summaryrefslogtreecommitdiffstats
path: root/libopencm3/lib/lm4f/usb_lm4f.c
diff options
context:
space:
mode:
Diffstat (limited to 'libopencm3/lib/lm4f/usb_lm4f.c')
-rw-r--r--libopencm3/lib/lm4f/usb_lm4f.c651
1 files changed, 651 insertions, 0 deletions
diff --git a/libopencm3/lib/lm4f/usb_lm4f.c b/libopencm3/lib/lm4f/usb_lm4f.c
new file mode 100644
index 0000000..e70e604
--- /dev/null
+++ b/libopencm3/lib/lm4f/usb_lm4f.c
@@ -0,0 +1,651 @@
+/*
+ * This file is part of the libopencm3 project.
+ *
+ * Copyright (C) 2013 Alexandru Gagniuc <mr.nuke.me@gmail.com>
+ *
+ * This library is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this library. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+/**
+ * @defgroup usb_file USB
+ *
+ * @ingroup LM4Fxx
+ *
+ * @author @htmlonly &copy; @endhtmlonly 2013
+ * Alexandru Gagniuc <mr.nuke.me@gmail.com>
+ *
+ * \brief <b>libopencm3 LM4F Universal Serial Bus controller </b>
+ *
+ * The LM4F USB driver is integrated with the libopencm3 USB stack. You should
+ * use the generic stack.
+ *
+ * To use this driver, tell the linker to look for it:
+ * @code{.c}
+ * extern usbd_driver lm4f_usb_driver;
+ * @endcode
+ *
+ * And pass this driver as an argument when initializing the USB stack:
+ * @code{.c}
+ * usbd_device *usbd_dev;
+ * usbd_dev = usbd_init(&lm4f_usb_driver, ...);
+ * @endcode
+ *
+ * <b>Polling or interrupt-driven? </b>
+ *
+ * The LM4F USB driver will work fine regardless of whether it is called from an
+ * interrupt service routine, or from the main program loop.
+ *
+ * Polling USB from the main loop requires calling @ref usbd_poll() from the
+ * main program loop.
+ * For example:
+ * @code{.c}
+ * // Main program loop
+ * while(1) {
+ * usbd_poll(usb_dev);
+ * do_other_stuff();
+ * ...
+ * @endcode
+ *
+ * Running @ref usbd_poll() from an interrupt has the advantage that it is only
+ * called when needed, saving CPU cycles for the main program.
+ *
+ * RESET, DISCON, RESUME, and SUSPEND interrupts must be enabled, along with the
+ * interrupts for any endpoint that is used. The EP0_TX interrupt must be
+ * enabled for the control endpoint to function correctly.
+ * For example, if EP1IN and EP2OUT are used, then the EP0_TX, EP1_TX, and
+ * EP2_RX interrupts should be enabled:
+ * @code{.c}
+ * // Enable USB interrupts for EP0, EP1IN, and EP2OUT
+ * ints = USB_INT_RESET | USB_INT_DISCON | USB_INT_RESUME |
+ * USB_INT_SUSPEND;
+ * usb_enable_interrupts(ints, USB_EP2_INT, USB_EP0_INT | USB_EP1_INT);
+ * // Route the interrupts through the NVIC
+ * nvic_enable_irq(NVIC_USB0_IRQ);
+ * @endcode
+ *
+ * The USB ISR only has to call @ref usbd_poll().
+ *
+ * @code{.c}
+ * void usb0_isr(void)
+ * {
+ * usbd_poll(usb_dev);
+ * }
+ * @endcode
+ * @{
+ */
+
+/*
+ * TODO list:
+ *
+ * 1) Driver works by reading and writing to the FIFOs one byte at a time. It
+ * has no knowledge of DMA.
+ * 2) Double-buffering is supported. How can we take advantage of it to speed
+ * up endpoint transfers.
+ * 3) No benchmarks as to the endpoint's performance has been done.
