diff options
author | root <root@artemis.panaceas.org> | 2022-04-07 09:21:25 +0100 |
---|---|---|
committer | root <root@artemis.panaceas.org> | 2022-04-07 09:21:25 +0100 |
commit | cad8326cabb776ca9f9c93edf1697113e53ddf20 (patch) | |
tree | 6817aa0e94a601754305545e72fb98511bc9641b /master/fix-kernel-ecc-bug | |
parent | f03c695ee4439c37fed1aabd5e76d233aee29be0 (diff) | |
download | master-fa83455-pq-master.tar.gz master-fa83455-pq-master.tar.bz2 master-fa83455-pq-master.zip |
Diffstat (limited to 'master/fix-kernel-ecc-bug')
-rw-r--r-- | master/fix-kernel-ecc-bug | 877 |
1 files changed, 877 insertions, 0 deletions
diff --git a/master/fix-kernel-ecc-bug b/master/fix-kernel-ecc-bug new file mode 100644 index 0000000..ecf9acf --- /dev/null +++ b/master/fix-kernel-ecc-bug @@ -0,0 +1,877 @@ +diff --git a/target/linux/ath79/patches-4.19/998-fix-ecc-bug.patch b/target/linux/ath79/patches-4.19/998-fix-ecc-bug.patch +new file mode 100644 +index 00000000000..fbc470a8b2e +--- /dev/null ++++ b/target/linux/ath79/patches-4.19/998-fix-ecc-bug.patch +@@ -0,0 +1,871 @@ ++--- linux-4.19.82/crypto/ecc.cg 2019-11-06 12:06:31.000000000 +0000 +++++ linux-4.19.82/crypto/ecc.c 2022-04-06 23:45:33.778283892 +0100 ++@@ -1,6 +1,6 @@ ++ /* ++- * Copyright (c) 2013, Kenneth MacKay ++- * All rights reserved. +++ * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved. +++ * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org> ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions are ++@@ -24,12 +24,15 @@ ++ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ */ ++ +++#include <linux/module.h> ++ #include <linux/random.h> ++ #include <linux/slab.h> ++ #include <linux/swab.h> ++ #include <linux/fips.h> ++ #include <crypto/ecdh.h> ++ #include <crypto/rng.h> +++#include <asm/unaligned.h> +++#include <linux/ratelimit.h> ++ ++ #include "ecc.h" ++ #include "ecc_curve_defs.h" ++@@ -112,7 +115,7 @@ ++ } ++ ++ /* Returns true if vli == 0, false otherwise. */ ++-static bool vli_is_zero(const u64 *vli, unsigned int ndigits) +++bool vli_is_zero(const u64 *vli, unsigned int ndigits) ++ { ++ int i; ++ ++@@ -123,6 +126,7 @@ ++ ++ return true; ++ } +++EXPORT_SYMBOL(vli_is_zero); ++ ++ /* Returns nonzero if bit bit of vli is set. */ ++ static u64 vli_test_bit(const u64 *vli, unsigned int bit) ++@@ -130,6 +134,11 @@ ++ return (vli[bit / 64] & ((u64)1 << (bit % 64))); ++ } ++ +++static bool vli_is_negative(const u64 *vli, unsigned int ndigits) +++{ +++ return vli_test_bit(vli, ndigits * 64 - 1); +++} +++ ++ /* Counts the number of 64-bit "digits" in vli. */ ++ static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits) ++ { ++@@ -161,6 +170,27 @@ ++ return ((num_digits - 1) * 64 + i); ++ } ++ +++/* Set dest from unaligned bit string src. */ +++void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits) +++{ +++ int i; +++ const u64 *from = src; +++ +++ for (i = 0; i < ndigits; i++) +++ dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]); +++} +++EXPORT_SYMBOL(vli_from_be64); +++ +++void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits) +++{ +++ int i; +++ const u64 *from = src; +++ +++ for (i = 0; i < ndigits; i++) +++ dest[i] = get_unaligned_le64(&from[i]); +++} +++EXPORT_SYMBOL(vli_from_le64); +++ ++ /* Sets dest = src. */ ++ static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits) ++ { ++@@ -171,7 +201,7 @@ ++ } ++ ++ /* Returns sign of left - right. */ ++-static int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits) +++int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits) ++ { ++ int i; ++ ++@@ -184,6 +214,7 @@ ++ ++ return 0; ++ } +++EXPORT_SYMBOL(vli_cmp); ++ ++ /* Computes result = in << c, returning carry. Can modify in place ++ * (if result == in). 0 < shift < 64. ++@@ -239,8 +270,30 @@ ++ return carry; ++ } ++ +++/* Computes result = left + right, returning carry. Can modify in place. */ +++static u64 vli_uadd(u64 *result, const u64 *left, u64 right, +++ unsigned int ndigits) +++{ +++ u64 carry = right; +++ int i; +++ +++ for (i = 0; i < ndigits; i++) { +++ u64 sum; +++ +++ sum = left[i] + carry; +++ if (sum != left[i]) +++ carry = (sum < left[i]); +++ else +++ carry = !!carry; +++ +++ result[i] = sum; +++ } +++ +++ return carry; +++} +++ ++ /* Computes result = left - right, returning borrow. Can modify in place. */ ++-static u64 vli_sub(u64 *result, const u64 *left, const u64 *right, +++u64 vli_sub(u64 *result, const u64 *left, const u64 *right, ++ unsigned int ndigits) ++ { ++ u64 borrow = 0; ++@@ -258,9 +311,37 @@ ++ ++ return borrow; ++ } +++EXPORT_SYMBOL(vli_sub); +++ +++/* Computes result = left - right, returning borrow. Can modify in place. */ +++static u64 vli_usub(u64 *result, const u64 *left, u64 right, +++ unsigned int ndigits) +++{ +++ u64 borrow = right; +++ int i; +++ +++ for (i = 0; i < ndigits; i++) { +++ u64 diff; +++ +++ diff = left[i] - borrow; +++ if (diff != left[i]) +++ borrow = (diff > left[i]); +++ +++ result[i] = diff; +++ } +++ +++ return borrow; +++} ++ ++ static uint128_t mul_64_64(u64 left, u64 right) ++ { +++ uint128_t result; +++#if defined(CONFIG_ARCH_SUPPORTS_INT128) +++ unsigned __int128 m = (unsigned __int128)left * right; +++ +++ result.m_low = m; +++ result.m_high = m >> 64; +++#else ++ u64 a0 = left & 0xffffffffull; ++ u64 a1 = left >> 32; ++ u64 b0 = right & 0xffffffffull; ++@@ -269,7 +350,6 @@ ++ u64 m1 = a0 * b1; ++ u64 m2 = a1 * b0; ++ u64 m3 = a1 * b1; ++- uint128_t result; ++ ++ m2 += (m0 >> 32); ++ m2 += m1; ++@@ -280,7 +360,7 @@ ++ ++ result.m_low = (m0 & 0xffffffffull) | (m2 << 32); ++ result.m_high = m3 + (m2 >> 32); ++- +++#endif ++ return result; ++ } ++ ++@@ -330,6 +410,28 @@ ++ result[ndigits * 2 - 1] = r01.m_low; ++ } ++ +++/* Compute product = left * right, for a small right value. */ +++static void vli_umult(u64 *result, const u64 *left, u32 right, +++ unsigned int ndigits) +++{ +++ uint128_t r01 = { 0 }; +++ unsigned int k; +++ +++ for (k = 0; k < ndigits; k++) { +++ uint128_t product; +++ +++ product = mul_64_64(left[k], right); +++ r01 = add_128_128(r01, product); +++ /* no carry */ +++ result[k] = r01.m_low; +++ r01.m_low = r01.m_high; +++ r01.m_high = 0; +++ } +++ result[k] = r01.m_low; +++ for (++k; k < ndigits * 2; k++) +++ result[k] = 0; +++} +++ ++ static void vli_square(u64 *result, const u64 *left, unsigned int ndigits) ++ { ++ uint128_t r01 = { 0, 0 }; ++@@ -402,6 +504,170 @@ ++ vli_add(result, result, mod, ndigits); ++ } ++ +++/* +++ * Computes result = product % mod +++ * for special form moduli: p = 2^k-c, for small c (note the minus sign) +++ * +++ * References: +++ * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective. +++ * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form +++ * Algorithm 9.2.13 (Fast mod operation for special-form moduli). +++ */ +++static void vli_mmod_special(u64 *result, const u64 *product, +++ const u64 *mod, unsigned int ndigits) +++{ +++ u64 c = -mod[0]; +++ u64 t[ECC_MAX_DIGITS * 2]; +++ u64 r[ECC_MAX_DIGITS * 2]; +++ +++ vli_set(r, product, ndigits * 2); +++ while (!vli_is_zero(r + ndigits, ndigits)) { +++ vli_umult(t, r + ndigits, c, ndigits); +++ vli_clear(r + ndigits, ndigits); +++ vli_add(r, r, t, ndigits * 2); +++ } +++ vli_set(t, mod, ndigits); +++ vli_clear(t + ndigits, ndigits); +++ while (vli_cmp(r, t, ndigits * 2) >= 0) +++ vli_sub(r, r, t, ndigits * 2); +++ vli_set(result, r, ndigits); +++} +++ +++/* +++ * Computes result = product % mod +++ * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign) +++ * where k-1 does not fit into qword boundary by -1 bit (such as 255). +++ +++ * References (loosely based on): +++ * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography. +++ * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47. +++ * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf +++ * +++ * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren. +++ * Handbook of Elliptic and Hyperelliptic Curve Cryptography. +++ * Algorithm 10.25 Fast reduction for special form moduli +++ */ +++static void vli_mmod_special2(u64 *result, const u64 *product, +++ const u64 *mod, unsigned int ndigits) +++{ +++ u64 c2 = mod[0] * 2; +++ u64 q[ECC_MAX_DIGITS]; +++ u64 r[ECC_MAX_DIGITS * 2]; +++ u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */ +++ int carry; /* last bit that doesn't fit into q */ +++ int i; +++ +++ vli_set(m, mod, ndigits); +++ vli_clear(m + ndigits, ndigits); +++ +++ vli_set(r, product, ndigits); +++ /* q and carry are top bits */ +++ vli_set(q, product + ndigits, ndigits); +++ vli_clear(r + ndigits, ndigits); +++ carry = vli_is_negative(r, ndigits); +++ if (carry) +++ r[ndigits - 1] &= (1ull << 63) - 1; +++ for (i = 1; carry || !vli_is_zero(q, ndigits); i++) { +++ u64 qc[ECC_MAX_DIGITS * 2]; +++ +++ vli_umult(qc, q, c2, ndigits); +++ if (carry) +++ vli_uadd(qc, qc, mod[0], ndigits * 2); +++ vli_set(q, qc + ndigits, ndigits); +++ vli_clear(qc + ndigits, ndigits); +++ carry = vli_is_negative(qc, ndigits); +++ if (carry) +++ qc[ndigits - 1] &= (1ull << 63) - 1; +++ if (i & 1) +++ vli_sub(r, r, qc, ndigits * 2); +++ else +++ vli_add(r, r, qc, ndigits * 2); +++ } +++ while (vli_is_negative(r, ndigits * 2)) +++ vli_add(r, r, m, ndigits * 2); +++ while (vli_cmp(r, m, ndigits * 2) >= 0) +++ vli_sub(r, r, m, ndigits * 2); +++ +++ vli_set(result, r, ndigits); +++} +++ +++/* +++ * Computes result = product % mod, where product is 2N words long. +++ * Reference: Ken MacKay's micro-ecc. +++ * Currently only designed to work for curve_p or curve_n. +++ */ +++static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod, +++ unsigned int ndigits) +++{ +++ u64 mod_m[2 * ECC_MAX_DIGITS]; +++ u64 tmp[2 * ECC_MAX_DIGITS]; +++ u64 *v[2] = { tmp, product }; +++ u64 carry = 0; +++ unsigned int i; +++ /* Shift mod so its highest set bit is at the maximum position. */ +++ int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits); +++ int word_shift = shift / 64; +++ int bit_shift = shift % 64; +++ +++ vli_clear(mod_m, word_shift); +++ if (bit_shift > 0) { +++ for (i = 0; i < ndigits; ++i) { +++ mod_m[word_shift + i] = (mod[i] << bit_shift) | carry; +++ carry = mod[i] >> (64 - bit_shift); +++ } +++ } else +++ vli_set(mod_m + word_shift, mod, ndigits); +++ +++ for (i = 1; shift >= 0; --shift) { +++ u64 borrow = 0; +++ unsigned int j; +++ +++ for (j = 0; j < ndigits * 2; ++j) { +++ u64 diff = v[i][j] - mod_m[j] - borrow; +++ +++ if (diff != v[i][j]) +++ borrow = (diff > v[i][j]); +++ v[1 - i][j] = diff; +++ } +++ i = !(i ^ borrow); /* Swap the index if there was no borrow */ +++ vli_rshift1(mod_m, ndigits); +++ mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1); +++ vli_rshift1(mod_m + ndigits, ndigits); +++ } +++ vli_set(result, v[i], ndigits); +++} +++ +++/* Computes result = product % mod using Barrett's reduction with precomputed +++ * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have +++ * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits +++ * boundary. +++ * +++ * Reference: +++ * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010. +++ * 2.4.1 Barrett's algorithm. Algorithm 2.5. +++ */ +++static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod, +++ unsigned int ndigits) +++{ +++ u64 q[ECC_MAX_DIGITS * 2]; +++ u64 r[ECC_MAX_DIGITS * 2]; +++ const u64 *mu = mod + ndigits; +++ +++ vli_mult(q, product + ndigits, mu, ndigits); +++ if (mu[ndigits]) +++ vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits); +++ vli_mult(r, mod, q + ndigits, ndigits); +++ vli_sub(r, product, r, ndigits * 2); +++ while (!vli_is_zero(r + ndigits, ndigits) || +++ vli_cmp(r, mod, ndigits) != -1) { +++ u64 carry; +++ +++ carry = vli_sub(r, r, mod, ndigits); +++ vli_usub(r + ndigits, r + ndigits, carry, ndigits); +++ } +++ vli_set(result, r, ndigits); +++} +++ ++ /* Computes p_result = p_product % curve_p. ++ * See algorithm 5 and 6 from ++ * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf ++@@ -509,14 +775,33 @@ ++ } ++ } ++ ++-/* Computes result = product % curve_prime ++- * from http://www.nsa.gov/ia/_files/nist-routines.pdf ++-*/ +++/* Computes result = product % curve_prime for different curve_primes. +++ * +++ * Note that curve_primes are distinguished just by heuristic check and +++ * not by complete conformance check. +++ */ ++ static bool vli_mmod_fast(u64 *result, u64 *product, ++ const u64 *curve_prime, unsigned int ndigits) ++ { ++ u64 tmp[2 * ECC_MAX_DIGITS]; ++ +++ /* Currently, both NIST primes have -1 in lowest qword. */ +++ if (curve_prime[0] != -1ull) { +++ /* Try to handle Pseudo-Marsenne primes. */ +++ if (curve_prime[ndigits - 1] == -1ull) { +++ vli_mmod_special(result, product, curve_prime, +++ ndigits); +++ return true; +++ } else if (curve_prime[ndigits - 1] == 1ull << 63 && +++ curve_prime[ndigits - 2] == 0) { +++ vli_mmod_special2(result, product, curve_prime, +++ ndigits); +++ return true; +++ } +++ vli_mmod_barrett(result, product, curve_prime, ndigits); +++ return true; +++ } +++ ++ switch (ndigits) { ++ case 3: ++ vli_mmod_fast_192(result, product, curve_prime, tmp); ++@@ -525,13 +810,26 @@ ++ vli_mmod_fast_256(result, product, curve_prime, tmp); ++ break; ++ default: ++- pr_err("unsupports digits size!