ 0x00EE0116, 0x00100006, 0x01A3D1F0, 0x00E40083, 0x01000000,
+ 0x02400000, ~0
+ };
+
+ DPRINTK("ENTER: mode:%d, force:%d\n", mode, force);
+
+ if (force)
+ previous_mode = UNKNOWN_MODE;
+ else
+ previous_mode = host_priv->current_ucode;
+
+ if (mode == previous_mode)
+ return;
+
+ host_priv->current_ucode = mode;
+
+ /* decide what needs to be done using the STD in my logbook */
+ switch (previous_mode) {
+ case OXNASSATA_RAID1:
+ switch (mode) {
+ case OXNASSATA_RAID0:
+ changeparameters = 1;
+ break;
+ case OXNASSATA_NOTRAID:
+ changeparameters = 1;
+ progmicrocode = 1;
+ break;
+ }
+ break;
+ case OXNASSATA_RAID0:
+ switch (mode) {
+ case OXNASSATA_RAID1:
+ changeparameters = 1;
+ break;
+ case OXNASSATA_NOTRAID:
+ changeparameters = 1;
+ progmicrocode = 1;
+ break;
+ }
+ break;
+ case OXNASSATA_NOTRAID:
+ switch (mode) {
+ case OXNASSATA_RAID0:
+ case OXNASSATA_RAID1:
+ changeparameters = 1;
+ progmicrocode = 1;
+ break;
+ }
+ break;
+ case UNKNOWN_MODE:
+ changeparameters = 1;
+ progmicrocode = 1;
+ break;
+ }
+
+ /* no need to reprogram everything if already in the right mode */
+ if (progmicrocode) {
+ /* reset micro-code processor */
+ iowrite32(1, core_base + PROC_RESET);
+ wmb();
+
+ /* select micro-code */
+ switch (mode) {
+ case OXNASSATA_RAID1:
+ case OXNASSATA_RAID0:
+ VPRINTK("Loading RAID micro-code\n");
+ src = (unsigned int *)&raid[1];
+ break;
+ case OXNASSATA_NOTRAID:
+ VPRINTK("Loading JBOD micro-code\n");
+ src = (unsigned int *)&jbod[1];
+ break;
+ default:
+ BUG();
+ break;
+ }
+
+ /* load micro code */
+ dst = core_base + UCODE_STORE;
+ while (*src != ~0) {
+ iowrite32(*src, dst);
+ src++;
+ dst += sizeof(*src);
+ }
+ wmb();
+ }
+
+ if (changeparameters) {
+ u32 reg;
+ /* set other mode dependent flags */
+ switch (mode) {
+ case OXNASSATA_RAID1:
+ /* clear JBOD mode */
+ reg = ioread32(core_base + DATA_PLANE_CTRL);
+ reg |= DPC_JBOD_UCODE;
+ reg &= ~DPC_FIS_SWCH;
+ iowrite32(reg, core_base + DATA_PLANE_CTRL);
+ wmb();
+
+ /* set the hardware up for RAID-1 */
+ iowrite32(0, core_base + RAID_WP_BOT_LOW);
+ iowrite32(0, core_base + RAID_WP_BOT_HIGH);
+ iowrite32(0xffffffff, core_base + RAID_WP_TOP_LOW);
+ iowrite32(0x7fffffff, core_base + RAID_WP_TOP_HIGH);
+ iowrite32(0, core_base + RAID_SIZE_LOW);
+ iowrite32(0, core_base + RAID_SIZE_HIGH);
+ wmb();
+ break;
+ case OXNASSATA_RAID0:
+ /* clear JBOD mode */
+ reg = ioread32(core_base + DATA_PLANE_CTRL);
+ reg |= DPC_JBOD_UCODE;
+ reg &= ~DPC_FIS_SWCH;
+ iowrite32(reg, core_base + DATA_PLANE_CTRL);
+ wmb();
+
+ /* set the hardware up for RAID-1 */
+ iowrite32(0, core_base + RAID_WP_BOT_LOW);
+ iowrite32(0, core_base + RAID_WP_BOT_HIGH);
+ iowrite32(0xffffffff, core_base + RAID_WP_TOP_LOW);
+ iowrite32(0x7fffffff, core_base + RAID_WP_TOP_HIGH);
+ iowrite32(0xffffffff, core_base + RAID_SIZE_LOW);
+ iowrite32(0x7fffffff, core_base + RAID_SIZE_HIGH);
+ wmb();
+ break;
+ case OXNASSATA_NOTRAID:
+ /* enable jbod mode */
+ reg = ioread32(core_base + DATA_PLANE_CTRL);
+ reg &= ~DPC_JBOD_UCODE;
+ reg &= ~DPC_FIS_SWCH;
+ iowrite32(reg, core_base + DATA_PLANE_CTRL);
+ wmb();
+
+ /* start micro-code processor*/
+ iowrite32(1, core_base + PROC_START);
+ break;
+ default:
+ reg = ioread32(core_base + DATA_PLANE_CTRL);
+ reg |= DPC_JBOD_UCODE;
+ reg &= ~DPC_FIS_SWCH;