+ */
+/*
+ * The following are resources referenced in comments:
+ * [1] http://e2e.ti.com/support/microcontrollers/tiva_arm/f/908/t/238784.aspx
+ */
+
+#include <libopencm3/cm3/common.h>
+#include <libopencm3/lm4f/usb.h>
+#include <libopencm3/lm4f/rcc.h>
+#include <libopencm3/usb/usbd.h>
+#include "../../lib/usb/usb_private.h"
+
+#include <stdbool.h>
+
+
+#define MAX_FIFO_RAM (4 * 1024)
+
+const struct _usbd_driver lm4f_usb_driver;
+
+/**
+ * \brief Enable Specific USB Interrupts
+ *
+ * Enable any combination of interrupts. Interrupts may be OR'ed together to
+ * enable them with one call. For example, to enable both the RESUME and RESET
+ * interrupts, pass (USB_INT_RESUME | USB_INT_RESET)
+ *
+ * Note that the NVIC must be enabled and properly configured for the interrupt
+ * to be routed to the CPU.
+ *
+ * @param[in] ints Interrupts which to enable. Any combination of interrupts may
+ * be specified by OR'ing then together
+ * @param[in] rx_ints Endpoints for which to generate an interrupt when a packet
+ * packet is received.
+ * @param[in] tx_ints Endpoints for which to generate an interrupt when a packet
+ * packet is finished transmitting.
+ */
+void usb_enable_interrupts(enum usb_interrupt ints,
+ enum usb_ep_interrupt rx_ints,
+ enum usb_ep_interrupt tx_ints)
+{
+ USB_IE |= ints;
+ USB_RXIE |= rx_ints;
+ USB_TXIE |= tx_ints;
+}
+
+/**
+ * \brief Disable Specific USB Interrupts
+ *
+ * Disable any combination of interrupts. Interrupts may be OR'ed together to
+ * enable them with one call. For example, to disable both the RESUME and RESET
+ * interrupts, pass (USB_INT_RESUME | USB_INT_RESET)
+ *
+ * Note that the NVIC must be enabled and properly configured for the interrupt
+ * to be routed to the CPU.
+ *
+ * @param[in] ints Interrupts which to disable. Any combination of interrupts
+ * may be specified by OR'ing then together
+ * @param[in] rx_ints Endpoints for which to stop generating an interrupt when a
+ * packet packet is received.
+ * @param[in] tx_ints Endpoints for which to stop generating an interrupt when a
+ * packet packet is finished transmitting.
+ */
+void usb_disable_interrupts(enum usb_interrupt ints,
+ enum usb_ep_interrupt rx_ints,
+ enum usb_ep_interrupt tx_ints)
+{
+ USB_IE &= ~ints;
+ USB_RXIE &= ~rx_ints;
+ USB_TXIE &= ~tx_ints;
+}
+
+/**
+ * @cond private
+ */
+static inline void lm4f_usb_soft_disconnect(void)
+{
+ USB_POWER &= ~USB_POWER_SOFTCONN;
+}
+
+static inline void lm4f_usb_soft_connect(void)
+{
+ USB_POWER |= USB_POWER_SOFTCONN;
+}
+
+static void lm4f_set_address(usbd_device *usbd_dev, uint8_t addr)
+{
+ (void)usbd_dev;
+
+ USB_FADDR = addr & USB_FADDR_FUNCADDR_MASK;
+}
+
+static void lm4f_ep_setup(usbd_device *usbd_dev, uint8_t addr, uint8_t type,
+ uint16_t max_size,
+ void (*callback) (usbd_device *usbd_dev, uint8_t ep))
+{
+ (void)usbd_dev;
+ (void)type;
+
+ uint8_t reg8;
+ uint16_t fifo_size;
+
+ const bool dir_tx = addr & 0x80;
+ const uint8_t ep = addr & 0x0f;
+
+ /*
+ * We do not mess with the maximum packet size, but we can only allocate
+ * the FIFO in power-of-two increments.