\n"); +++ pr_err_ratelimited("ecc: unsupported digits size!\n"); ++ return false; ++ } ++ ++ return true; ++ } ++ +++/* Computes result = (left * right) % mod. +++ * Assumes that mod is big enough curve order. +++ */ +++void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, +++ const u64 *mod, unsigned int ndigits) +++{ +++ u64 product[ECC_MAX_DIGITS * 2]; +++ +++ vli_mult(product, left, right, ndigits); +++ vli_mmod_slow(result, product, mod, ndigits); +++} +++EXPORT_SYMBOL(vli_mod_mult_slow); +++ ++ /* Computes result = (left * right) % curve_prime. */ ++ static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right, ++ const u64 *curve_prime, unsigned int ndigits) ++@@ -557,7 +855,7 @@ ++ * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" ++ * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf ++ */ ++-static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, +++void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, ++ unsigned int ndigits) ++ { ++ u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS]; ++@@ -630,6 +928,7 @@ ++ ++ vli_set(result, u, ndigits); ++ } +++EXPORT_SYMBOL(vli_mod_inv); ++ ++ /* ------ Point operations ------ */ ++ ++@@ -903,39 +1202,133 @@ ++ vli_set(result->y, ry[0], ndigits); ++ } ++ +++/* Computes R = P + Q mod p */ +++static void ecc_point_add(const struct ecc_point *result, +++ const struct ecc_point *p, const struct ecc_point *q, +++ const struct ecc_curve *curve) +++{ +++ u64 z[ECC_MAX_DIGITS]; +++ u64 px[ECC_MAX_DIGITS]; +++ u64 py[ECC_MAX_DIGITS]; +++ unsigned int ndigits = curve->g.ndigits; +++ +++ vli_set(result->x, q->x, ndigits); +++ vli_set(result->y, q->y, ndigits); +++ vli_mod_sub(z, result->x, p->x, curve->p, ndigits); +++ vli_set(px, p->x, ndigits); +++ vli_set(py, p->y, ndigits); +++ xycz_add(px, py, result->x, result->y, curve->p, ndigits); +++ vli_mod_inv(z, z, curve->p, ndigits); +++ apply_z(result->x, result->y, z, curve->p, ndigits); +++} +++ +++/* Computes R = u1P + u2Q mod p using Shamir's trick. +++ * Based on: Kenneth MacKay's micro-ecc (2014). +++ */ +++void ecc_point_mult_shamir(const struct ecc_point *result, +++ const u64 *u1, const struct ecc_point *p, +++ const u64 *u2, const struct ecc_point *q, +++ const struct ecc_curve *curve) +++{ +++ u64 z[ECC_MAX_DIGITS]; +++ u64 sump[2][ECC_MAX_DIGITS]; +++ u64 *rx = result->x; +++ u64 *ry = result->y; +++ unsigned int ndigits = curve->g.ndigits; +++ unsigned int num_bits; +++ struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits); +++ const struct ecc_point *points[4]; +++ const struct ecc_point *point; +++ unsigned int idx; +++ int i; +++ +++ ecc_point_add(&sum, p, q, curve); +++ points[0] = NULL; +++ points[1] = p; +++ points[2] = q; +++ points[3] = ∑ +++ +++ num_bits = max(vli_num_bits(u1, ndigits), +++ vli_num_bits(u2, ndigits)); +++ i = num_bits - 1; +++ idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); +++ point = points[idx]; +++ +++ vli_set(rx, point->x, ndigits); +++ vli_set(ry, point->y, ndigits); +++ vli_clear(z + 1, ndigits - 1); +++ z[0] = 1; +++ +++ for (--i; i >= 0; i--) { +++ ecc_point_double_jacobian(rx, ry, z, curve->p, ndigits); +++ idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); +++ point = points[idx]; +++ if (point) { +++ u64 tx[ECC_MAX_DIGITS]; +++ u64 ty[ECC_MAX_DIGITS]; +++ u64 tz[ECC_MAX_DIGITS]; +++ +++ vli_set(tx, point->x, ndigits); +++ vli_set(ty, point->y, ndigits); +++ apply_z(tx, ty, z, curve->p, ndigits); +++ vli_mod_sub(tz, rx, tx, curve->p, ndigits); +++ xycz_add(tx, ty, rx, ry, curve->p, ndigits); +++ vli_mod_mult_fast(z, z, tz, curve->p, ndigits); +++ } +++ } +++ vli_mod_inv(z, z, curve->p, ndigits); +++ apply_z(rx, ry, z, curve->p, ndigits); +++} +++EXPORT_SYMBOL(ecc_point_mult_shamir); +++ ++ static inline void ecc_swap_digits(const u64 *in, u64 *out, ++ unsigned int ndigits) ++ { +++ const __be64 *src = (__force __be64 *)in; ++ int i; ++ ++ for (i = 0; i < ndigits; i++) ++- out[i] = __swab64(in[ndigits - 1 - i]); +++ out[i] = be64_to_cpu(src[ndigits - 1 - i]); ++ } ++ ++-int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, ++- const u64 *private_key, unsigned int private_key_len) +++static int __ecc_is_key_valid(const struct ecc_curve *curve, +++ const u64 *private_key, unsigned int ndigits) ++ { ++- int nbytes; ++- const struct ecc_curve *curve = ecc_get_curve(curve_id); +++ u64 one[ECC_MAX_DIGITS] = { 1, }; +++ u64 res[ECC_MAX_DIGITS]; ++ ++ if (!private_key) ++ return -EINVAL; ++ ++- nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; ++- ++- if (private_key_len != nbytes) +++ if (curve->g.ndigits != ndigits) ++ return -EINVAL; ++ ++- if (vli_is_zero(private_key, ndigits)) +++ /* Make sure the private key is in the range [2, n-3]. */ +++ if (vli_cmp(one, private_key, ndigits) != -1) ++ return -EINVAL; ++- ++- /* Make sure the private key is in the range [1, n-1]. */ ++- if (vli_cmp(curve->n, private_key, ndigits) != 1) +++ vli_sub(res, curve->n, one, ndigits); +++ vli_sub(res, res, one, ndigits); +++ if (vli_cmp(res, private_key, ndigits) != 1) ++ return -EINVAL; ++ ++ return 0; ++ } ++ +++int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, +++ const u64 *private_key, unsigned int private_key_len) +++{ +++ int nbytes; +++ const struct ecc_curve *curve = ecc_get_curve(curve_id); +++ +++ nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; +++ +++ if (private_key_len != nbytes) +++ return -EINVAL; +++ +++ return __ecc_is_key_valid(curve, private_key, ndigits); +++} +++EXPORT_SYMBOL(ecc_is_key_valid); +++ ++ /* ++ * ECC private keys are generated using the method of extra random bits, ++ * equivalent to that described in FIPS 186-4, Appendix B.4.1. ++@@ -979,17 +1372,15 @@ ++ if (err) ++ return err; ++ ++- if (vli_is_zero(priv, ndigits)) ++- return -EINVAL; ++- ++- /* Make sure the private key is in the range [1, n-1]. */ ++- if (vli_cmp(curve->n, priv, ndigits) != 1) +++ /* Make sure the private key is in the valid range. */ +++ if (__ecc_is_key_valid(curve, priv, ndigits)) ++ return -EINVAL; ++ ++ ecc_swap_digits(priv, privkey, ndigits); ++ ++ return 0; ++ } +++EXPORT_SYMBOL(ecc_gen_privkey); ++ ++ int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits, ++ const u64 *private_key, u64 *public_key) ++@@ -1026,13 +1417,17 @@ ++ out: ++ return ret; ++ } +++EXPORT_SYMBOL(ecc_make_pub_key); ++ ++ /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */ ++-static int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, ++- struct ecc_point *pk) +++int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, +++ struct ecc_point *pk) ++ { ++ u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS]; ++ +++ if (WARN_ON(pk->ndigits != curve->g.ndigits)) +++ return -EINVAL; +++ ++ /* Check 1: Verify key is not the zero point. */ ++ if (ecc_point_is_zero(pk)) ++ return -EINVAL; ++@@ -1054,8 +1449,8 @@ ++ return -EINVAL; ++ ++ return 0; ++- ++ } +++EXPORT_SYMBOL(ecc_is_pubkey_valid_partial); ++ ++ int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, ++ const u64 *private_key, const u64 *public_key, ++@@ -1111,3 +1506,6 @@ ++ out: ++ return ret; ++ } +++EXPORT_SYMBOL(crypto_ecdh_shared_secret); +++ +++MODULE_LICENSE("Dual BSD/GPL"); ++--- linux-4.19.82/crypto/ecc.h 2019-11-06 12:06:31.000000000 +0000 +++++ linux-4.19.82/crypto/ecc.h 2022-04-06 23:46:51.136579712 +0100 ++@@ -26,13 +26,51 @@ ++ #ifndef _CRYPTO_ECC_H ++ #define _CRYPTO_ECC_H ++ +++/* One digit is u64 qword. */ ++ #define ECC_CURVE_NIST_P192_DIGITS 3 ++ #define ECC_CURVE_NIST_P256_DIGITS 4 ++-#define ECC_MAX_DIGITS ECC_CURVE_NIST_P256_DIGITS +++#define ECC_MAX_DIGITS (512 / 64) ++ ++ #define ECC_DIGITS_TO_BYTES_SHIFT 3 ++ ++ /** +++ * struct ecc_point - elliptic curve point in affine coordinates +++ * +++ * @x: X coordinate in vli form. +++ * @y: Y coordinate in vli form. +++ * @ndigits: Length of vlis in u64 qwords. +++ */ +++struct ecc_point { +++ u64 *x; +++ u64 *y; +++ u8 ndigits; +++}; +++ +++#define ECC_POINT_INIT(x, y, ndigits) (struct ecc_point) { x, y, ndigits } +++ +++/** +++ * struct ecc_curve - definition of elliptic curve +++ * +++ * @name: Short name of the curve. +++ * @g: Generator point of the curve. +++ * @p: Prime number, if Barrett's reduction is used for this curve +++ * pre-calculated value 'mu' is appended to the @p after ndigits. +++ * Use of Barrett's reduction is heuristically determined in +++ * vli_mmod_fast(). +++ * @n: Order of the curve group. +++ * @a: Curve parameter a. +++ * @b: Curve parameter b. +++ */ +++struct ecc_curve { +++ char *name; +++ struct ecc_point g; +++ u64 *p; +++ u64 *n; +++ u64 *a; +++ u64 *b; +++}; +++ +++/** ++ * ecc_is_key_valid() - Validate a given ECDH private key ++ * ++ * @curve_id: id representing the curve to use ++@@ -91,4 +129,117 @@ ++ int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, ++ const u64 *private_key, const u64 *public_key, ++ u64 *secret); +++ +++/** +++ * ecc_is_pubkey_valid_partial() - Partial public key validation +++ * +++ * @curve: elliptic curve domain parameters +++ * @pk: public key as a point +++ * +++ * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial +++ * Public-Key Validation Routine. +++ * +++ * Note: There is no check that the public key is in the correct elliptic curve +++ * subgroup. +++ * +++ * Return: 0 if validation is successful, -EINVAL if validation is failed. +++ */ +++int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, +++ struct ecc_point *pk); +++ +++/** +++ * vli_is_zero() - Determine is vli is zero +++ * +++ * @vli: vli to check. +++ * @ndigits: length of the @vli +++ */ +++bool vli_is_zero(const u64 *vli, unsigned int ndigits); +++ +++/** +++ * vli_cmp() - compare left and right vlis +++ * +++ * @left: vli +++ * @right: vli +++ * @ndigits: length of both vlis +++ * +++ * Returns sign of @left - @right, i.e. -1 if @left < @right, +++ * 0 if @left == @right, 1 if @left > @right. +++ */ +++int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits); +++ +++/** +++ * vli_sub() - Subtracts right from left +++ * +++ * @result: where to write result +++ * @left: vli +++ * @right vli +++ * @ndigits: length of all vlis +++ * +++ * Note: can modify in-place. +++ * +++ * Return: carry bit. +++ */ +++u64 vli_sub(u64 *result, const u64 *left, const u64 *right, +++ unsigned int ndigits); +++ +++/** +++ * vli_from_be64() - Load vli from big-endian u64 array +++ * +++ * @dest: destination vli +++ * @src: source array of u64 BE values +++ * @ndigits: length of both vli and array +++ */ +++void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits); +++ +++/** +++ * vli_from_le64() - Load vli from little-endian u64 array +++ * +++ * @dest: destination vli +++ * @src: source array of u64 LE values +++ * @ndigits: length of both vli and array +++ */ +++void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits); +++ +++/** +++ * vli_mod_inv() - Modular inversion +++ * +++ * @result: where to write vli number +++ * @input: vli value to operate on +++ * @mod: modulus +++ * @ndigits: length of all vlis +++ */ +++void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, +++ unsigned int ndigits); +++ +++/** +++ * vli_mod_mult_slow() - Modular multiplication +++ * +++ * @result: where to write result value +++ * @left: vli number to multiply with @right +++ * @right: vli number to multiply with @left +++ * @mod: modulus +++ * @ndigits: length of all vlis +++ * +++ * Note: Assumes that mod is big enough curve order. +++ */ +++void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, +++ const u64 *mod, unsigned int ndigits); +++ +++/** +++ * ecc_point_mult_shamir() - Add two points multiplied by scalars +++ * +++ * @result: resulting point +++ * @x: scalar to multiply with @p +++ * @p: point to multiply with @x +++ * @y: scalar to multiply with @q +++ * @q: point to multiply with @y +++ * @curve: curve +++ * +++ * Returns result = x * p + x * q over the curve. +++ * This works faster than two multiplications and addition. +++ */ +++void ecc_point_mult_shamir(const struct ecc_point *result, +++ const u64 *x, const struct ecc_point *p, +++ const u64 *y, const struct ecc_point *q, +++ const struct ecc_curve *curve); ++ #endif ++--- linux-4.19.82/crypto/ecc_curve_defs.h 2019-11-06 12:06:31.000000000 +0000 +++++ linux-4.19.82/crypto/ecc_curve_defs.h 2022-04-06 23:47:41.973116885 +0100 ++@@ -2,21 +2,6 @@ ++ #ifndef _CRYTO_ECC_CURVE_DEFS_H ++ #define _CRYTO_ECC_CURVE_DEFS_H ++ ++-struct ecc_point { ++- u64 *x; ++- u64 *y; ++- u8 ndigits; ++-}; ++- ++-struct ecc_curve { ++- char *name; ++- struct ecc_point g; ++- u64 *p; ++- u64 *n; ++- u64 *a; ++- u64 *b; ++-}; ++- ++ /* NIST P-192: a = p - 3 */ ++ static u64 nist_p192_g_x[] = { 0xF4FF0AFD82FF1012ull, 0x7CBF20EB43A18800ull, ++ 0x188DA80EB03090F6ull }; |