+ iowrite32(reg, core_base + DATA_PLANE_CTRL);
+ wmb();
+ break;
+ }
+ }
+}
+
+/**
+ * sends a sync-escape if there is a link present
+ */
+static inline void sata_oxnas_send_sync_escape(struct ata_port *ap)
+{
+ struct sata_oxnas_port_priv *pd = ap->private_data;
+ u32 reg;
+
+ /* read the SSTATUS register and only send a sync escape if there is a
+ * link active */
+ if ((sata_oxnas_link_read(ap, 0x20) & 3) == 3) {
+ reg = ioread32(pd->port_base + SATA_COMMAND);
+ reg &= ~SATA_OPCODE_MASK;
+ reg |= CMD_SYNC_ESCAPE;
+ iowrite32(reg, pd->port_base + SATA_COMMAND);
+ }
+}
+
+/* clears errors */
+static inline void sata_oxnas_clear_CS_error(struct ata_port *ap)
+{
+ struct sata_oxnas_port_priv *pd = ap->private_data;
+ u32 *base = pd->port_base;
+ u32 reg;
+
+ reg = ioread32(base + SATA_CONTROL);
+ reg &= SATA_CTL_ERR_MASK;
+ iowrite32(reg, base + SATA_CONTROL);
+}
+
+static inline void sata_oxnas_reset_sgdma(struct ata_port *ap)
+{
+ struct sata_oxnas_port_priv *pd = ap->private_data;
+
+ iowrite32(SGDMA_RESETS_CTRL, pd->sgdma_base + SGDMA_RESETS);
+}
+
+static inline void sata_oxnas_reset_dma(struct ata_port *ap, int assert)
+{
+ struct sata_oxnas_port_priv *pd = ap->private_data;
+ u32 reg;
+
+ reg = ioread32(pd->dmactl_base + DMA_CONTROL);
+ if (assert)
+ reg |= DMA_CONTROL_RESET;
+ else
+ reg &= ~DMA_CONTROL_RESET;
+
+ iowrite32(reg, pd->dmactl_base + DMA_CONTROL);
+};
+
+/**
+ * Clears the error caused by the core's registers being accessed when the
+ * core is busy.
+ */
+static inline void sata_oxnas_clear_reg_access_error(struct ata_port *ap)
+{
+ struct sata_oxnas_port_priv *pd = ap->private_data;
+ u32 *base = pd->port_base;
+ u32 reg;
+
+ reg = ioread32(base + INT_STATUS);
+
+ DPRINTK("ENTER\n");
+ if (reg & INT_REG_ACCESS_ERR) {
+ DPRINTK("clearing register access error on port %d\n",
+ ap->port_no);
+ iowrite32(INT_REG_ACCESS_ERR, base + INT_STATUS);
+ }
+ reg = ioread32(base + INT_STATUS);
+ if (reg & INT_REG_ACCESS_ERR)
+ DPRINTK("register access error didn't clear\n");
+}
+
+static inline void sata_oxnas_clear_sctl_error(struct ata_port *ap)
+{
+ struct sata_oxnas_port_priv *pd = ap->private_data;
+ u32 *base = pd->port_base;
+ u32 reg;
+
+ reg = ioread32(base + SATA_CONTROL);
+ reg |= SCTL_CLR_ERR;
+ iowrite32(reg, base + SATA_CONTROL);
+}
+
+static inline void sata_oxnas_clear_raid_error(struct ata_host *ah)
+{
+ return;
+};
+
+/**
+ * Clean up all the state machines in the sata core.
+ * @return post cleanup action required
+ */
+static int sata_oxnas_cleanup(struct ata_host *ah)
+{
+ struct sata_oxnas_host_priv *hd = ah->private_data;
+ int actions_required = 0;
+ int n;
+
+ printk(KERN_INFO "sata_oxnas: resetting SATA core\n");
+ /* core not recovering, reset it */
+ mdelay(5);
+ sata_oxnas_reset_core(ah);
+ mdelay(5);
+ actions_required |= OXNAS_SATA_REINIT;
+ /* Perform any SATA core re-initialisation after reset post reset init
+ * needs to be called for both ports as there's one reset for both
+ * ports */
+ for (n = 0; n < hd->n_ports; n++)
+ sata_oxnas_post_reset_init(ah->ports[n]);
+
+
+ return actions_required;
+}
+
+/**
+ * ata_qc_new - Request an available ATA command, for queueing
+ * @ap: Port associated with device @dev
+ * @return non zero will refuse a new command, zero will may grant on subject
+ * to conditions elsewhere.
