aboutsummaryrefslogtreecommitdiffstats
path: root/package/rt2x00/src/rt2500pci.c
diff options
context:
space:
mode:
authorFlorian Fainelli <florian@openwrt.org>2007-07-26 20:00:24 +0000
committerFlorian Fainelli <florian@openwrt.org>2007-07-26 20:00:24 +0000
commit23fabc44475a201e1c6a4d95ddb9f56dac602bea (patch)
tree7fba4e30947b00a40329fe5ec7342d264fe70932 /package/rt2x00/src/rt2500pci.c
parentac8a4fb075d62b842a89ed4394e1231c3fcc2222 (diff)
downloadmaster-187ad058-23fabc44475a201e1c6a4d95ddb9f56dac602bea.tar.gz
master-187ad058-23fabc44475a201e1c6a4d95ddb9f56dac602bea.tar.bz2
master-187ad058-23fabc44475a201e1c6a4d95ddb9f56dac602bea.zip
Add rt2x00-mac80211 snapshot (#1916)
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@8184 3c298f89-4303-0410-b956-a3cf2f4a3e73
Diffstat (limited to 'package/rt2x00/src/rt2500pci.c')
-rw-r--r--package/rt2x00/src/rt2500pci.c1907
1 files changed, 1907 insertions, 0 deletions
diff --git a/package/rt2x00/src/rt2500pci.c b/package/rt2x00/src/rt2500pci.c
new file mode 100644
index 0000000000..61d7e74e61
--- /dev/null
+++ b/package/rt2x00/src/rt2500pci.c
@@ -0,0 +1,1907 @@
+/*
+ Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
+ <http://rt2x00.serialmonkey.com>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the
+ Free Software Foundation, Inc.,
+ 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+/*
+ Module: rt2500pci
+ Abstract: rt2500pci device specific routines.
+ Supported chipsets: RT2560.
+ */
+
+/*
+ * Set enviroment defines for rt2x00.h
+ */
+#define DRV_NAME "rt2500pci"
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/version.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/eeprom_93cx6.h>
+
+#include <asm/io.h>
+
+#include "rt2x00.h"
+#include "rt2x00pci.h"
+#include "rt2500pci.h"
+
+/*
+ * Register access.
+ * All access to the CSR registers will go through the methods
+ * rt2x00pci_register_read and rt2x00pci_register_write.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers BBPCSR and RFCSR to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attampt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ */
+static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+ unsigned int i;
+
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
+ if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
+ break;
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ return reg;
+}
+
+static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
+ const u8 reg_id, const u8 value)
+{
+ u32 reg;
+
+ /*
+ * Wait until the BBP becomes ready.
+ */
+ reg = rt2500pci_bbp_check(rt2x00dev);
+ if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
+ ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
+ return;
+ }
+
+ /*
+ * Write the data into the BBP.
+ */
+ reg = 0;
+ rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
+ rt2x00_set_field32(&reg, BBPCSR_REGNUM, reg_id);
+ rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
+ rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
+
+ rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
+}
+
+static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
+ const u8 reg_id, u8 *value)
+{
+ u32 reg;
+
+ /*
+ * Wait until the BBP becomes ready.
+ */
+ reg = rt2500pci_bbp_check(rt2x00dev);
+ if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
+ ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
+ return;
+ }
+
+ /*
+ * Write the request into the BBP.
+ */
+ reg = 0;
+ rt2x00_set_field32(&reg, BBPCSR_REGNUM, reg_id);
+ rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
+ rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
+
+ rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
+
+ /*
+ * Wait until the BBP becomes ready.
+ */
+ reg = rt2500pci_bbp_check(rt2x00dev);
+ if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
+ ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
+ *value = 0xff;
+ return;
+ }
+
+ *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
+}
+
+static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,
+ const u32 value)
+{
+ u32 reg;
+ unsigned int i;
+
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
+ if (!rt2x00_get_field32(reg, RFCSR_BUSY))
+ goto rf_write;
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
+ return;
+
+rf_write:
+ reg = 0;
+ rt2x00_set_field32(&reg, RFCSR_VALUE, value);
+ rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
+ rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
+ rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
+
+ rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
+}
+
+static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
+{
+ struct rt2x00_dev *rt2x00dev = eeprom->data;
+ u32 reg;
+
+ rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
+
+ eeprom->reg_data_in = !!rt2x00_get_field32(reg,
+ CSR21_EEPROM_DATA_IN);
+ eeprom->reg_data_out = !!rt2x00_get_field32(reg,
+ CSR21_EEPROM_DATA_OUT);
+ eeprom->reg_data_clock = !!rt2x00_get_field32(reg,
+ CSR21_EEPROM_DATA_CLOCK);
+ eeprom->reg_chip_select = !!rt2x00_get_field32(reg,
+ CSR21_EEPROM_CHIP_SELECT);
+}
+
+static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
+{
+ struct rt2x00_dev *rt2x00dev = eeprom->data;
+ u32 reg = 0;
+
+ rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN,
+ !!eeprom->reg_data_in);
+ rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT,
+ !!eeprom->reg_data_out);
+ rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
+ !!eeprom->reg_data_clock);
+ rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
+ !!eeprom->reg_chip_select);
+
+ rt2x00pci_register_write(rt2x00dev, CSR21, reg);
+}
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
+
+static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
+ const unsigned long word, void *data)
+{
+ rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
+}
+
+static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
+ const unsigned long word, void *data)
+{
+ rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), *((u32*)data));
+}
+
+static void rt2500pci_read_eeprom(struct rt2x00_dev *rt2x00dev,
+ const unsigned long word, void *data)
+{
+ rt2x00_eeprom_read(rt2x00dev, word, data);
+}
+
+static void rt2500pci_write_eeprom(struct rt2x00_dev *rt2x00dev,
+ const unsigned long word, void *data)
+{
+ rt2x00_eeprom_write(rt2x00dev, word, *((u16*)data));
+}
+
+static void rt2500pci_read_bbp(struct rt2x00_dev *rt2x00dev,
+ const unsigned long word, void *data)
+{
+ rt2500pci_bbp_read(rt2x00dev, word, data);
+}
+
+static void rt2500pci_write_bbp(struct rt2x00_dev *rt2x00dev,
+ const unsigned long word, void *data)
+{
+ rt2500pci_bbp_write(rt2x00dev, word, *((u8*)data));
+}
+
+static const struct rt2x00debug rt2500pci_rt2x00debug = {
+ .owner = THIS_MODULE,
+ .reg_csr = {
+ .read = rt2500pci_read_csr,
+ .write = rt2500pci_write_csr,
+ .word_size = sizeof(u32),
+ .word_count = CSR_REG_SIZE / sizeof(u32),
+ },
+ .reg_eeprom = {
+ .read = rt2500pci_read_eeprom,
+ .write = rt2500pci_write_eeprom,
+ .word_size = sizeof(u16),
+ .word_count = EEPROM_SIZE / sizeof(u16),
+ },
+ .reg_bbp = {
+ .read = rt2500pci_read_bbp,
+ .write = rt2500pci_write_bbp,
+ .word_size = sizeof(u8),
+ .word_count = BBP_SIZE / sizeof(u8),
+ },
+};
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+#ifdef CONFIG_RT2500PCI_RFKILL
+static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
+ return rt2x00_get_field32(reg, GPIOCSR_BIT0);
+}
+#endif /* CONFIG_RT2400PCI_RFKILL */
+
+/*
+ * Configuration handlers.
