1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2011 Gareth McMullin <gareth@blacksphere.co.nz>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <libopencm3/cm3/common.h>
#include <libopencm3/stm32/tools.h>
#include <libopencm3/stm32/otg_fs.h>
#include <libopencm3/stm32/otg_hs.h>
#include <libopencm3/usb/usbd.h>
#include "usb_private.h"
#include "usb_fx07_common.h"
/* The FS core and the HS core have the same register layout.
* As the code can be used on both cores, the registers offset is modified
* according to the selected cores base address. */
#define dev_base_address (usbd_dev->driver->base_address)
#define REBASE(x) MMIO32((x) + (dev_base_address))
#define REBASE_FIFO(x) (&MMIO32((dev_base_address) + (OTG_FIFO(x))))
void stm32fx07_set_address(usbd_device *usbd_dev, uint8_t addr)
{
REBASE(OTG_DCFG) = (REBASE(OTG_DCFG) & ~OTG_FS_DCFG_DAD) | (addr << 4);
}
void stm32fx07_ep_setup(usbd_device *usbd_dev, uint8_t addr, uint8_t type,
uint16_t max_size,
void (*callback) (usbd_device *usbd_dev, uint8_t ep))
{
/*
* Configure endpoint address and type. Allocate FIFO memory for
* endpoint. Install callback funciton.
*/
uint8_t dir = addr & 0x80;
addr &= 0x7f;
if (addr == 0) { /* For the default control endpoint */
/* Configure IN part. */
if (max_size >= 64) {
REBASE(OTG_DIEPCTL0) = OTG_FS_DIEPCTL0_MPSIZ_64;
} else if (max_size >= 32) {
REBASE(OTG_DIEPCTL0) = OTG_FS_DIEPCTL0_MPSIZ_32;
} else if (max_size >= 16) {
REBASE(OTG_DIEPCTL0) = OTG_FS_DIEPCTL0_MPSIZ_16;
} else {
REBASE(OTG_DIEPCTL0) = OTG_FS_DIEPCTL0_MPSIZ_8;
}
REBASE(OTG_DIEPTSIZ0) =
(max_size & OTG_FS_DIEPSIZ0_XFRSIZ_MASK);
REBASE(OTG_DIEPCTL0) |=
OTG_FS_DIEPCTL0_EPENA | OTG_FS_DIEPCTL0_SNAK;
/* Configure OUT part. */
usbd_dev->doeptsiz[0] = OTG_FS_DIEPSIZ0_STUPCNT_1 |
OTG_FS_DIEPSIZ0_PKTCNT |
(max_size & OTG_FS_DIEPSIZ0_XFRSIZ_MASK);
REBASE(OTG_DOEPTSIZ(0)) = usbd_dev->doeptsiz[0];
REBASE(OTG_DOEPCTL(0)) |=
OTG_FS_DOEPCTL0_EPENA | OTG_FS_DIEPCTL0_SNAK;
REBASE(OTG_GNPTXFSIZ) = ((max_size / 4) << 16) |
usbd_dev->driver->rx_fifo_size;
usbd_dev->fifo_mem_top += max_size / 4;
usbd_dev->fifo_mem_top_ep0 = usbd_dev->fifo_mem_top;
return;
}
if (dir) {
REBASE(OTG_DIEPTXF(addr)) = ((max_size / 4) << 16) |
usbd_dev->fifo_mem_top;
usbd_dev->fifo_mem_top += max_size / 4;
REBASE(OTG_DIEPTSIZ(addr)) =
(max_size & OTG_FS_DIEPSIZ0_XFRSIZ_MASK);
REBASE(OTG_DIEPCTL(addr)) |=
OTG_FS_DIEPCTL0_EPENA | OTG_FS_DIEPCTL0_SNAK | (type << 18)
| OTG_FS_DIEPCTL0_USBAEP | OTG_FS_DIEPCTLX_SD0PID
| (addr << 22) | max_size;
if (callback) {
usbd_dev->user_callback_ctr[addr][USB_TRANSACTION_IN] =
(void *)callback;
}
}
if (!dir) {
usbd_dev->doeptsiz[addr] = OTG_FS_DIEPSIZ0_PKTCNT |
(max_size & OTG_FS_DIEPSIZ0_XFRSIZ_MASK);
REBASE(OTG_DOEPTSIZ(addr)) = usbd_dev->doeptsiz[addr];
