summaryrefslogtreecommitdiffstats
path: root/libopencm3/lib/stm32/f1/adc.c
blob: e8be6f974388ccfc784bac2135239d0b4819ad6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/** @defgroup adc_file ADC

@ingroup STM32F1xx

@brief <b>libopencm3 STM32F1xx Analog to Digital Converters</b>

@version 1.0.0

@author @htmlonly &copy; @endhtmlonly 2009
Edward Cheeseman <evbuilder@users.sourceforge.net>
@author @htmlonly &copy; @endhtmlonly 2012
Ken Sarkies <ksarkies@internode.on.net>

@date 18 August 2012

This library supports the A/D Converter Control System in the STM32F1xx series
of ARM Cortex Microcontrollers by ST Microelectronics.

Devices can have up to three A/D converters each with their own set of
registers.  However all the A/D converters share a common clock which is
prescaled from the APB2 clock by default by a minimum factor of 2 to a maximum
of 8.

Each A/D converter has up to 18 channels:
@li On ADC1 the analog channels 16 and 17 are internally connected to the
temperature
sensor and V<sub>REFINT</sub>, respectively.
@li On ADC2 the analog channels 16 and 17 are internally connected to
V<sub>SS</sub>.
@li On ADC3 the analog channels 9, 14, 15, 16 and 17 are internally connected
to V<sub>SS</sub>.

The conversions can occur as a one-off conversion whereby the process stops
once conversion is complete. The conversions can also be continuous wherein a
new conversion starts immediately the previous conversion has ended.

Conversion can occur as a single channel conversion or a scan of a group of
channels in either continuous or one-off mode. If more than one channel is
converted in a scan group, DMA must be used to transfer the data as there is
only one result register available. An interrupt can be set to occur at the end
of conversion, which occurs after all channels have been scanned.

A discontinuous mode allows a subgroup of group of a channels to be converted
in bursts of a given length.

Injected conversions allow a second group of channels to be converted
separately from the regular group. An interrupt can be set to occur at the end
of conversion, which occurs after all channels have been scanned.

@section adc_api_ex Basic ADC Handling API.

Example 1: Simple single channel conversion polled. Enable the peripheral clock
and ADC, reset ADC and set the prescaler divider. Set dual mode to independent
(default). Enable triggering for a software trigger.

@code
	rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_ADC1EN);
	adc_off(ADC1);
	rcc_peripheral_reset(&RCC_APB2RSTR, RCC_APB2RSTR_ADC1RST);
	rcc_peripheral_clear_reset(&RCC_APB2RSTR, RCC_APB2RSTR_ADC1RST);
	rcc_set_adcpre(RCC_CFGR_ADCPRE_PCLK2_DIV2);
	adc_set_dual_mode(ADC_CR1_DUALMOD_IND);
	adc_disable_scan_mode(ADC1);
	adc_set_single_conversion_mode(ADC1);
	adc_set_sample_time(ADC1, ADC_CHANNEL0, ADC_SMPR1_SMP_1DOT5CYC);
	adc_set_single_channel(ADC1, ADC_CHANNEL0);
	adc_enable_trigger(ADC1, ADC_CR2_EXTSEL_SWSTART);
	adc_power_on(ADC1);
	adc_reset_calibration(ADC1);
	adc_calibration(ADC1);
	adc_start_conversion_regular(ADC1);
	while (! adc_eoc(ADC1));
	reg16 = adc_read_regular(ADC1);
@endcode

LGPL License Terms @ref lgpl_license
 */
/*
 * This file is part of the libopencm3 project.
 *
 * Copyright (C) 2009 Edward Cheeseman <evbuilder@users.sourceforge.net>
 *
 * This library is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * Basic ADC handling API.
 *
 * Examples:
 *  rcc_peripheral_enable_clock(&RCC_APB2ENR, ADC1EN);
 *  rcc_peripheral_disable_clock(&RCC_APB2ENR, ADC1EN);
 *  rcc_peripheral_reset(&RCC_APB2RSTR, ADC1RST);
 *  rcc_peripheral_clear_reset(&RCC_APB2RSTR, ADC1RST);
 *
 *  rcc_set_adc_clk(ADC_PRE_PLCK2_DIV2);
 *  adc_set_dual_mode(ADC1, TODO);
 *  reg16 = adc_read(ADC1, ADC_CH_0);
 */

/**@{*/

#include <libopencm3/stm32/adc.h>

/*---------------------------------------------------------------------------*/
/** @brief ADC Power On

If the ADC is in power-down mode then it is powered up. The application needs
to wait a time of about 3 microseconds for stabilization before using the ADC.
If the ADC is already on this function call has no effect.
 * NOTE Common with F37x

@param[in] adc Unsigned int32. ADC block register address base @ref adc_reg_base
*/

void adc_power_on(uint32_t adc)
{
	if (!(ADC_CR2(adc) & ADC_CR2_ADON)) {
		ADC_CR2(adc) |= ADC_CR2_ADON;
	}
}

/*---------------------------------------------------------------------------*/
/** @brief ADC Start a Conversion Without Trigger

This initiates a conversion by software without a trigger. The ADC needs to be
powered on before this is called, otherwise this function has no effect.