+ */
+static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev, u8 *bssid)
+{
+ u32 reg[2];
+
+ memset(&reg, 0, sizeof(reg));
+ memcpy(&reg, bssid, ETH_ALEN);
+
+ /*
+ * The BSSID is passed to us as an array of bytes,
+ * that array is little endian, so no need for byte ordering.
+ */
+ rt2x00pci_register_multiwrite(rt2x00dev, CSR5, &reg, sizeof(reg));
+}
+
+static void rt2500pci_config_promisc(struct rt2x00_dev *rt2x00dev,
+ const int promisc)
+{
+ u32 reg;
+
+ rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
+ rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, !promisc);
+ rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
+}
+
+static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev,
+ const int type)
+{
+ u32 reg;
+
+ rt2x00pci_register_write(rt2x00dev, CSR14, 0);
+
+ /*
+ * Apply hardware packet filter.
+ */
+ rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
+
+ if (!is_monitor_present(&rt2x00dev->interface) &&
+ (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_STA))
+ rt2x00_set_field32(&reg, RXCSR0_DROP_TODS, 1);
+ else
+ rt2x00_set_field32(&reg, RXCSR0_DROP_TODS, 0);
+
+ rt2x00_set_field32(&reg, RXCSR0_DROP_CRC, 1);
+ if (is_monitor_present(&rt2x00dev->interface)) {
+ rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL, 0);
+ rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL, 0);
+ rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 0);
+ } else {
+ rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL, 1);
+ rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL, 1);
+ rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
+ }
+
+ rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST, 0);
+ rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
+
+ rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
+
+ /*
+ * Enable beacon config
+ */
+ rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
+ rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
+ PREAMBLE + get_duration(IEEE80211_HEADER, 2));
+ rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
+ rt2x00_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON)
+ ->tx_params.cw_min);
+ rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
+
+ /*
+ * Enable synchronisation.
+ */
+ rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
+ if (is_interface_present(&rt2x00dev->interface)) {
+ rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
+ rt2x00_set_field32(&reg, CSR14_TBCN, 1);
+ }
+
+ rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+ if (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_AP)
+ rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 2);
+ else if (type == IEEE80211_IF_TYPE_STA)
+ rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 1);
+ else if (is_monitor_present(&rt2x00dev->interface) &&
+ !is_interface_present(&rt2x00dev->interface))
+ rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
+
+ rt2x00pci_register_write(rt2x00dev, CSR14, reg);
+}
+
+static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
+ const int value, const int channel, const int txpower)
+{
+ u32 rf1 = rt2x00dev->rf1;
+ u32 rf2 = value;
+ u32 rf3 = rt2x00dev->rf3;
+ u32 rf4 = rt2x00dev->rf4;
+
+ if (rt2x00_rf(&rt2x00dev->chip, RF2525) ||
+ rt2x00_rf(&rt2x00dev->chip, RF2525E))
+ rf2 |= 0x00080000;
+
+ if (rt2x00_rf(&rt2x00dev->chip, RF2525E) && channel == 14)
+ rf4 |= 0x00000010;
+
+ if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
+ if (channel < 14) {
+ rf1 = 0x00022020;
+ rf4 = 0x00000a0b;
+ } else if (channel == 14) {
+ rf1 = 0x00022010;
+ rf4 = 0x00000a1b;
+ } else if (channel < 64) {
+ rf1 = 0x00022010;
+ rf4 = 0x00000a1f;
+ } else if (channel < 140) {
+ rf1 = 0x00022010;
+ rf4 = 0x00000a0f;
+ } else if (channel < 161) {
+ rf1 = 0x00022020;
+ rf4 = 0x00000a07;
+ }
+ }
+
+ /*
+ * Set TXpower.
+ */
+ rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+
+ /*
+ * Switch on tuning bits.
+ * For RT2523 devices we do not need to update the R1 register.
+ */
+ if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
+ rt2x00_set_field32(&rf1, RF1_TUNER, 1);
+ rt2x00_set_field32(&rf3, RF3_TUNER, 1);
+
+ /*
+ * For RT2525 we should first set the channel to half band higher.
+ */
+ if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
+ static const u32 vals[] = {
+ 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
+ 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
+ 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
+ 0x00080d2e, 0x00080d3a
+ };
+
+ rt2500pci_rf_write(rt2x00dev, rf1);
+ rt2500pci_rf_write(rt2x00dev, vals[channel - 1]);
+ rt2500pci_rf_write(rt2x00dev, rf3);
+ if (rf4)
+ rt2500pci_rf_write(rt2x00dev, rf4);
+ }
+
+ rt2500pci_rf_write(rt2x00dev, rf1);
+ rt2500pci_rf_write(rt2x00dev, rf2);
+ rt2500pci_rf_write(rt2x00dev, rf3);
+ if (rf4)
+ rt2500pci_rf_write(rt2x00dev, rf4);
+
+ /*
+ * Channel 14 requires the Japan filter bit to be set.
+ */
+ rt2500pci_bbp_write(rt2x00dev, 70, (channel == 14) ? 0x4e : 0x46);
+
+ msleep(1);
+
+ /*
+ * Switch off tuning bits.