REBASE(OTG_DOEPCTL(addr)) |= OTG_FS_DOEPCTL0_EPENA |
OTG_FS_DOEPCTL0_USBAEP | OTG_FS_DIEPCTL0_CNAK |
OTG_FS_DOEPCTLX_SD0PID | (type << 18) | max_size;
if (callback) {
usbd_dev->user_callback_ctr[addr][USB_TRANSACTION_OUT] =
(void *)callback;
}
}
}
void stm32fx07_endpoints_reset(usbd_device *usbd_dev)
{
/* The core resets the endpoints automatically on reset. */
usbd_dev->fifo_mem_top = usbd_dev->fifo_mem_top_ep0;
}
void stm32fx07_ep_stall_set(usbd_device *usbd_dev, uint8_t addr, uint8_t stall)
{
if (addr == 0) {
if (stall) {
REBASE(OTG_DIEPCTL(addr)) |= OTG_FS_DIEPCTL0_STALL;
} else {
REBASE(OTG_DIEPCTL(addr)) &= ~OTG_FS_DIEPCTL0_STALL;
}
}
if (addr & 0x80) {
addr &= 0x7F;
if (stall) {
REBASE(OTG_DIEPCTL(addr)) |= OTG_FS_DIEPCTL0_STALL;
} else {
REBASE(OTG_DIEPCTL(addr)) &= ~OTG_FS_DIEPCTL0_STALL;
REBASE(OTG_DIEPCTL(addr)) |= OTG_FS_DIEPCTLX_SD0PID;
}
} else {
if (stall) {
REBASE(OTG_DOEPCTL(addr)) |= OTG_FS_DOEPCTL0_STALL;
} else {
REBASE(OTG_DOEPCTL(addr)) &= ~OTG_FS_DOEPCTL0_STALL;
REBASE(OTG_DOEPCTL(addr)) |= OTG_FS_DOEPCTLX_SD0PID;
}
}
}
uint8_t stm32fx07_ep_stall_get(usbd_device *usbd_dev, uint8_t addr)
{
/* Return non-zero if STALL set. */
if (addr & 0x80) {
return (REBASE(OTG_DIEPCTL(addr & 0x7f)) &
OTG_FS_DIEPCTL0_STALL) ? 1 : 0;
} else {
return (REBASE(OTG_DOEPCTL(addr)) &
OTG_FS_DOEPCTL0_STALL) ? 1 : 0;
}
}
void stm32fx07_ep_nak_set(usbd_device *usbd_dev, uint8_t addr, uint8_t nak)
{
/* It does not make sence to force NAK on IN endpoints. */
if (addr & 0x80) {
return;
}
usbd_dev->force_nak[addr] = nak;
if (nak) {
REBASE(OTG_DOEPCTL(addr)) |= OTG_FS_DOEPCTL0_SNAK;
} else {
REBASE(OTG_DOEPCTL(addr)) |= OTG_FS_DOEPCTL0_CNAK;
}
}
uint16_t stm32fx07_ep_write_packet(usbd_device *usbd_dev, uint8_t addr,
const void *buf, uint16_t len)
{
const uint32_t *buf32 = buf;
int i;
addr &= 0x7F;
/* Return if endpoint is already enabled. */
if (REBASE(OTG_DIEPTSIZ(addr)) & OTG_FS_DIEPSIZ0_PKTCNT) {
return 0;
}
/* Enable endpoint for transmission. */
REBASE(OTG_DIEPTSIZ(addr)) = OTG_FS_DIEPSIZ0_PKTCNT | len;
REBASE(OTG_DIEPCTL(addr)) |= OTG_FS_DIEPCTL0_EPENA |
OTG_FS_DIEPCTL0_CNAK;
volatile uint32_t *fifo = REBASE_FIFO(addr);
/* Copy buffer to endpoint FIFO, note - memcpy does not work */
for (i = len; i > 0; i -= 4) {
*fifo++ = *buf32++;
}
return len;
}
uint16_t stm32fx07_ep_read_packet(usbd_device *usbd_dev, uint8_t addr,
void *buf, uint16_t len)
{
int i;
uint32_t *buf32 = buf;
uint32_t extra;
len = MIN(len, usbd_dev->rxbcnt);
usbd_dev->rxbcnt -= len;
volatile uint32_t *fifo = REBASE_FIFO(addr);
for (i = len; i >= 4; i -= 4) {
*buf32++ = *fifo++;
}
if (i) {
extra = *fifo++;
memcpy(buf32, &extra, i);
}
REBASE(OTG_DOEPTSIZ(addr)) = usbd_dev->doeptsiz[addr];
REBASE(OTG_DOEPCTL(addr)) |= OTG_FS_DOEPCTL0_EPENA |
(usbd_dev->force_nak[addr] ?