Note that this is not available in other STM32F families. To ensure code
compatibility, enable triggering and use a software trigger source @see
adc_start_conversion_regular.

@param[in] adc Unsigned int32. ADC block register address base @ref adc_reg_base
*/

void adc_start_conversion_direct(uint32_t adc)
{
	if (ADC_CR2(adc) & ADC_CR2_ADON) {
		ADC_CR2(adc) |= ADC_CR2_ADON;
	}
}

/*---------------------------------------------------------------------------*/
/** @brief ADC Set Dual A/D Mode

The dual mode uses ADC1 as master and ADC2 in a slave arrangement. This setting
is applied to ADC1 only. Start of conversion when triggered can cause
simultaneous conversion with ADC2, or alternate conversion. Regular and
injected conversions can be configured, each one being separately simultaneous
or alternate.

Fast interleaved mode starts ADC1 immediately on trigger, and ADC2 seven clock
cycles later.

Slow interleaved mode starts ADC1 immediately on trigger, and ADC2 fourteen
clock cycles later, followed by ADC1 fourteen cycles later again. This can only
be used on a single channel.

Alternate trigger mode must occur on an injected channel group, and alternates
between the ADCs on each trigger.

Note that sampling must not overlap between ADCs on the same channel.

Dual A/D converter modes possible:

@li IND: Independent mode.
@li CRSISM: Combined regular simultaneous + injected simultaneous mode.
@li CRSATM: Combined regular simultaneous + alternate trigger mode.
@li CISFIM: Combined injected simultaneous + fast interleaved mode.
@li CISSIM: Combined injected simultaneous + slow interleaved mode.
@li ISM: Injected simultaneous mode only.
@li RSM: Regular simultaneous mode only.
@li FIM: Fast interleaved mode only.
@li SIM: Slow interleaved mode only.
@li ATM: Alternate trigger mode only.

@param[in] mode Unsigned int32. Dual mode selection from @ref adc_cr1_dualmod
*/

void adc_set_dual_mode(uint32_t mode)
{
	ADC1_CR1 |= mode;
}



/*---------------------------------------------------------------------------*/
/** @brief ADC Enable The Temperature Sensor

This enables both the sensor and the reference voltage measurements on channels
16 and 17.

@param[in] adc Unsigned int32. ADC block register address base @ref
adc_reg_base.
*/

void adc_enable_temperature_sensor(uint32_t adc)
{
	ADC_CR2(adc) |= ADC_CR2_TSVREFE;
}

/*---------------------------------------------------------------------------*/
/** @brief ADC Disable The Temperature Sensor

Disabling this will reduce power consumption from the sensor and the reference
voltage measurements.

@param[in] adc Unsigned int32. ADC block register address base @ref
adc_reg_base.
*/

void adc_disable_temperature_sensor(uint32_t adc)
{
	ADC_CR2(adc) &= ~ADC_CR2_TSVREFE;
}


/*---------------------------------------------------------------------------*/
/** @brief ADC Enable an External Trigger for Regular Channels

This enables an external trigger for set of defined regular channels.

For ADC1 and ADC2
@li Timer 1 CC1 event
@li Timer 1 CC2 event
@li Timer 1 CC3 event
@li Timer 2 CC2 event
@li Timer 3 TRGO event
@li Timer 4 CC4 event
@li EXTI (TIM8_TRGO is also possible on some devices, see datasheet)
@li Software Start

For ADC3
@li Timer 3 CC1 event
@li Timer 2 CC3 event
@li Timer 1 CC3 event
@li Timer 8 CC1 event
@li Timer 8 TRGO event
@li Timer 5 CC1 event
@li Timer 5 CC3 event
@li Software Start

@param[in] adc Unsigned int32. ADC block register address base @ref
adc_reg_base.
@param[in] trigger Unsigned int8. Trigger identifier @ref adc_trigger_regular_12
for ADC1 and ADC2, or @ref adc_trigger_regular_3 for ADC3.
*/

void adc_enable_external_trigger_regular(uint32_t adc, uint32_t trigger)
{
	uint32_t reg32;

	reg32 = (ADC_CR2(adc) & ~(ADC_CR2_EXTSEL_MASK));
	reg32 |= (trigger);
	ADC_CR2(adc) = reg32;
	ADC_CR2(adc) |= ADC_CR2_EXTTRIG;
}

/*---------------------------------------------------------------------------*/
/** @brief ADC Disable an External Trigger for Regular Channels

@param[in] adc Unsigned int32. ADC block register address base @ref
adc_reg_base.
*/

void adc_disable_external_trigger_regular(uint32_t adc)
{
	ADC_CR2(adc) &= ~ADC_CR2_EXTTRIG;
}

/*---------------------------------------------------------------------------*/
/** @brief ADC Enable an External Trigger for Injected Channels

This enables an external trigger for set of defined injected channels.