+ * For RT2523 devices we do not need to update the R1 register.
+ */
+ rt2x00_set_field32(&rf1, RF1_TUNER, 0);
+ rt2x00_set_field32(&rf3, RF3_TUNER, 0);
+
+
+ if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
+ rt2500pci_rf_write(rt2x00dev, rf1);
+
+ rt2500pci_rf_write(rt2x00dev, rf3);
+
+ /*
+ * Update rf fields
+ */
+ rt2x00dev->rf1 = rf1;
+ rt2x00dev->rf2 = rf2;
+ rt2x00dev->rf3 = rf3;
+ rt2x00dev->rf4 = rf4;
+ rt2x00dev->tx_power = txpower;
+
+ /*
+ * Clear false CRC during channel switch.
+ */
+ rt2x00pci_register_read(rt2x00dev, CNT0, &rf1);
+}
+
+static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
+ const int txpower)
+{
+ rt2x00_set_field32(&rt2x00dev->rf3, RF3_TXPOWER,
+ TXPOWER_TO_DEV(txpower));
+ rt2500pci_rf_write(rt2x00dev, rt2x00dev->rf3);
+
+}
+
+static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
+ const int antenna_tx, const int antenna_rx)
+{
+ u32 reg;
+ u8 r14;
+ u8 r2;
+
+ rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
+ rt2500pci_bbp_read(rt2x00dev, 14, &r14);
+ rt2500pci_bbp_read(rt2x00dev, 2, &r2);
+
+ /*
+ * Configure the TX antenna.
+ */
+ if (antenna_tx == ANTENNA_DIVERSITY) {
+ rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
+ rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
+ rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
+ } else if (antenna_tx == ANTENNA_A) {
+ rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
+ rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
+ rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
+ } else if (antenna_tx == ANTENNA_B) {
+ rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
+ rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
+ rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
+ }
+
+ /*
+ * Configure the RX antenna.
+ */
+ if (antenna_rx == ANTENNA_DIVERSITY)
+ rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
+ else if (antenna_rx == ANTENNA_A)
+ rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
+ else if (antenna_rx == ANTENNA_B)
+ rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
+
+ /*
+ * RT2525E and RT5222 need to flip TX I/Q
+ */
+ if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
+ rt2x00_rf(&rt2x00dev->chip, RF5222)) {
+ rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
+ rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
+ rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
+
+ /*
+ * RT2525E does not need RX I/Q Flip.
+ */
+ if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
+ rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
+ } else {
+ rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
+ rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
+ }
+
+ rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
+ rt2500pci_bbp_write(rt2x00dev, 14, r14);
+ rt2500pci_bbp_write(rt2x00dev, 2, r2);
+}
+
+static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
+ const int short_slot_time, const int beacon_int)
+{
+ u32 reg;
+
+ rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
+ rt2x00_set_field32(&reg, CSR11_SLOT_TIME,
+ short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
+ rt2x00pci_register_write(rt2x00dev, CSR11, reg);
+
+ rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
+ rt2x00_set_field32(&reg, CSR18_SIFS, SIFS);
+ rt2x00_set_field32(&reg, CSR18_PIFS,
+ short_slot_time ? SHORT_PIFS : PIFS);
+ rt2x00pci_register_write(rt2x00dev, CSR18, reg);
+
+ rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
+ rt2x00_set_field32(&reg, CSR19_DIFS,
+ short_slot_time ? SHORT_DIFS : DIFS);
+ rt2x00_set_field32(&reg, CSR19_EIFS, EIFS);
+ rt2x00pci_register_write(rt2x00dev, CSR19, reg);
+
+ rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
+ rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
+ rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
+ rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
+
+ rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
+ rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, beacon_int * 16);
+ rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, beacon_int * 16);
+ rt2x00pci_register_write(rt2x00dev, CSR12, reg);
+}
+
+static void rt2500pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
+{
+ struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
+ u32 reg;
+ u32 preamble;
+ u16 value;
+
+ preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE)
+ ? SHORT_PREAMBLE : PREAMBLE;
+
+ reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATE;
+ rt2x00pci_register_write(rt2x00dev, ARCSR1, reg);
+
+ rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
+ value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
+ SHORT_DIFS : DIFS) +
+ PLCP + preamble + get_duration(ACK_SIZE, 10);
+ rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, value);
+ value = SIFS + PLCP + preamble + get_duration(ACK_SIZE, 10);
+ rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, value);
+ rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
+
+ preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) ? 0x08 : 0x00;
+
+ rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
+ rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble);
+ rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
+ rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
+ rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
+
+ rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
+ rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble);
+ rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
+ rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
+ rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
+
+ rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
+ rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble);
+ rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
+ rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
+ rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
+
+ rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
+ rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble);
+ rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
+ rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
+ rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
+}
+
+static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
+ const int phymode)
+{
+ struct ieee80211_hw_mode *mode;
+ struct ieee80211_rate *rate;
+
+ if (phymode == MODE_IEEE80211A)
+ rt2x00dev->curr_hwmode = HWMODE_A;
+ else if (phymode == MODE_IEEE80211B)
+ rt2x00dev->curr_hwmode = HWMODE_B;
+ else
+ rt2x00dev->curr_hwmode = HWMODE_G;
+
+ mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
+ rate = &mode->rates[mode->num_rates - 1];
+
+ rt2500pci_config_rate(rt2x00dev, rate->val2);
+}
+
+static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, u8 *addr)
+{
+ u32 reg[2];
+
+ memset(&reg, 0, sizeof(reg));
+ memcpy(&reg, addr, ETH_ALEN);
+
+ /*
+ * The MAC address is passed to us as an array of bytes,
+ * that array is little endian, so no need for byte ordering.
+ */
+ rt2x00pci_register_multiwrite(rt2x00dev, CSR3, &reg, sizeof(reg));
+}
+
+/*
+ * LED functions.
+ */
+static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
+
+ rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
+ rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
+
+ if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
+ rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
+ rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
+ } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
+ rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
+ rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
+ } else {
+ rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
+ rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
+ }
+
+ rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
+}
+
+static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
+ rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
+ rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
+ rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
+}
+
+/*
+ * Link tuning
+ */
+static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev, int rssi)
+{
+ u32 reg;
+ u8 r17;
+
+ /*
+ * To prevent collisions with MAC ASIC on chipsets
+ * up to version C the link tuning should halt after 20
+ * seconds.