OTG_FS_DOEPCTL0_SNAK : OTG_FS_DOEPCTL0_CNAK);
return len;
}
void stm32fx07_poll(usbd_device *usbd_dev)
{
/* Read interrupt status register. */
uint32_t intsts = REBASE(OTG_GINTSTS);
int i;
if (intsts & OTG_FS_GINTSTS_ENUMDNE) {
/* Handle USB RESET condition. */
REBASE(OTG_GINTSTS) = OTG_FS_GINTSTS_ENUMDNE;
usbd_dev->fifo_mem_top = usbd_dev->driver->rx_fifo_size;
_usbd_reset(usbd_dev);
return;
}
/* Note: RX and TX handled differently in this device. */
if (intsts & OTG_FS_GINTSTS_RXFLVL) {
/* Receive FIFO non-empty. */
uint32_t rxstsp = REBASE(OTG_GRXSTSP);
uint32_t pktsts = rxstsp & OTG_FS_GRXSTSP_PKTSTS_MASK;
if ((pktsts != OTG_FS_GRXSTSP_PKTSTS_OUT) &&
(pktsts != OTG_FS_GRXSTSP_PKTSTS_SETUP)) {
return;
}
uint8_t ep = rxstsp & OTG_FS_GRXSTSP_EPNUM_MASK;
uint8_t type;
if (pktsts == OTG_FS_GRXSTSP_PKTSTS_SETUP) {
type = USB_TRANSACTION_SETUP;
} else {
type = USB_TRANSACTION_OUT;
}
/* Save packet size for stm32f107_ep_read_packet(). */
usbd_dev->rxbcnt = (rxstsp & OTG_FS_GRXSTSP_BCNT_MASK) >> 4;
/*
* FIXME: Why is a delay needed here?
* This appears to fix a problem where the first 4 bytes
* of the DATA OUT stage of a control transaction are lost.
*/
for (i = 0; i < 1000; i++) {
__asm__("nop");
}
if (usbd_dev->user_callback_ctr[ep][type]) {
usbd_dev->user_callback_ctr[ep][type] (usbd_dev, ep);
}
/* Discard unread packet data. */
for (i = 0; i < usbd_dev->rxbcnt; i += 4) {
(void)*REBASE_FIFO(ep);
}
usbd_dev->rxbcnt = 0;
}
/*
* There is no global interrupt flag for transmit complete.
* The XFRC bit must be checked in each OTG_FS_DIEPINT(x).
*/
for (i = 0; i < 4; i++) { /* Iterate over endpoints. */
if (REBASE(OTG_DIEPINT(i)) & OTG_FS_DIEPINTX_XFRC) {
/* Transfer complete. */
if (usbd_dev->user_callback_ctr[i]
[USB_TRANSACTION_IN]) {
usbd_dev->user_callback_ctr[i]
[USB_TRANSACTION_IN](usbd_dev, i);
}
REBASE(OTG_DIEPINT(i)) = OTG_FS_DIEPINTX_XFRC;
}
}
if (intsts & OTG_FS_GINTSTS_USBSUSP) {
if (usbd_dev->user_callback_suspend) {
usbd_dev->user_callback_suspend();
}
REBASE(OTG_GINTSTS) = OTG_FS_GINTSTS_USBSUSP;
}
if (intsts & OTG_FS_GINTSTS_WKUPINT) {
if (usbd_dev->user_callback_resume) {
usbd_dev->user_callback_resume();
}
REBASE(OTG_GINTSTS) = OTG_FS_GINTSTS_WKUPINT;
}
if (intsts & OTG_FS_GINTSTS_SOF) {
if (usbd_dev->user_callback_sof) {
usbd_dev->user_callback_sof();
}
REBASE(OTG_GINTSTS) = OTG_FS_GINTSTS_SOF;
}
}
void stm32fx07_disconnect(usbd_device *usbd_dev, bool disconnected)
{
if (disconnected) {
REBASE(OTG_DCTL) |= OTG_FS_DCTL_SDIS;
} else {
REBASE(OTG_DCTL) &= ~OTG_FS_DCTL_SDIS;
}
}
|