+ *
+ */
+static int sata_oxnas_qc_new(struct ata_port *ap)
+{
+ struct sata_oxnas_host_priv *hd = ap->host->private_data;
+
+ DPRINTK("port %d\n", ap->port_no);
+ smp_rmb();
+ if (hd->port_frozen || hd->port_in_eh)
+ return 1;
+ else
+ return !sata_oxnas_acquire_hw(ap, 0, 0);
+}
+
+/**
+ * releases the lock on the port the command used
+ */
+static void sata_oxnas_qc_free(struct ata_queued_cmd *qc)
+{
+ DPRINTK("\n");
+ sata_oxnas_release_hw(qc->ap);
+}
+
+static void sata_oxnas_freeze(struct ata_port *ap)
+{
+ struct sata_oxnas_host_priv *hd = ap->host->private_data;
+
+ DPRINTK("\n");
+ hd->port_frozen |= BIT(ap->port_no);
+ smp_wmb();
+}
+
+static void sata_oxnas_thaw(struct ata_port *ap)
+{
+ struct sata_oxnas_host_priv *hd = ap->host->private_data;
+
+ DPRINTK("\n");
+ hd->port_frozen &= ~BIT(ap->port_no);
+ smp_wmb();
+}
+
+void sata_oxnas_freeze_host(struct ata_port *ap)
+{
+ struct sata_oxnas_host_priv *hd = ap->host->private_data;
+
+ DPRINTK("ENTER\n");
+ hd->port_in_eh |= BIT(ap->port_no);
+ smp_wmb();
+}
+
+void sata_oxnas_thaw_host(struct ata_port *ap)
+{
+ struct sata_oxnas_host_priv *hd = ap->host->private_data;
+
+ DPRINTK("ENTER\n");
+ hd->port_in_eh &= ~BIT(ap->port_no);
+ smp_wmb();
+}
+
+static void sata_oxnas_post_internal_cmd(struct ata_queued_cmd *qc)
+{
+ DPRINTK("ENTER\n");
+ /* If the core is busy here, make it idle */
+ if (qc->flags & ATA_QCFLAG_FAILED)
+ sata_oxnas_cleanup(qc->ap->host);
+}
+
+
+/**
+ * turn on the interrupts
+ *
+ * @param ap Hardware with the registers in
+ */
+static void sata_oxnas_irq_on(struct ata_port *ap)
+{
+ struct sata_oxnas_port_priv *pd = ap->private_data;
+ u32 mask = (COREINT_END << ap->port_no);
+
+ /* Clear pending interrupts */
+ iowrite32(~0, pd->port_base + INT_CLEAR);
+ iowrite32(mask, pd->core_base + CORE_INT_STATUS);
+ wmb();
+
+ /* enable End of command interrupt */
+ iowrite32(INT_WANT, pd->port_base + INT_ENABLE);
+ iowrite32(mask, pd->core_base + CORE_INT_ENABLE);
+}
+
+
+/** @return true if the port has a cable connected */
+int sata_oxnas_check_link(struct ata_port *ap)
+{
+ int reg;
+
+ sata_oxnas_scr_read_port(ap, SCR_STATUS, &reg);
+ /* Check for the cable present indicated by SCR status bit-0 set */
+ return reg & 0x1;
+}
+
+/**
+ * ata_std_postreset - standard postreset callback
+ * @link: the target ata_link
+ * @classes: classes of attached devices
+ *
+ * This function is invoked after a successful reset. Note that
+ * the device might have been reset more than once using
+ * different reset methods before postreset is invoked.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ */
+static void sata_oxnas_postreset(struct ata_link *link, unsigned int *classes)
+{
+ struct ata_port *ap = link->ap;
+ struct sata_oxnas_host_priv *hd = ap->host->private_data;
+
+ unsigned int dev;
+
+ DPRINTK("ENTER\n");
+ ata_std_postreset(link, classes);
+
+ /* turn on phy error detection by removing the masks */
+ sata_oxnas_link_write(ap->host->ports[0], 0x0c, 0x30003);
+ if (hd->n_ports > 1)
+ sata_oxnas_link_write(ap->host->ports[1], 0x0c, 0x30003);
+
+ /* bail out if no device is present */
+ if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
+ DPRINTK("EXIT, no device\n");
+ return;
+ }
+
+ /* go through all the devices and configure them */
+ for (dev = 0; dev < ATA_MAX_DEVICES; ++dev) {
+ if (ap->link.device[dev].class == ATA_DEV_ATA)
+ sata_oxnas_dev_config(&(ap->link.device[dev]));
+ }
+
+ DPRINTK("EXIT\n");
+}
+
+/**
+ * Called to read the hardware registers / DMA buffers, to
+ * obtain the current set of taskfile register values.
+ * @param ap hardware with the registers in
+ * @param tf taskfile to read the registers into
+ */
+static void sata_oxnas_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
+{
+ struct sata_oxnas_port_priv *port_priv = ap->private_data;
+ void __iomem *port_base = port_priv->port_base;
+ /* read the orb registers */
+ u32 Orb1 = ioread32(port_base + ORB1);
+ u32 Orb2 = ioread32(port_base + ORB2);
+ u32 Orb3 = ioread32(port_base + ORB3);
+ u32 Orb4 = ioread32(port_base + ORB4);
+
+ /* read common 28/48 bit tf parameters */
+ tf->device = (Orb1 >> 24);
+ tf->nsect = (Orb2 >> 0);
+ tf->feature = (Orb2 >> 16);
+ tf->command = sata_oxnas_check_status(ap);
+
+ /* read 48 or 28 bit tf parameters */
+ if (tf->flags & ATA_TFLAG_LBA48) {
+ tf->hob_nsect = (Orb2 >> 8);
+ tf->lbal = (Orb3 >> 0);
+ tf->lbam = (Orb3 >> 8);
+ tf->lbah = (Orb3 >> 16);
+ tf->hob_lbal = (Orb3 >> 24);
+ tf->hob_lbam = (Orb4 >> 0);
+ tf->hob_lbah = (Orb4 >> 8);
+ /* feature ext and control are write only */
+ } else {
+ /* read 28-bit lba */
+ tf->lbal = (Orb3 >> 0);
+ tf->lbam = (Orb3 >> 8);
+ tf->lbah = (Orb3 >> 16);
+ }
+}
+
+/**
+ * Read a result task-file from the sata core registers.
+ */
+static bool sata_oxnas_qc_fill_rtf(struct ata_queued_cmd *qc)
+{
+ /* Read the most recently received FIS from the SATA core ORB registers
+ and convert to an ATA taskfile */
+ sata_oxnas_tf_read(qc->ap, &qc->result_tf);
+ return true;
+}
+
+/**
+ * Reads the Status ATA shadow register from hardware.