+ */
+ if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
+ rt2x00dev->link.count > 20)
+ return;
+
+ rt2500pci_bbp_read(rt2x00dev, 17, &r17);
+
+ /*
+ * Chipset versions C and lower should directly continue
+ * to the dynamic CCA tuning.
+ */
+ if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
+ goto dynamic_cca_tune;
+
+ /*
+ * A too low RSSI will cause too much false CCA which will
+ * then corrupt the R17 tuning. To remidy this the tuning should
+ * be stopped (While making sure the R17 value will not exceed limits)
+ */
+ if (rssi < -80 && rt2x00dev->link.count > 20) {
+ if (r17 >= 0x41) {
+ r17 = rt2x00dev->link.curr_noise;
+ rt2500pci_bbp_write(rt2x00dev, 17, r17);
+ }
+ return;
+ }
+
+ /*
+ * Special big-R17 for short distance
+ */
+ if (rssi >= -58) {
+ if (r17 != 0x50)
+ rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
+ return;
+ }
+
+ /*
+ * Special mid-R17 for middle distance
+ */
+ if (rssi >= -74) {
+ if (r17 != 0x41)
+ rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
+ return;
+ }
+
+ /*
+ * Leave short or middle distance condition, restore r17
+ * to the dynamic tuning range.
+ */
+ if (r17 >= 0x41) {
+ rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.curr_noise);
+ return;
+ }
+
+dynamic_cca_tune:
+
+ /*
+ * R17 is inside the dynamic tuning range,
+ * start tuning the link based on the false cca counter.
+ */
+ rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
+ rt2x00dev->link.false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
+
+ if (rt2x00dev->link.false_cca > 512 && r17 < 0x40) {
+ rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
+ rt2x00dev->link.curr_noise = r17;
+ } else if (rt2x00dev->link.false_cca < 100 && r17 > 0x32) {
+ rt2500pci_bbp_write(rt2x00dev, 17, --r17);
+ rt2x00dev->link.curr_noise = r17;
+ }
+}
+
+/*
+ * Initialization functions.
+ */
+static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_desc *rxd;
+ unsigned int i;
+ u32 word;
+
+ memset(rt2x00dev->rx->data_addr, 0x00,
+ rt2x00_get_ring_size(rt2x00dev->rx));
+
+ for (i = 0; i < rt2x00dev->rx->stats.limit; i++) {
+ rxd = rt2x00dev->rx->entry[i].priv;
+
+ rt2x00_desc_read(rxd, 1, &word);
+ rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
+ rt2x00dev->rx->entry[i].data_dma);
+ rt2x00_desc_write(rxd, 1, word);
+
+ rt2x00_desc_read(rxd, 0, &word);
+ rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
+ rt2x00_desc_write(rxd, 0, word);
+ }
+
+ rt2x00_ring_index_clear(rt2x00dev->rx);
+}
+
+static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev,
+ const int queue)
+{
+ struct data_ring *ring = rt2x00_get_ring(rt2x00dev, queue);
+ struct data_desc *txd;
+ unsigned int i;
+ u32 word;
+
+ memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
+
+ for (i = 0; i < ring->stats.limit; i++) {
+ txd = ring->entry[i].priv;
+
+ rt2x00_desc_read(txd, 1, &word);
+ rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
+ ring->entry[i].data_dma);
+ rt2x00_desc_write(txd, 1, word);
+
+ rt2x00_desc_read(txd, 0, &word);
+ rt2x00_set_field32(&word, TXD_W0_VALID, 0);
+ rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
+ rt2x00_desc_write(txd, 0, word);
+ }
+
+ rt2x00_ring_index_clear(ring);
+}
+
+static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ /*
+ * Initialize rings.
+ */
+ rt2500pci_init_rxring(rt2x00dev);
+ rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
+ rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
+ rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
+ rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
+
+ /*
+ * Initialize registers.
+ */
+ rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
+ rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
+ rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
+ rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
+ rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
+ rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
+ rt2x00dev->bcn[1].stats.limit);
+ rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
+ rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
+ rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
+
+ rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
+ rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
+ rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
+ rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
+
+ rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
+ rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
+ rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
+ rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
+
+ rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
+ rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
+ rt2x00dev->bcn[1].data_dma);
+ rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
+
+ rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
+ rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
+ rt2x00dev->bcn[0].data_dma);
+ rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
+
+ rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
+ rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE,
+ rt2x00dev->rx->desc_size);
+ rt2x00_set_field32(&reg, RXCSR1_NUM_RXD,
+ rt2x00dev->rx->stats.limit);
+ rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
+
+ rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
+ rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
+ rt2x00dev->rx->data_dma);
+ rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
+
+ return 0;
+}
+
+static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+ return -EBUSY;
+
+ rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
+ rt2x00pci_register_write(rt2x00dev, PCICSR, 0x000003b8);
+
+ rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
+ rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
+ rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
+ rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
+
+ rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
+ rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
+ rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
+ rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
+ rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
+
+ rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
+ rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
+ rt2x00dev->rx->data_size / 128);
+ rt2x00pci_register_write(rt2x00dev, CSR9, reg);
+
+ rt2x00pci_register_write(rt2x00dev, CNT3, 0);
+
+ rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
+ rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
+
+ rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
+ rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
+
+ rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
+ rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
+ rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
+
+ /*
+ * Always use CWmin and CWmax set in descriptor.
+ */
+ rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
+ rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
+ rt2x00pci_register_write(rt2x00dev, CSR11, reg);
+
+ rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
+ /*
+ * Signal.
+ */
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47);
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
+ /*
+ * Rssi.
+ */
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51);
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
+ /*
+ * OFDM Rate.
+ */
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42);
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
+ /*
+ * OFDM.
+ */
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51);
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
+ rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
+
+ rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
+ rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
+
+ rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
+
+ rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
+
+ rt2x00pci_register_write(rt2x00dev, ARTCSR0, 0x7038140a);
+ rt2x00pci_register_write(rt2x00dev, ARTCSR1, 0x1d21252d);
+ rt2x00pci_register_write(rt2x00dev, ARTCSR2, 0x1919191d);
+
+ rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
+ rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
+ rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
+ rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
+ rt2x00pci_register_write(rt2x00dev, CSR1, reg);
+
+ rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
+ rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
+ rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
+ rt2x00pci_register_write(rt2x00dev, CSR1, reg);
+
+ /*
+ * We must clear the FCS and FIFO error count.