+ */
+ if (max_size > 1024) {
+ fifo_size = 2048;
+ reg8 = USB_FIFOSZ_SIZE_2048;
+ } else if (max_size > 512) {
+ fifo_size = 1024;
+ reg8 = USB_FIFOSZ_SIZE_1024;
+ } else if (max_size > 256) {
+ fifo_size = 512;
+ reg8 = USB_FIFOSZ_SIZE_512;
+ } else if (max_size > 128) {
+ fifo_size = 256;
+ reg8 = USB_FIFOSZ_SIZE_256;
+ } else if (max_size > 64) {
+ fifo_size = 128;
+ reg8 = USB_FIFOSZ_SIZE_128;
+ } else if (max_size > 32) {
+ fifo_size = 64;
+ reg8 = USB_FIFOSZ_SIZE_64;
+ } else if (max_size > 16) {
+ fifo_size = 32;
+ reg8 = USB_FIFOSZ_SIZE_32;
+ } else if (max_size > 8) {
+ fifo_size = 16;
+ reg8 = USB_FIFOSZ_SIZE_16;
+ } else {
+ fifo_size = 8;
+ reg8 = USB_FIFOSZ_SIZE_8;
+ }
+
+ /* Endpoint 0 is more special */
+ if (addr == 0) {
+ USB_EPIDX = 0;
+
+ if (reg8 > USB_FIFOSZ_SIZE_64) {
+ reg8 = USB_FIFOSZ_SIZE_64;
+ }
+
+ /* The RX and TX FIFOs are shared for EP0 */
+ USB_RXFIFOSZ = reg8;
+ USB_TXFIFOSZ = reg8;
+
+ /*
+ * Regardless of how much we allocate, the first 64 bytes
+ * are always reserved for EP0.
+ */
+ usbd_dev->fifo_mem_top_ep0 = 64;
+ return;
+ }
+
+ /* Are we out of FIFO space? */
+ if (usbd_dev->fifo_mem_top + fifo_size > MAX_FIFO_RAM) {
+ return;
+ }
+
+ USB_EPIDX = addr & USB_EPIDX_MASK;
+
+ /* FIXME: What about double buffering? */
+ if (dir_tx) {
+ USB_TXMAXP(ep) = max_size;
+ USB_TXFIFOSZ = reg8;
+ USB_TXFIFOADD = ((usbd_dev->fifo_mem_top) >> 3);
+ if (callback) {
+ usbd_dev->user_callback_ctr[ep][USB_TRANSACTION_IN] =
+ (void *)callback;
+ }
+ if (type == USB_ENDPOINT_ATTR_ISOCHRONOUS) {
+ USB_TXCSRH(ep) |= USB_TXCSRH_ISO;
+ } else {
+ USB_TXCSRH(ep) &= ~USB_TXCSRH_ISO;
+ }
+ } else {
+ USB_RXMAXP(ep) = max_size;
+ USB_RXFIFOSZ = reg8;
+ USB_RXFIFOADD = ((usbd_dev->fifo_mem_top) >> 3);
+ if (callback) {
+ usbd_dev->user_callback_ctr[ep][USB_TRANSACTION_OUT] =
+ (void *)callback;
+ }
+ if (type == USB_ENDPOINT_ATTR_ISOCHRONOUS) {
+ USB_RXCSRH(ep) |= USB_RXCSRH_ISO;
+ } else {
+ USB_RXCSRH(ep) &= ~USB_RXCSRH_ISO;
+ }
+ }
+
+ usbd_dev->fifo_mem_top += fifo_size;
+}
+
+static void lm4f_endpoints_reset(usbd_device *usbd_dev)
+{
+ /*
+ * The core resets the endpoints automatically on reset.