+ *
+ * @return The status register
+ */
+static u8 sata_oxnas_check_status(struct ata_port *ap)
+{
+ u32 Reg;
+ u8 status;
+ struct sata_oxnas_port_priv *port_priv = ap->private_data;
+ void __iomem *port_base = port_priv->port_base;
+
+ /* read byte 3 of Orb2 register */
+ status = ioread32(port_base + ORB2) >> 24;
+
+ /* check for the drive going missing indicated by SCR status bits
+ * 0-3 = 0 */
+ sata_oxnas_scr_read_port(ap, SCR_STATUS, &Reg);
+
+ if (!(Reg & 0x1)) {
+ status |= ATA_DF;
+ status |= ATA_ERR;
+ }
+
+ return status;
+}
+
+static inline void sata_oxnas_reset_ucode(struct ata_host *ah, int force,
+ int no_microcode)
+{
+ struct sata_oxnas_host_priv *hd = ah->private_data;
+
+ DPRINTK("ENTER\n");
+ if (no_microcode) {
+ u32 reg;
+
+ sata_oxnas_set_mode(ah, UNKNOWN_MODE, force);
+ reg = ioread32(hd->core_base + DEVICE_CONTROL);
+ reg |= DEVICE_CONTROL_ATA_ERR_OVERRIDE;
+ iowrite32(reg, hd->core_base + DEVICE_CONTROL);
+ } else {
+ /* JBOD uCode */
+ sata_oxnas_set_mode(ah, OXNASSATA_NOTRAID, force);
+ /* Turn the work around off as it may have been left on by any
+ * HW-RAID code that we've been working with */
+ iowrite32(0x0, hd->core_base + PORT_ERROR_MASK);
+ }
+}
+
+/**
+ * Prepare as much as possible for a command without involving anything that is
+ * shared between ports.
+ */
+static void sata_oxnas_qc_prep(struct ata_queued_cmd *qc)
+{
+ struct sata_oxnas_port_priv *pd;
+ int port_no = qc->ap->port_no;
+
+ /* if the port's not connected, complete now with an error */
+ if (!sata_oxnas_check_link(qc->ap)) {
+ ata_port_err(qc->ap,
+ "port %d not connected completing with error\n",
+ port_no);
+ qc->err_mask |= AC_ERR_ATA_BUS;
+ ata_qc_complete(qc);
+ }
+
+ sata_oxnas_reset_ucode(qc->ap->host, 0, 0);
+
+ /* both pio and dma commands use dma */
+ if (ata_is_dma(qc->tf.protocol) || ata_is_pio(qc->tf.protocol)) {
+
+ /* program the scatterlist into the prd table */
+ ata_bmdma_qc_prep(qc);
+
+ /* point the sgdma controller at the dma request structure */
+ pd = qc->ap->private_data;
+
+ iowrite32(pd->sgdma_request_pa,
+ pd->sgdma_base + SGDMA_REQUESTPTR);
+
+ /* setup the request table */
+ if (port_no == 0) {
+ pd->sgdma_request->control =
+ (qc->dma_dir == DMA_FROM_DEVICE) ?
+ SGDMA_REQCTL0IN : SGDMA_REQCTL0OUT;
+ } else {
+ pd->sgdma_request->control =
+ (qc->dma_dir == DMA_FROM_DEVICE) ?
+ SGDMA_REQCTL1IN : SGDMA_REQCTL1OUT;
+ }
+ pd->sgdma_request->qualifier = SGDMA_REQQUAL;
+ pd->sgdma_request->src_pa = qc->ap->bmdma_prd_dma;
+ pd->sgdma_request->dst_pa = qc->ap->bmdma_prd_dma;
+ smp_wmb();
+
+ /* tell it to wait */
+ iowrite32(SGDMA_CONTROL_NOGO, pd->sgdma_base + SGDMA_CONTROL);
+ }
+}
+
+static int sata_oxnas_port_start(struct ata_port *ap)
+{
+ struct sata_oxnas_host_priv *host_priv = ap->host->private_data;
+ struct device *dev = ap->host->dev;
+ struct sata_oxnas_port_priv *pp;
+ void *mem;
+ dma_addr_t mem_dma;
+
+ DPRINTK("ENTER\n");
+
+ pp = kzalloc(sizeof(*pp), GFP_KERNEL);
+ if (!pp)
+ return -ENOMEM;
+
+ pp->port_base = host_priv->port_base +
+ (ap->port_no ? PORT_SIZE : 0);
+ pp->dmactl_base = host_priv->dmactl_base +
+ (ap->port_no ? DMA_CORESIZE : 0);
+ pp->sgdma_base = host_priv->sgdma_base +
+ (ap->port_no ? SGDMA_CORESIZE : 0);
+ pp->core_base = host_priv->core_base;
+
+ /* preallocated */
+ if (host_priv->dma_size >= SATA_OXNAS_DMA_SIZE * host_priv->n_ports) {
+ DPRINTK("using preallocated DMA\n");
+ mem_dma = host_priv->dma_base +
+ (ap->port_no ? SATA_OXNAS_DMA_SIZE : 0);
+ mem = ioremap(mem_dma, SATA_OXNAS_DMA_SIZE);
+ } else {
+ mem = dma_alloc_coherent(dev, SATA_OXNAS_DMA_SIZE, &mem_dma,
+ GFP_KERNEL);
+ }
+ if (!mem)
+ goto err_ret;
+
+ pp->sgdma_request_pa = mem_dma;
+ pp->sgdma_request = mem;
+
+ ap->bmdma_prd_dma = mem_dma + sizeof(struct sgdma_request);
+ ap->bmdma_prd = mem + sizeof(struct sgdma_request);
+
+ ap->private_data = pp;
+
+ sata_oxnas_post_reset_init(ap);
+
+ return 0;
+
+err_ret:
+ kfree(pp);
+ return -ENOMEM;
+
+}
+
+static void sata_oxnas_port_stop(struct ata_port *ap)
+{
+ struct device *dev = ap->host->dev;
+ struct sata_oxnas_port_priv *pp = ap->private_data;
+ struct sata_oxnas_host_priv *host_priv = ap->host->private_data;
+
+ DPRINTK("ENTER\n");