+ * These registers are cleared on read,
+ * so we may pass a useless variable to store the value.
+ */
+ rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
+ rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
+
+ return 0;
+}
+
+static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u16 eeprom;
+ u8 reg_id;
+ u8 value;
+
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ rt2500pci_bbp_read(rt2x00dev, 0, &value);
+ if ((value != 0xff) && (value != 0x00))
+ goto continue_csr_init;
+ NOTICE(rt2x00dev, "Waiting for BBP register.\n");
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
+ return -EACCES;
+
+continue_csr_init:
+ rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
+ rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
+ rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
+ rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
+ rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
+ rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
+ rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
+ rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
+ rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
+ rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
+ rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
+ rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
+ rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
+ rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
+ rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
+ rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
+ rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
+ rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
+ rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
+ rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
+ rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
+ rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
+ rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
+ rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
+ rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
+ rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
+ rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
+ rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
+ rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
+ rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
+ rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
+
+ DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
+ for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+ rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
+
+ if (eeprom != 0xffff && eeprom != 0x0000) {
+ reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+ value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+ DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
+ reg_id, value);
+ rt2500pci_bbp_write(rt2x00dev, reg_id, value);
+ }
+ }
+ DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
+
+ return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ u32 reg;
+
+ rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
+ rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
+ state == STATE_RADIO_RX_OFF);
+ rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
+}
+
+static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ /*
+ * Initialize all registers.
+ */
+ if (rt2500pci_init_rings(rt2x00dev) ||
+ rt2500pci_init_registers(rt2x00dev) ||
+ rt2500pci_init_bbp(rt2x00dev)) {
+ ERROR(rt2x00dev, "Register initialization failed.\n");
+ return -EIO;
+ }
+
+ /*
+ * Clear interrupts.
+ */
+ rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
+ rt2x00pci_register_write(rt2x00dev, CSR7, reg);
+
+ /*
+ * Enable interrupts.
+ */
+ rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
+ rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, 0);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
+ rt2x00_set_field32(&reg, CSR8_RXDONE, 0);
+ rt2x00pci_register_write(rt2x00dev, CSR8, reg);
+
+ /*
+ * Enable LED
+ */
+ rt2500pci_enable_led(rt2x00dev);
+
+ return 0;
+}
+
+static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ /*
+ * Disable LED
+ */
+ rt2500pci_disable_led(rt2x00dev);
+
+ rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
+
+ /*
+ * Disable synchronisation.
+ */
+ rt2x00pci_register_write(rt2x00dev, CSR14, 0);
+
+ /*
+ * Cancel RX and TX.
+ */
+ rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
+ rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
+ rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
+
+ /*
+ * Disable interrupts.
+ */
+ rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
+ rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, 1);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 1);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 1);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 1);
+ rt2x00_set_field32(&reg, CSR8_RXDONE, 1);
+ rt2x00pci_register_write(rt2x00dev, CSR8, reg);
+}
+
+static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ u32 reg;
+ unsigned int i;
+ char put_to_sleep;
+ char bbp_state;
+ char rf_state;
+
+ put_to_sleep = (state != STATE_AWAKE);
+
+ rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
+ rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
+ rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
+ rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
+ rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
+ rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
+
+ /*
+ * Device is not guaranteed to be in the requested state yet.
+ * We must wait until the register indicates that the
+ * device has entered the correct state.
+ */
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
+ bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
+ rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
+ if (bbp_state == state && rf_state == state)
+ return 0;
+ msleep(10);
+ }
+
+ NOTICE(rt2x00dev, "Device failed to enter state %d, "
+ "current device state: bbp %d and rf %d.\n",
+ state, bbp_state, rf_state);
+
+ return -EBUSY;
+}
+
+static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ int retval = 0;
+
+ switch (state) {
+ case STATE_RADIO_ON:
+ retval = rt2500pci_enable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_OFF:
+ rt2500pci_disable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_RX_ON:
+ case STATE_RADIO_RX_OFF:
+ rt2500pci_toggle_rx(rt2x00dev, state);
+ break;
+ case STATE_DEEP_SLEEP:
+ case STATE_SLEEP:
+ case STATE_STANDBY:
+ case STATE_AWAKE:
+ retval = rt2500pci_set_state(rt2x00dev, state);
+ break;
+ default:
+ retval = -ENOTSUPP;
+ break;
+ }
+
+ return retval;
+}
+
+/*
+ * TX descriptor initialization
+ */
+static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
+ struct data_entry *entry, struct data_desc *txd,
+ struct data_entry_desc *desc, struct ieee80211_hdr *ieee80211hdr,
+ unsigned int length, struct ieee80211_tx_control *control)
+{
+ u32 word;
+
+ /*
+ * Start writing the descriptor words.
+ */
+ rt2x00_desc_read(txd, 2, &word);
+ rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
+ rt2x00_set_field32(&word, TXD_W2_AIFS, entry->ring->tx_params.aifs);
+ rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->ring->tx_params.cw_min);
+ rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->ring->tx_params.cw_max);
+ rt2x00_desc_write(txd, 2, word);
+
+ rt2x00_desc_read(txd, 3, &word);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
+ rt2x00_desc_write(txd, 3, word);
+
+ rt2x00_desc_read(txd, 10, &word);
+ rt2x00_set_field32(&word, TXD_W10_RTS,
+ test_bit(ENTRY_TXD_RTS_FRAME, &entry->flags));
+ rt2x00_desc_write(txd, 10, word);
+
+ rt2x00_desc_read(txd, 0, &word);
+ rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
+ rt2x00_set_field32(&word, TXD_W0_VALID, 1);
+ rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
+ test_bit(ENTRY_TXD_MORE_FRAG, &entry->flags));
+ rt2x00_set_field32(&word, TXD_W0_ACK,
+ test_bit(ENTRY_TXD_REQ_ACK, &entry->flags));
+ rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
+ test_bit(ENTRY_TXD_REQ_TIMESTAMP, &entry->flags));
+ rt2x00_set_field32(&word, TXD_W0_OFDM,
+ test_bit(ENTRY_TXD_OFDM_RATE, &entry->flags));
+ rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
+ rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
+ rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, 0);
+ rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
+ rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
+ rt2x00_desc_write(txd, 0, word);
+}
+
+/*
+ * TX data initialization
+ */
+static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev, int queue)
+{
+ u32 reg;
+
+ if (queue == IEEE80211_TX_QUEUE_BEACON) {
+ rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
+ if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
+ rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
+ rt2x00pci_register_write(rt2x00dev, CSR14, reg);
+ }
+ return;
+ }
+
+ rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
+ if (queue == IEEE80211_TX_QUEUE_DATA0)
+ rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
+ else if (queue == IEEE80211_TX_QUEUE_DATA1)
+ rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
+ else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
+ rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
+ rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
+}
+
+/*
+ * Interrupt functions.