+ * The first 64 bytes are always reserved for EP0
+ */
+ usbd_dev->fifo_mem_top = 64;
+}
+
+static void lm4f_ep_stall_set(usbd_device *usbd_dev, uint8_t addr,
+ uint8_t stall)
+{
+ (void)usbd_dev;
+
+ const uint8_t ep = addr & 0x0f;
+ const bool dir_tx = addr & 0x80;
+
+ if (ep == 0) {
+ if (stall) {
+ USB_CSRL0 |= USB_CSRL0_STALL;
+ } else {
+ USB_CSRL0 &= ~USB_CSRL0_STALL;
+ }
+ return;
+ }
+
+ if (dir_tx) {
+ if (stall) {
+ (USB_TXCSRL(ep)) |= USB_TXCSRL_STALL;
+ } else {
+ (USB_TXCSRL(ep)) &= ~USB_TXCSRL_STALL;
+ }
+ } else {
+ if (stall) {
+ (USB_RXCSRL(ep)) |= USB_RXCSRL_STALL;
+ } else {
+ (USB_RXCSRL(ep)) &= ~USB_RXCSRL_STALL;
+ }
+ }
+}
+
+static uint8_t lm4f_ep_stall_get(usbd_device *usbd_dev, uint8_t addr)
+{
+ (void)usbd_dev;
+
+ const uint8_t ep = addr & 0x0f;
+ const bool dir_tx = addr & 0x80;
+
+ if (ep == 0) {
+ return USB_CSRL0 & USB_CSRL0_STALLED;
+ }
+
+ if (dir_tx) {
+ return USB_TXCSRL(ep) & USB_TXCSRL_STALLED;
+ } else {
+ return USB_RXCSRL(ep) & USB_RXCSRL_STALLED;
+ }
+}
+
+static void lm4f_ep_nak_set(usbd_device *usbd_dev, uint8_t addr, uint8_t nak)
+{
+ (void)usbd_dev;
+ (void)addr;
+ (void)nak;
+
+ /* NAK's are handled automatically by hardware. Move along. */
+}
+
+static uint16_t lm4f_ep_write_packet(usbd_device *usbd_dev, uint8_t addr,
+ const void *buf, uint16_t len)
+{
+ const uint8_t ep = addr & 0xf;
+ uint16_t i;
+
+ (void)usbd_dev;
+
+ /* Don't touch the FIFO if there is still a packet being transmitted */
+ if (ep == 0 && (USB_CSRL0 & USB_CSRL0_TXRDY)) {
+ return 0;
+ } else if (USB_TXCSRL(ep) & USB_TXCSRL_TXRDY) {
+ return 0;
+ }
+
+ /*
+ * We don't need to worry about buf not being aligned. If it's not,
+ * the reads are downgraded to 8-bit in hardware. We lose a bit of
+ * performance, but we don't crash.
+ */
+ for (i = 0; i < (len & ~0x3); i += 4) {
+ USB_FIFO32(ep) = *((uint32_t *)(buf + i));
+ }
+ if (len & 0x2) {
+ USB_FIFO16(ep) = *((uint16_t *)(buf + i));
+ i += 2;
+ }
+ if (len & 0x1) {
+ USB_FIFO8(ep) = *((uint8_t *)(buf + i));
+ i += 1;
+ }
+
+ if (ep == 0) {
+ /*
+ * EP0 is very special. We should only set DATAEND when we
+ * transmit the last packet in the transaction. A transaction
+ * that is a multiple of 64 bytes will end with a zero-length
+ * packet, so our check is sane.
+ */
+ if (len != 64) {
+ USB_CSRL0 |= USB_CSRL0_TXRDY | USB_CSRL0_DATAEND;
+ } else {
+ USB_CSRL0 |= USB_CSRL0_TXRDY;
+ }
+ } else {
+ USB_TXCSRL(ep) |= USB_TXCSRL_TXRDY;
+ }
+
+ return i;
+}
+
+static uint16_t lm4f_ep_read_packet(usbd_device *usbd_dev, uint8_t addr,
+ void *buf, uint16_t len)
+{
+ (void)usbd_dev;
+
+ uint16_t rlen;
+ uint8_t ep = addr & 0xf;
+
+ uint16_t fifoin = USB_RXCOUNT(ep);
+
+ rlen = (fifoin > len) ? len : fifoin;
+
+ /*
+ * We don't need to worry about buf not being aligned. If it's not,
+ * the writes are downgraded to 8-bit in hardware. We lose a bit of
+ * performance, but we don't crash.