+ ap->private_data = NULL;
+ if (host_priv->dma_size) {
+ iounmap(pp->sgdma_request);
+ } else {
+ dma_free_coherent(dev, SATA_OXNAS_DMA_SIZE,
+ pp->sgdma_request, pp->sgdma_request_pa);
+ }
+
+ kfree(pp);
+}
+
+
+static void sata_oxnas_post_reset_init(struct ata_port *ap)
+{
+ uint dev;
+
+ /* force to load u-code only once after reset */
+ sata_oxnas_reset_ucode(ap->host, !ap->port_no, 0);
+
+ /* turn on phy error detection by removing the masks */
+ sata_oxnas_link_write(ap, 0x0C, 0x30003);
+
+ /* enable hotplug event detection */
+ sata_oxnas_scr_write_port(ap, SCR_ERROR, ~0);
+ sata_oxnas_scr_write_port(ap, SERROR_IRQ_MASK, 0x03feffff);
+ sata_oxnas_scr_write_port(ap, SCR_ACTIVE, ~0 & ~(1 << 26) & ~(1 << 16));
+
+ /* enable interrupts for ports */
+ sata_oxnas_irq_on(ap);
+
+ /* go through all the devices and configure them */
+ for (dev = 0; dev < ATA_MAX_DEVICES; ++dev) {
+ if (ap->link.device[dev].class == ATA_DEV_ATA) {
+ sata_std_hardreset(&ap->link, NULL, jiffies + HZ);
+ sata_oxnas_dev_config(&(ap->link.device[dev]));
+ }
+ }
+
+ /* clean up any remaining errors */
+ sata_oxnas_scr_write_port(ap, SCR_ERROR, ~0);
+ VPRINTK("done\n");
+}
+
+/**
+ * host_stop() is called when the rmmod or hot unplug process begins. The
+ * hook must stop all hardware interrupts, DMA engines, etc.
+ *
+ * @param ap hardware with the registers in
+ */
+static void sata_oxnas_host_stop(struct ata_host *host_set)
+{
+ DPRINTK("\n");
+}
+
+
+#define ERROR_HW_ACQUIRE_TIMEOUT_JIFFIES (10 * HZ)
+static void sata_oxnas_error_handler(struct ata_port *ap)
+{
+ DPRINTK("Enter port_no %d\n", ap->port_no);
+ sata_oxnas_freeze_host(ap);
+
+ /* If the core is busy here, make it idle */
+ sata_oxnas_cleanup(ap->host);
+
+ ata_std_error_handler(ap);
+
+ sata_oxnas_thaw_host(ap);
+}
+
+static int sata_oxnas_softreset(struct ata_link *link, unsigned int *class,
+ unsigned long deadline)
+{
+ struct ata_port *ap = link->ap;
+ struct sata_oxnas_port_priv *pd = ap->private_data;
+ void __iomem *port_base = pd->port_base;
+ int rc;
+
+ struct ata_taskfile tf;
+ u32 Command_Reg;
+
+ DPRINTK("ENTER\n");
+
+ port_base = pd->port_base;
+
+ if (ata_link_offline(link)) {
+ DPRINTK("PHY reports no device\n");
+ *class = ATA_DEV_NONE;
+ goto out;
+ }
+
+ /* write value to register */
+ iowrite32(0, port_base + ORB1);
+ iowrite32(0, port_base + ORB2);
+ iowrite32(0, port_base + ORB3);
+ iowrite32((ap->ctl) << 24, port_base + ORB4);
+
+ /* command the core to send a control FIS */
+ Command_Reg = ioread32(port_base + SATA_COMMAND);
+ Command_Reg &= ~SATA_OPCODE_MASK;
+ Command_Reg |= CMD_WRITE_TO_ORB_REGS_NO_COMMAND;
+ iowrite32(Command_Reg, port_base + SATA_COMMAND);
+ udelay(20); /* FIXME: flush */
+
+ /* write value to register */
+ iowrite32((ap->ctl | ATA_SRST) << 24, port_base + ORB4);
+
+ /* command the core to send a control FIS */
+ Command_Reg &= ~SATA_OPCODE_MASK;
+ Command_Reg |= CMD_WRITE_TO_ORB_REGS_NO_COMMAND;
+ iowrite32(Command_Reg, port_base + SATA_COMMAND);
+ udelay(20); /* FIXME: flush */
+
+ /* write value to register */
+ iowrite32((ap->ctl) << 24, port_base + ORB4);
+
+ /* command the core to send a control FIS */
+ Command_Reg &= ~SATA_OPCODE_MASK;
+ Command_Reg |= CMD_WRITE_TO_ORB_REGS_NO_COMMAND;
+ iowrite32(Command_Reg, port_base + SATA_COMMAND);
+
+ msleep(150);
+
+ rc = ata_sff_wait_ready(link, deadline);
+
+ /* if link is occupied, -ENODEV too is an error */
+ if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
+ ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
+ return rc;
+ }
+
+ /* determine by signature whether we have ATA or ATAPI devices */
+ sata_oxnas_tf_read(ap, &tf);
+ *class = ata_dev_classify(&tf);
+
+ if (*class == ATA_DEV_UNKNOWN)
+ *class = ATA_DEV_NONE;
+
+out:
+ DPRINTK("EXIT, class=%u\n", *class);
+ return 0;
+}
+
+
+int sata_oxnas_init_controller(struct ata_host *host)
+{
+ return 0;
+}
+
+/**
+ * Ref bug-6320
+ *
+ * This code is a work around for a DMA hardware bug that will repeat the
+ * penultimate 8-bytes on some reads. This code will check that the amount
+ * of data transferred is a multiple of 512 bytes, if not the in it will
+ * fetch the correct data from a buffer in the SATA core and copy it into
+ * memory.