+ */
+static void rt2500pci_rxdone(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_ring *ring = rt2x00dev->rx;
+ struct data_entry *entry;
+ struct data_desc *rxd;
+ u32 word0;
+ u32 word2;
+ int signal;
+ int rssi;
+ int ofdm;
+ u16 size;
+
+ while (1) {
+ entry = rt2x00_get_data_entry(ring);
+ rxd = entry->priv;
+ rt2x00_desc_read(rxd, 0, &word0);
+ rt2x00_desc_read(rxd, 2, &word2);
+
+ if (rt2x00_get_field32(word0, RXD_W0_OWNER_NIC))
+ break;
+
+ /*
+ * TODO: Don't we need to keep statistics
+ * updated about events like CRC and physical errors?
+ */
+ if (rt2x00_get_field32(word0, RXD_W0_CRC) ||
+ rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
+ goto skip_entry;
+
+ /*
+ * Obtain the status about this packet.
+ */
+ size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
+ signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
+ rssi = rt2x00_get_field32(word2, RXD_W2_RSSI);
+ ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
+
+ /*
+ * Send the packet to upper layer.
+ */
+ rt2x00lib_rxdone(entry, entry->data_addr, size,
+ signal, rssi, ofdm);
+
+skip_entry:
+ if (test_bit(DEVICE_ENABLED_RADIO, &ring->rt2x00dev->flags)) {
+ rt2x00_set_field32(&word0, RXD_W0_OWNER_NIC, 1);
+ rt2x00_desc_write(rxd, 0, word0);
+ }
+
+ rt2x00_ring_index_inc(ring);
+ }
+}
+
+static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
+{
+ struct data_ring *ring = rt2x00_get_ring(rt2x00dev, queue);
+ struct data_entry *entry;
+ struct data_desc *txd;
+ u32 word;
+ int tx_status;
+ int retry;
+
+ while (!rt2x00_ring_empty(ring)) {
+ entry = rt2x00_get_data_entry_done(ring);
+ txd = entry->priv;
+ rt2x00_desc_read(txd, 0, &word);
+
+ if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+ !rt2x00_get_field32(word, TXD_W0_VALID))
+ break;
+
+ /*
+ * Obtain the status about this packet.
+ */
+ tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
+ retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
+
+ rt2x00lib_txdone(entry, tx_status, retry);
+
+ /*
+ * Make this entry available for reuse.
+ */
+ entry->flags = 0;
+ rt2x00_set_field32(&word, TXD_W0_VALID, 0);
+ rt2x00_desc_write(txd, 0, word);
+ rt2x00_ring_index_done_inc(ring);
+ }
+
+ /*
+ * If the data ring was full before the txdone handler
+ * we must make sure the packet queue in the mac80211 stack
+ * is reenabled when the txdone handler has finished.
+ */
+ entry = ring->entry;
+ if (!rt2x00_ring_full(ring))
+ ieee80211_wake_queue(rt2x00dev->hw,
+ entry->tx_status.control.queue);
+}
+
+static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
+{
+ struct rt2x00_dev *rt2x00dev = dev_instance;
+ u32 reg;
+
+ /*
+ * Get the interrupt sources & saved to local variable.
+ * Write register value back to clear pending interrupts.
+ */
+ rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
+ rt2x00pci_register_write(rt2x00dev, CSR7, reg);
+
+ if (!reg)
+ return IRQ_NONE;
+
+ if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
+ return IRQ_HANDLED;
+
+ /*
+ * Handle interrupts, walk through all bits
+ * and run the tasks, the bits are checked in order of
+ * priority.
+ */
+
+ /*
+ * 1 - Beacon timer expired interrupt.
+ */
+ if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
+ rt2x00pci_beacondone(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
+
+ /*
+ * 2 - Rx ring done interrupt.
+ */
+ if (rt2x00_get_field32(reg, CSR7_RXDONE))
+ rt2500pci_rxdone(rt2x00dev);
+
+ /*
+ * 3 - Atim ring transmit done interrupt.
+ */
+ if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
+ rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
+
+ /*
+ * 4 - Priority ring transmit done interrupt.
+ */
+ if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
+ rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
+
+ /*
+ * 5 - Tx ring transmit done interrupt.
+ */
+ if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
+ rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * Device initialization functions.
+ */
+static int rt2500pci_alloc_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ struct eeprom_93cx6 eeprom;
+ u32 reg;
+ u16 word;
+
+ /*
+ * Allocate the eeprom memory, check the eeprom width
+ * and copy the entire eeprom into this allocated memory.
+ */
+ rt2x00dev->eeprom = kzalloc(EEPROM_SIZE, GFP_KERNEL);
+ if (!rt2x00dev->eeprom)
+ return -ENOMEM;
+
+ rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
+
+ eeprom.data = rt2x00dev;
+ eeprom.register_read = rt2500pci_eepromregister_read;
+ eeprom.register_write = rt2500pci_eepromregister_write;
+ eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
+ PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
+ eeprom.reg_data_in = 0;
+ eeprom.reg_data_out = 0;
+ eeprom.reg_data_clock = 0;
+ eeprom.reg_chip_select = 0;
+
+ eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
+ EEPROM_SIZE / sizeof(u16));
+
+ /*
+ * Start validation of the data that has been read.