For ADC1 and ADC2
@li Timer 1 TRGO event
@li Timer 1 CC4 event
@li Timer 2 TRGO event
@li Timer 2 CC1 event
@li Timer 3 CC4 event
@li Timer 4 TRGO event
@li EXTI (TIM8 CC4 is also possible on some devices, see datasheet)
@li Software Start

For ADC3
@li Timer 1 TRGO event
@li Timer 1 CC4 event
@li Timer 4 CC3 event
@li Timer 8 CC2 event
@li Timer 8 CC4 event
@li Timer 5 TRGO event
@li Timer 5 CC4 event
@li Software Start

@param[in] adc Unsigned int32. ADC block register address base @ref
adc_reg_base.
@param[in] trigger Unsigned int8. Trigger identifier @ref
adc_trigger_injected_12 for ADC1 and ADC2, or @ref adc_trigger_injected_3 for
ADC3.
*/
void adc_enable_external_trigger_injected(uint32_t adc, uint32_t trigger)
{
	uint32_t reg32;

	reg32 = (ADC_CR2(adc) & ~(ADC_CR2_JEXTSEL_MASK)); /* Clear bits [12:14]
							   */
	reg32 |= (trigger);
	ADC_CR2(adc) = reg32;
	ADC_CR2(adc) |= ADC_CR2_JEXTTRIG;
}

/*---------------------------------------------------------------------------*/
/** @brief ADC Disable an External Trigger for Injected Channels

@param[in] adc Unsigned int32. ADC block register address base @ref
adc_reg_base.
*/

void adc_disable_external_trigger_injected(uint32_t adc)
{
	ADC_CR2(adc) &= ~ADC_CR2_JEXTTRIG;
}

/*---------------------------------------------------------------------------*/
/** @brief ADC Initialize Calibration Registers

This resets the calibration registers. It is not clear if this is required to be
done before every calibration operation.

@param[in] adc Unsigned int32. ADC block register address base @ref
adc_reg_base.
*/

void adc_reset_calibration(uint32_t adc)
{
	ADC_CR2(adc) |= ADC_CR2_RSTCAL;
	while (ADC_CR2(adc) & ADC_CR2_RSTCAL);
}

/*---------------------------------------------------------------------------*/
/** @brief ADC Calibration

The calibration data for the ADC is recomputed. The hardware clears the
calibration status flag when calibration is complete. This function does not
return until this happens and the ADC is ready for use.

The ADC must have been powered down for at least 2 ADC clock cycles, then
powered on.  before calibration starts

@param[in] adc Unsigned int32. ADC block register address base @ref
adc_reg_base.
*/

void adc_calibration(uint32_t adc)
{
	ADC_CR2(adc) |= ADC_CR2_CAL;
	while (ADC_CR2(adc) & ADC_CR2_CAL);
}

/*---------------------------------------------------------------------------*/
/** @brief ADC Power On

If the ADC is in power-down mode then it is powered up. The application needs
to wait a time of about 3 microseconds for stabilization before using the ADC.
If the ADC is already on this function call will initiate a conversion.

@deprecated to be removed in a later release

@param[in] adc Unsigned int32. ADC block register address base @ref
adc_reg_base.
*/

void adc_on(uint32_t adc)
{
	ADC_CR2(adc) |= ADC_CR2_ADON;
}


/*---------------------------------------------------------------------------*/
/** @brief ADC Set the Sample Time for a Single Channel

The sampling time can be selected in ADC clock cycles from 1.5 to 239.5.

@param[in] adc Unsigned int32. ADC block register address base @ref
adc_reg_base.
@param[in] channel Unsigned int8. ADC Channel integer 0..18 or from @ref
adc_channel.
@param[in] time Unsigned int8. Sampling time selection from @ref adc_sample_rg.
 *  * NOTE Common with f2 and f37x and f4
*/

void adc_set_sample_time(uint32_t adc, uint8_t channel, uint8_t time)
{
	uint32_t reg32;

	if (channel < 10) {
		reg32 = ADC_SMPR2(adc);
		reg32 &= ~(0x7 << (channel * 3));
		reg32 |= (time << (channel * 3));
		ADC_SMPR2(adc) = reg32;
	} else {
		reg32 = ADC_SMPR1(adc);
		reg32 &= ~(0x7 << ((channel - 10) * 3));
		reg32 |= (time << ((channel - 10) * 3));
		ADC_SMPR1(adc) = reg32;
	}
}

/*---------------------------------------------------------------------------*/
/** @brief ADC Set the Sample Time for All Channels

The sampling time can be selected in ADC clock cycles from 1.5 to 239.5, same
for all channels.

@param[in] adc Unsigned int32. ADC block register address base @ref
adc_reg_base.
@param[in] time Unsigned int8. Sampling time selection from @ref adc_sample_rg.
 *  * NOTE Common with f2 and f37x and f4
*/

void adc_set_sample_time_on_all_channels(uint32_t adc, uint8_t time)
{
	uint8_t i;
	uint32_t reg32 = 0;

	for (i = 0; i <= 9; i++) {
		reg32 |= (time << (i * 3));
	}
	ADC_SMPR2(adc) = reg32;

	for (i = 10; i <= 17; i++) {
		reg32 |= (time << ((i - 10) * 3));
	}
	ADC_SMPR1(adc) = reg32;
}


/*---------------------------------------------------------------------------*/

/**@}*/