+ *
+ * @param port SATA port to check and if necessary, correct.
+ */
+static int sata_oxnas_bug_6320_detect(struct ata_port *ap)
+{
+ struct sata_oxnas_port_priv *pd = ap->private_data;
+ void __iomem *core_base = pd->core_base;
+ int is_read;
+ int quads_transferred;
+ int remainder;
+ int sector_quads_remaining;
+ int bug_present = 0;
+
+ /* Only want to apply fix to reads */
+ is_read = !(ioread32(core_base + DM_DBG1) & (ap->port_no ?
+ BIT(CORE_PORT1_DATA_DIR_BIT) :
+ BIT(CORE_PORT0_DATA_DIR_BIT)));
+
+ /* Check for an incomplete transfer, i.e. not a multiple of 512 bytes
+ transferred (datacount_port register counts quads transferred) */
+ quads_transferred =
+ ioread32(core_base + (ap->port_no ?
+ DATACOUNT_PORT1 : DATACOUNT_PORT0));
+
+ remainder = quads_transferred & 0x7f;
+ sector_quads_remaining = remainder ? (0x80 - remainder) : 0;
+
+ if (is_read && (sector_quads_remaining == 2)) {
+ bug_present = 1;
+ } else if (sector_quads_remaining) {
+ if (is_read) {
+ ata_port_warn(ap, "SATA read fixup cannot deal with "
+ "%d quads remaining\n",
+ sector_quads_remaining);
+ } else {
+ ata_port_warn(ap, "SATA write fixup of %d quads "
+ "remaining not supported\n",
+ sector_quads_remaining);
+ }
+ }
+
+ return bug_present;
+}
+
+/* This port done an interrupt */
+static void sata_oxnas_port_irq(struct ata_port *ap, int force_error)
+{
+ struct ata_queued_cmd *qc;
+ struct sata_oxnas_port_priv *pd = ap->private_data;
+ void __iomem *port_base = pd->port_base;
+
+ u32 int_status;
+ unsigned long flags = 0;
+
+ DPRINTK("ENTER port %d irqstatus %x\n", ap->port_no,
+ ioread32(port_base + INT_STATUS));
+
+ if (ap->qc_active & (1 << ATA_TAG_INTERNAL)) {
+ qc = ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
+ DPRINTK("completing non-ncq cmd\n");
+
+ if (qc)
+ ata_qc_complete(qc);
+
+ return;
+ }
+
+ qc = ata_qc_from_tag(ap, ap->link.active_tag);
+
+
+ /* record the port's interrupt */
+ int_status = ioread32(port_base + INT_STATUS);
+
+ /* If there's no command associated with this IRQ, ignore it. We may get
+ * spurious interrupts when cleaning-up after a failed command, ignore
+ * these too. */
+ if (likely(qc)) {
+ /* get the status before any error cleanup */
+ qc->err_mask = ac_err_mask(sata_oxnas_check_status(ap));
+ if (force_error) {
+ /* Pretend there has been a link error */
+ qc->err_mask |= AC_ERR_ATA_BUS;
+ DPRINTK(" ####force error####\n");
+ }
+ /* tell libata we're done */
+ local_irq_save(flags);
+ sata_oxnas_irq_clear(ap);
+ local_irq_restore(flags);
+ ata_qc_complete(qc);
+ } else {
+ VPRINTK("Ignoring interrupt, can't find the command tag="
+ "%d %08x\n", ap->link.active_tag, ap->qc_active);
+ }
+
+ /* maybe a hotplug event */
+ if (unlikely(int_status & INT_LINK_SERROR)) {
+ u32 serror;
+
+ sata_oxnas_scr_read_port(ap, SCR_ERROR, &serror);
+ if (serror & (SERR_DEV_XCHG | SERR_PHYRDY_CHG)) {
+ ata_ehi_hotplugged(&ap->link.eh_info);
+ ata_port_freeze(ap);
+ }
+ }
+}
+
+/**
+ * irq_handler is the interrupt handling routine registered with the system,
+ * by libata.
+ */
+static irqreturn_t sata_oxnas_interrupt(int irq, void *dev_instance)
+{
+ struct ata_host *ah = dev_instance;
+ struct sata_oxnas_host_priv *hd = ah->private_data;
+ void __iomem *core_base = hd->core_base;
+
+ u32 int_status;
+ irqreturn_t ret = IRQ_NONE;
+ u32 port_no;
+ u32 mask;
+ int bug_present;
+
+ /* loop until there are no more interrupts */
+ while ((int_status = (ioread32(core_base + CORE_INT_STATUS)) &
+ (COREINT_END | (COREINT_END << 1)))) {
+
+ /* clear any interrupt */
+ iowrite32(int_status, core_base + CORE_INT_CLEAR);
+
+ /* Only need workaround_bug_6320 for single disk systems as dual
+ * disk will use uCode which prevents this read underrun problem
+ * from occurring.