+ */
+ rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
+ EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
+ }
+
+ rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
+ EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
+ }
+
+ rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
+ MAX_RX_SSI);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
+ EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
+ }
+
+ return 0;
+}
+
+static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+ u16 value;
+ u16 eeprom;
+
+ /*
+ * Read EEPROM word for configuration.
+ */
+ rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
+
+ /*
+ * Identify RF chipset.
+ */
+ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
+ rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
+ rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
+
+ if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
+ !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
+ !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
+ !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
+ !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
+ !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
+ ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
+ return -ENODEV;
+ }
+
+ /*
+ * Identify default antenna configuration.
+ */
+ rt2x00dev->hw->conf.antenna_sel_tx = rt2x00_get_field16(eeprom,
+ EEPROM_ANTENNA_TX_DEFAULT);
+ rt2x00dev->hw->conf.antenna_sel_rx = rt2x00_get_field16(eeprom,
+ EEPROM_ANTENNA_RX_DEFAULT);
+
+ /*
+ * Store led mode, for correct led behaviour.
+ */
+ rt2x00dev->led_mode = rt2x00_get_field16(eeprom,
+ EEPROM_ANTENNA_LED_MODE);
+
+ /*
+ * Detect if this device has an hardware controlled radio.
+ */
+ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
+ __set_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
+
+ /*
+ * Check if the BBP tuning should be enabled.
+ */
+ rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
+
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
+ __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
+
+ /*
+ * Read the RSSI <-> dBm offset information.
+ */
+ rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
+ rt2x00dev->hw->max_rssi =
+ rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
+
+ return 0;
+}
+
+static const struct {
+ unsigned int chip;
+ u32 val[3];
+} rf_vals[] = {
+ { RF2522, { 0x00002050, 0x00000101, 0x00000000 } },
+ { RF2523, { 0x00022010, 0x000e0111, 0x00000a1b } },
+ { RF2524, { 0x00032020, 0x00000101, 0x00000a1b } },
+ { RF2525, { 0x00022020, 0x00060111, 0x00000a1b } },
+ { RF2525E, { 0x00022020, 0x00060111, 0x00000a0b } },
+ { RF5222, { 0x00000000, 0x00000101, 0x00000000 } },
+};
+
+/*
+ * RF value list for RF2522
+ * Supports: 2.4 GHz
+ */
+static const u32 rf_vals_bg_2522[] = {
+ 0x000c1fda, 0x000c1fee, 0x000c2002, 0x000c2016, 0x000c202a,
+ 0x000c203e, 0x000c2052, 0x000c2066, 0x000c207a, 0x000c208e,
+ 0x000c20a2, 0x000c20b6, 0x000c20ca, 0x000c20fa
+};
+
+/*
+ * RF value list for RF2523, RF2524 & RF2525
+ * Supports: 2.4 GHz
+ */
+static const u32 rf_vals_bg_252x[] = {
+ 0x00000c9e, 0x00000ca2, 0x00000ca6, 0x00000caa, 0x00000cae,
+ 0x00000cb2, 0x00000cb6, 0x00000cba, 0x00000cbe, 0x00000d02,
+ 0x00000d06, 0x00000d0a, 0x00000d0e, 0x00000d1a
+};
+
+/*
+ * RF value list for RF2525E & RF5222
+ * Supports: 2.4 GHz
+ */
+static const u32 rf_vals_bg_5x[] = {
+ 0x00001136, 0x0000113a, 0x0000113e, 0x00001182, 0x00001186,
+ 0x0000118a, 0x0000118e, 0x00001192, 0x00001196, 0x0000119a,
+ 0x0000119e, 0x000011a2, 0x000011a6, 0x000011ae
+};
+
+/*
+ * RF value list for RF5222 (supplement to rf_vals_bg_5x)
+ * Supports: 5.2 GHz
+ */
+static const u32 rf_vals_a_5x[] = {
+ 0x00018896, 0x0001889a, 0x0001889e, 0x000188a2, 0x000188a6,
+ 0x000188aa, 0x000188ae, 0x000188b2, 0x00008802, 0x00008806,
+ 0x0000880a, 0x0000880e, 0x00008812, 0x00008816, 0x0000881a,
+ 0x0000881e, 0x00008822, 0x00008826, 0x0000882a, 0x000090a6,
+ 0x000090ae, 0x000090b6, 0x000090be
+};
+
+static void rt2500pci_init_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+ struct hw_mode_spec *spec = &rt2x00dev->spec;
+ u8 *txpower;
+ unsigned int i;
+
+ /*
+ * Initialize all hw fields.
+ */
+ rt2x00dev->hw->flags = IEEE80211_HW_HOST_GEN_BEACON |
+ IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
+ IEEE80211_HW_WEP_INCLUDE_IV |
+ IEEE80211_HW_DATA_NULLFUNC_ACK |
+ IEEE80211_HW_NO_TKIP_WMM_HWACCEL |
+ IEEE80211_HW_MONITOR_DURING_OPER;
+ rt2x00dev->hw->extra_tx_headroom = 0;
+ rt2x00dev->hw->max_rssi = MAX_RX_SSI;
+ rt2x00dev->hw->max_noise = MAX_RX_NOISE;
+ rt2x00dev->hw->queues = 2;
+
+ /*
+ * This device supports ATIM
+ */
+ __set_bit(DEVICE_SUPPORT_ATIM, &rt2x00dev->flags);
+
+ /*
+ * Set device specific, but channel independent RF values.
+ */
+ for (i = 0; i < ARRAY_SIZE(rf_vals); i++) {
+ if (rt2x00_rf(&rt2x00dev->chip, rf_vals[i].chip)) {
+ rt2x00dev->rf1 = rf_vals[i].val[0];
+ rt2x00dev->rf3 = rf_vals[i].val[1];
+ rt2x00dev->rf4 = rf_vals[i].val[2];
+ }
+ }
+
+ /*
+ * Convert tx_power array in eeprom.
+ */
+ txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
+ for (i = 0; i < 14; i++)
+ txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
+
+ /*
+ * Initialize hw_mode information.