+ */
+ for (len = 0; len < (rlen & ~0x3); len += 4) {
+ *((uint32_t *)(buf + len)) = USB_FIFO32(ep);
+ }
+ if (rlen & 0x2) {
+ *((uint16_t *)(buf + len)) = USB_FIFO16(ep);
+ len += 2;
+ }
+ if (rlen & 0x1) {
+ *((uint8_t *)(buf + len)) = USB_FIFO8(ep);
+ }
+
+ if (ep == 0) {
+ /*
+ * Clear RXRDY
+ * Datasheet says that DATAEND must also be set when clearing
+ * RXRDY. We don't do that. If did this when transmitting a
+ * packet larger than 64 bytes, only the first 64 bytes would
+ * be transmitted, followed by a handshake. The host would only
+ * get 64 bytes, seeing it as a malformed packet. Usually, we
+ * would not get past enumeration.
+ */
+ USB_CSRL0 |= USB_CSRL0_RXRDYC;
+
+ } else {
+ USB_RXCSRL(ep) &= ~USB_RXCSRL_RXRDY;
+ }
+
+ return rlen;
+}
+
+static void lm4f_poll(usbd_device *usbd_dev)
+{
+ void (*tx_cb)(usbd_device *usbd_dev, uint8_t ea);
+ void (*rx_cb)(usbd_device *usbd_dev, uint8_t ea);
+ int i;
+
+ /*
+ * The initial state of these registers might change, as we process the
+ * interrupt, but we need the initial state in order to decide how to
+ * handle events.
+ */
+ const uint8_t usb_is = USB_IS;
+ const uint8_t usb_rxis = USB_RXIS;
+ const uint8_t usb_txis = USB_TXIS;
+ const uint8_t usb_csrl0 = USB_CSRL0;
+
+ if ((usb_is & USB_IM_SUSPEND) && (usbd_dev->user_callback_suspend)) {
+ usbd_dev->user_callback_suspend();
+ }
+
+ if ((usb_is & USB_IM_RESUME) && (usbd_dev->user_callback_resume)) {
+ usbd_dev->user_callback_resume();
+ }
+
+ if (usb_is & USB_IM_RESET) {
+ _usbd_reset(usbd_dev);
+ }
+
+ if ((usb_is & USB_IM_SOF) && (usbd_dev->user_callback_sof)) {
+ usbd_dev->user_callback_sof();
+ }
+
+ if (usb_txis & USB_EP0) {
+ /*
+ * The EP0 bit in USB_TXIS is special. It tells us that
+ * something happened on EP0, but does not tell us what. This
+ * bit does not necessarily tell us that a packet was
+ * transmitted, so we have to go through all the possibilities
+ * to figure out exactly what did. Only after we've exhausted
+ * all other possibilities, can we assume this is a EPO
+ * "transmit complete" interrupt.
+ */
+ if (usb_csrl0 & USB_CSRL0_RXRDY) {
+ enum _usbd_transaction type;
+ type = (usbd_dev->control_state.state != DATA_OUT &&
+ usbd_dev->control_state.state != LAST_DATA_OUT)
+ ? USB_TRANSACTION_SETUP :
+ USB_TRANSACTION_OUT;
+
+ if (usbd_dev->user_callback_ctr[0][type]) {
+ usbd_dev->
+ user_callback_ctr[0][type](usbd_dev, 0);
+ }
+
+
+ } else {
+ tx_cb = usbd_dev->user_callback_ctr[0]
+ [USB_TRANSACTION_IN];
+
+ /*
+ * EP0 bit in TXIS is set not only when a packet is
+ * finished transmitting, but also when RXRDY is set, or
+ * when we set TXRDY to transmit a packet. If any of
+ * those are the case, then we do not want to call our
+ * IN callback, since the state machine will be in the
+ * wrong state, and we'll just stall our control
+ * endpoint.
+ * In fact, the only way to know if it's time to call
+ * our TX callback is to know what to expect. The
+ * hardware does not tell us what sort of transaction
+ * this is. We need to work with the state machine to
+ * figure it all out. See [1] for details.