+ * All single disk systems will use port 0 */
+ for (port_no = 0; port_no < hd->n_ports; ++port_no) {
+ /* check the raw end of command interrupt to see if the
+ * port is done */
+ mask = (COREINT_END << port_no);
+ if (!(int_status & mask))
+ continue;
+
+ /* this port had an interrupt, clear it */
+ iowrite32(mask, core_base + CORE_INT_CLEAR);
+ /* check for bug 6320 only if no microcode was loaded */
+ bug_present = (hd->current_ucode == UNKNOWN_MODE) &&
+ sata_oxnas_bug_6320_detect(ah->ports[port_no]);
+
+ sata_oxnas_port_irq(ah->ports[port_no],
+ bug_present);
+ ret = IRQ_HANDLED;
+ }
+ }
+
+ return ret;
+}
+
+/*
+ * scsi mid-layer and libata interface structures
+ */
+static struct scsi_host_template sata_oxnas_sht = {
+ ATA_NCQ_SHT("sata_oxnas"),
+ .can_queue = SATA_OXNAS_QUEUE_DEPTH,
+ .sg_tablesize = SATA_OXNAS_MAX_PRD,
+ .dma_boundary = ATA_DMA_BOUNDARY,
+ .unchecked_isa_dma = 0,
+};
+
+
+static struct ata_port_operations sata_oxnas_ops = {
+ .inherits = &sata_port_ops,
+ .qc_prep = sata_oxnas_qc_prep,
+ .qc_issue = sata_oxnas_qc_issue,
+ .qc_fill_rtf = sata_oxnas_qc_fill_rtf,
+ .qc_new = sata_oxnas_qc_new,
+ .qc_free = sata_oxnas_qc_free,
+
+ .scr_read = sata_oxnas_scr_read,
+ .scr_write = sata_oxnas_scr_write,
+
+ .freeze = sata_oxnas_freeze,
+ .thaw = sata_oxnas_thaw,
+ .softreset = sata_oxnas_softreset,
+ /* .hardreset = sata_oxnas_hardreset, */
+ .postreset = sata_oxnas_postreset,
+ .error_handler = sata_oxnas_error_handler,
+ .post_internal_cmd = sata_oxnas_post_internal_cmd,
+
+ .port_start = sata_oxnas_port_start,
+ .port_stop = sata_oxnas_port_stop,
+
+ .host_stop = sata_oxnas_host_stop,
+ /* .pmp_attach = sata_oxnas_pmp_attach, */
+ /* .pmp_detach = sata_oxnas_pmp_detach, */
+ .sff_check_status = sata_oxnas_check_status,
+ .acquire_hw = sata_oxnas_acquire_hw,
+};
+
+static const struct ata_port_info sata_oxnas_port_info = {
+ .flags = SATA_OXNAS_HOST_FLAGS,
+ .pio_mask = ATA_PIO4,
+ .udma_mask = ATA_UDMA6,
+ .port_ops = &sata_oxnas_ops,
+};
+
+static int sata_oxnas_probe(struct platform_device *ofdev)
+{
+ int retval = -ENXIO;
+ int n_ports = 0;
+ void __iomem *port_base = NULL;
+ void __iomem *dmactl_base = NULL;
+ void __iomem *sgdma_base = NULL;
+ void __iomem *core_base = NULL;
+ void __iomem *phy_base = NULL;
+ struct reset_control *rstc;
+
+ struct resource res = {};
+ struct sata_oxnas_host_priv *host_priv = NULL;
+ int irq = 0;
+ struct ata_host *host = NULL;
+ struct clk *clk = NULL;
+
+ const struct ata_port_info *ppi[] = { &sata_oxnas_port_info, NULL };
+
+ of_property_read_u32(ofdev->dev.of_node, "nr-ports", &n_ports);
+ if (n_ports < 1 || n_ports > SATA_OXNAS_MAX_PORTS)
+ goto error_exit_with_cleanup;
+
+ port_base = of_iomap(ofdev->dev.of_node, 0);
+ if (!port_base)
+ goto error_exit_with_cleanup;
+
+ dmactl_base = of_iomap(ofdev->dev.of_node, 1);
+ if (!dmactl_base)
+ goto error_exit_with_cleanup;
+
+ sgdma_base = of_iomap(ofdev->dev.of_node, 2);
+ if (!sgdma_base)
+ goto error_exit_with_cleanup;
+
+ core_base = of_iomap(ofdev->dev.of_node, 3);
+ if (!core_base)
+ goto error_exit_with_cleanup;
+
+ phy_base = of_iomap(ofdev->dev.of_node, 4);
+ if (!phy_base)
+ goto error_exit_with_cleanup;
+
+ host_priv = devm_kzalloc(&ofdev->dev,
+ sizeof(struct sata_oxnas_host_priv),
+ GFP_KERNEL);
+ if (!host_priv)
+ goto error_exit_with_cleanup;
+
+ host_priv->port_base = port_base;
+ host_priv->dmactl_base = dmactl_base;
+ host_priv->sgdma_base = sgdma_base;
+ host_priv->core_base = core_base;
+ host_priv->phy_base = phy_base;
+ host_priv->n_ports = n_ports;
+ host_priv->current_ucode = UNKNOWN_MODE;
+
+ if (!of_address_to_resource(ofdev->dev.of_node, 5, &res)) {
+ host_priv->dma_base = res.start;
+ host_priv->dma_size = resource_size(&res);
+ }
+
+ irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
+ if (!irq) {
+ dev_err(&ofdev->dev, "invalid irq from platform\n");
+ goto error_exit_with_cleanup;
+ }
+ host_priv->irq = irq;
+
+ clk = of_clk_get(ofdev->dev.of_node, 0);