+ */
+ spec->mac_addr = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+ spec->num_modes = 2;
+ spec->num_rates = 12;
+ spec->num_channels = 14;
+ spec->tx_power_a = NULL;
+ spec->tx_power_bg = txpower;
+ spec->tx_power_default = DEFAULT_TXPOWER;
+ spec->chan_val_a = NULL;
+
+ if (rt2x00_rf(&rt2x00dev->chip, RF2522))
+ spec->chan_val_bg = rf_vals_bg_2522;
+ else if (rt2x00_rf(&rt2x00dev->chip, RF2523) ||
+ rt2x00_rf(&rt2x00dev->chip, RF2524) ||
+ rt2x00_rf(&rt2x00dev->chip, RF2525))
+ spec->chan_val_bg = rf_vals_bg_252x;
+ else if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
+ rt2x00_rf(&rt2x00dev->chip, RF5222))
+ spec->chan_val_bg = rf_vals_bg_5x;
+
+ if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
+ spec->num_modes = 3;
+ spec->num_channels += 23;
+ spec->chan_val_a = rf_vals_a_5x;
+ }
+}
+
+static int rt2500pci_init_hw(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+
+ /*
+ * Allocate eeprom data.
+ */
+ retval = rt2500pci_alloc_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ retval = rt2500pci_init_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * Initialize hw specifications.
+ */
+ rt2500pci_init_hw_mode(rt2x00dev);
+
+ return 0;
+}
+
+/*
+ * IEEE80211 stack callback functions.
+ */
+static int rt2500pci_get_stats(struct ieee80211_hw *hw,
+ struct ieee80211_low_level_stats *stats)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ u32 reg;
+
+ /*
+ * Update FCS error count from register.
+ * The dot11ACKFailureCount, dot11RTSFailureCount and
+ * dot11RTSSuccessCount are updated in interrupt time.
+ */
+ rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
+ rt2x00dev->low_level_stats.dot11FCSErrorCount +=
+ rt2x00_get_field32(reg, CNT0_FCS_ERROR);
+
+ memcpy(stats, &rt2x00dev->low_level_stats, sizeof(*stats));
+
+ return 0;
+}
+
+static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
+ u32 short_retry, u32 long_retry)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ u32 reg;
+
+ rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
+ rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
+ rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
+ rt2x00pci_register_write(rt2x00dev, CSR11, reg);
+
+ return 0;
+}
+
+static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ u64 tsf;
+ u32 reg;
+
+ rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
+ tsf = (u64)rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
+ rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
+ tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
+
+ return tsf;
+}
+
+static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ rt2x00pci_register_write(rt2x00dev, CSR16, 0);
+ rt2x00pci_register_write(rt2x00dev, CSR17, 0);
+}
+
+static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ u32 reg;
+
+ rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
+ return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
+}
+
+static const struct ieee80211_ops rt2500pci_mac80211_ops = {
+ .tx = rt2x00lib_tx,
+ .reset = rt2x00lib_reset,
+ .open = rt2x00lib_open,
+ .stop = rt2x00lib_stop,
+ .add_interface = rt2x00lib_add_interface,
+ .remove_interface = rt2x00lib_remove_interface,
+ .config = rt2x00lib_config,
+ .config_interface = rt2x00lib_config_interface,
+ .set_multicast_list = rt2x00lib_set_multicast_list,
+ .get_stats = rt2500pci_get_stats,
+ .set_retry_limit = rt2500pci_set_retry_limit,
+ .conf_tx = rt2x00lib_conf_tx,
+ .get_tx_stats = rt2x00lib_get_tx_stats,
+ .get_tsf = rt2500pci_get_tsf,
+ .reset_tsf = rt2500pci_reset_tsf,
+ .beacon_update = rt2x00pci_beacon_update,
+ .tx_last_beacon = rt2500pci_tx_last_beacon,
+};
+
+static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
+ .irq_handler = rt2500pci_interrupt,
+ .init_hw = rt2500pci_init_hw,
+ .initialize = rt2x00pci_initialize,
+ .uninitialize = rt2x00pci_uninitialize,
+ .set_device_state = rt2500pci_set_device_state,
+#ifdef CONFIG_RT2500PCI_RFKILL
+ .rfkill_poll = rt2500pci_rfkill_poll,
+#endif /* CONFIG_RT2500PCI_RFKILL */
+ .link_tuner = rt2500pci_link_tuner,
+ .write_tx_desc = rt2500pci_write_tx_desc,
+ .write_tx_data = rt2x00pci_write_tx_data,
+ .kick_tx_queue = rt2500pci_kick_tx_queue,
+ .config_type = rt2500pci_config_type,
+ .config_phymode = rt2500pci_config_phymode,
+ .config_channel = rt2500pci_config_channel,
+ .config_mac_addr = rt2500pci_config_mac_addr,
+ .config_bssid = rt2500pci_config_bssid,
+ .config_promisc = rt2500pci_config_promisc,
+ .config_txpower = rt2500pci_config_txpower,
+ .config_antenna = rt2500pci_config_antenna,
+ .config_duration = rt2500pci_config_duration,
+};
+
+static const struct rt2x00_ops rt2500pci_ops = {
+ .name = DRV_NAME,
+ .rxd_size = RXD_DESC_SIZE,
+ .txd_size = TXD_DESC_SIZE,
+ .lib = &rt2500pci_rt2x00_ops,
+ .hw = &rt2500pci_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+ .debugfs = &rt2500pci_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * RT2500pci module information.
+ */
+static struct pci_device_id rt2500pci_device_table[] = {
+ { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
+ { 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
+MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
+MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
+MODULE_LICENSE("GPL");
+
+static struct pci_driver rt2500pci_driver = {
+ .name = DRV_NAME,
+ .id_table = rt2500pci_device_table,
+ .probe = rt2x00pci_probe,
+ .remove = __devexit_p(rt2x00pci_remove),
+#ifdef CONFIG_PM
+ .suspend = rt2x00pci_suspend,
+ .resume = rt2x00pci_resume,
+#endif /* CONFIG_PM */
+};
+
+static int __init rt2500pci_init(void)
+{
+ printk(KERN_INFO "Loading module: %s - %s by %s.\n",
+ DRV_NAME, DRV_VERSION, DRV_PROJECT);
+ return pci_register_driver(&rt2500pci_driver);
+}
+
+static void __exit rt2500pci_exit(void)
+{
+ printk(KERN_INFO "Unloading module: %s.\n", DRV_NAME);
+ pci_unregister_driver(&rt2500pci_driver);
+}
+
+module_init(rt2500pci_init);
+module_exit(rt2500pci_exit);