+ if (IS_ERR(clk)) {
+ retval = PTR_ERR(clk);
+ clk = NULL;
+ goto error_exit_with_cleanup;
+ }
+ host_priv->clk = clk;
+
+ rstc = devm_reset_control_get(&ofdev->dev, "sata");
+ if (IS_ERR(rstc)) {
+ retval = PTR_ERR(rstc);
+ goto error_exit_with_cleanup;
+ }
+ host_priv->rst_sata = rstc;
+
+ rstc = devm_reset_control_get(&ofdev->dev, "link");
+ if (IS_ERR(rstc)) {
+ retval = PTR_ERR(rstc);
+ goto error_exit_with_cleanup;
+ }
+ host_priv->rst_link = rstc;
+
+ rstc = devm_reset_control_get(&ofdev->dev, "phy");
+ if (IS_ERR(rstc)) {
+ retval = PTR_ERR(rstc);
+ goto error_exit_with_cleanup;
+ }
+ host_priv->rst_phy = rstc;
+
+ /* allocate host structure */
+ host = ata_host_alloc_pinfo(&ofdev->dev, ppi, n_ports);
+
+ if (!host) {
+ retval = -ENOMEM;
+ goto error_exit_with_cleanup;
+ }
+ host->private_data = host_priv;
+ host->iomap = port_base;
+
+ /* initialize core locking and queues */
+ init_waitqueue_head(&host_priv->fast_wait_queue);
+ init_waitqueue_head(&host_priv->scsi_wait_queue);
+ spin_lock_init(&host_priv->phy_lock);
+ spin_lock_init(&host_priv->core_lock);
+ host_priv->core_locked = 0;
+ host_priv->reentrant_port_no = -1;
+ host_priv->hw_lock_count = 0;
+ host_priv->direct_lock_count = 0;
+ host_priv->locker_uid = 0;
+ host_priv->current_locker_type = SATA_UNLOCKED;
+ host_priv->isr_arg = NULL;
+ host_priv->isr_callback = NULL;
+
+ /* initialize host controller */
+ retval = sata_oxnas_init_controller(host);
+ if (retval)
+ goto error_exit_with_cleanup;
+
+ /*
+ * Now, register with libATA core, this will also initiate the
+ * device discovery process, invoking our port_start() handler &
+ * error_handler() to execute a dummy softreset EH session
+ */
+ ata_host_activate(host, irq, sata_oxnas_interrupt, SATA_OXNAS_IRQ_FLAG,
+ &sata_oxnas_sht);
+
+ return 0;
+
+error_exit_with_cleanup:
+ if (irq)
+ irq_dispose_mapping(host_priv->irq);
+ if (clk)
+ clk_put(clk);
+ if (host)
+ ata_host_detach(host);
+ if (port_base)
+ iounmap(port_base);
+ if (sgdma_base)
+ iounmap(sgdma_base);
+ if (core_base)
+ iounmap(core_base);
+ if (phy_base)
+ iounmap(phy_base);
+ return retval;
+}
+
+
+static int sata_oxnas_remove(struct platform_device *ofdev)
+{
+ struct ata_host *host = dev_get_drvdata(&ofdev->dev);
+ struct sata_oxnas_host_priv *host_priv = host->private_data;
+
+ ata_host_detach(host);
+
+ irq_dispose_mapping(host_priv->irq);
+ iounmap(host_priv->port_base);
+ iounmap(host_priv->sgdma_base);
+ iounmap(host_priv->core_base);
+
+ /* reset Controller, Link and PHY */
+ reset_control_assert(host_priv->rst_sata);
+ reset_control_assert(host_priv->rst_link);
+ reset_control_assert(host_priv->rst_phy);
+
+ /* Disable the clock to the SATA block */
+ clk_disable_unprepare(host_priv->clk);
+ clk_put(host_priv->clk);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int sata_oxnas_suspend(struct platform_device *op, pm_message_t state)
+{
+ struct ata_host *host = dev_get_drvdata(&op->dev);
+
+ return ata_host_suspend(host, state);
+}
+
+static int sata_oxnas_resume(struct platform_device *op)
+{
+ struct ata_host *host = dev_get_drvdata(&op->dev);
+ int ret;
+
+ ret = sata_oxnas_init_controller(host);
+ if (ret) {
+ dev_err(&op->dev, "Error initializing hardware\n");
+ return ret;
+ }
+ ata_host_resume(host);
+ return 0;
+}
+#endif
+
+
+
+static struct of_device_id oxnas_sata_match[] = {
+ {
+ .compatible = "plxtech,nas782x-sata",
+ },
+ {},
+};
+
+MODULE_DEVICE_TABLE(of, oxnas_sata_match);
+
+static struct platform_driver oxnas_sata_driver = {
+ .driver = {
+ .name = "oxnas-sata",
+ .owner = THIS_MODULE,
+ .of_match_table = oxnas_sata_match,
+ },
+ .probe = sata_oxnas_probe,
+ .remove = sata_oxnas_remove,
+#ifdef CONFIG_PM
+ .suspend = sata_oxnas_suspend,
+ .resume = sata_oxnas_resume,
+#endif
+};
+
+module_platform_driver(oxnas_sata_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_VERSION("1.0");
+MODULE_AUTHOR("Oxford Semiconductor Ltd.");
+MODULE_DESCRIPTION("low-level driver for Oxford 934 SATA core");