+ */
+ if ((usbd_dev->control_state.state != DATA_IN) &&
+ (usbd_dev->control_state.state != LAST_DATA_IN) &&
+ (usbd_dev->control_state.state != STATUS_IN)) {
+ return;
+ }
+
+ if (tx_cb) {
+ tx_cb(usbd_dev, 0);
+ }
+ }
+ }
+
+ /* See which interrupt occurred */
+ for (i = 1; i < 8; i++) {
+ tx_cb = usbd_dev->user_callback_ctr[i][USB_TRANSACTION_IN];
+ rx_cb = usbd_dev->user_callback_ctr[i][USB_TRANSACTION_OUT];
+
+ if ((usb_txis & (1 << i)) && tx_cb) {
+ tx_cb(usbd_dev, i);
+ }
+
+ if ((usb_rxis & (1 << i)) && rx_cb) {
+ rx_cb(usbd_dev, i);
+ }
+ }
+
+
+}
+
+static void lm4f_disconnect(usbd_device *usbd_dev, bool disconnected)
+{
+ (void)usbd_dev;
+
+ /*
+ * This is all it takes:
+ * usbd_disconnect(dev, 1) followed by usbd_disconnect(dev, 0)
+ * causes the device to re-enumerate and re-configure properly.
+ */
+ if (disconnected) {
+ lm4f_usb_soft_disconnect();
+ } else {
+ lm4f_usb_soft_connect();
+ }
+}
+
+/*
+ * A static struct works as long as we have only one USB peripheral. If we
+ * meet LM4Fs with more than one USB, then we need to rework this approach.
+ */
+static struct _usbd_device usbd_dev;
+
+/** Initialize the USB device controller hardware of the LM4F. */
+static usbd_device *lm4f_usbd_init(void)
+{
+ int i;
+
+ /* Start the USB clock */
+ periph_clock_enable(RCC_USB0);
+ /* Enable the USB PLL interrupts - used to assert PLL lock */
+ SYSCTL_IMC |= (SYSCTL_IMC_USBPLLLIM | SYSCTL_IMC_PLLLIM);
+ rcc_usb_pll_on();
+
+ /* Make sure we're disconnected. We'll reconnect later */
+ lm4f_usb_soft_disconnect();
+
+ /* Software reset USB */
+ SYSCTL_SRUSB = 1;
+ for (i = 0; i < 1000; i++) {
+ __asm__("nop");
+ }
+ SYSCTL_SRUSB = 0;
+
+ /*
+ * Wait for the PLL to lock before soft connecting
+ * This will result in a deadlock if the system clock is not setup
+ * correctly (clock from main oscillator).
+ */
+ /* Wait for it */
+ i = 0;
+ while ((SYSCTL_RIS & SYSCTL_RIS_USBPLLLRIS) == 0) {
+ i++;
+ if (i > 0xffff) {
+ return 0;
+ }
+ }
+
+ /* Now connect to USB */
+ lm4f_usb_soft_connect();
+
+ /* No FIFO allocated yet, but the first 64 bytes are still reserved */
+ usbd_dev.fifo_mem_top = 64;
+
+ return &usbd_dev;
+}
+
+/* What is this thing even good for */
+#define RX_FIFO_SIZE 512
+
+const struct _usbd_driver lm4f_usb_driver = {
+ .init = lm4f_usbd_init,
+ .set_address = lm4f_set_address,
+ .ep_setup = lm4f_ep_setup,
+ .ep_reset = lm4f_endpoints_reset,
+ .ep_stall_set = lm4f_ep_stall_set,
+ .ep_stall_get = lm4f_ep_stall_get,
+ .ep_nak_set = lm4f_ep_nak_set,
+ .ep_write_packet = lm4f_ep_write_packet,
+ .ep_read_packet = lm4f_ep_read_packet,
+ .poll = lm4f_poll,
+ .disconnect = lm4f_disconnect,
+ .base_address = USB_BASE,
+ .set_address_before_status = false,
+ .rx_fifo_size = RX_FIFO_SIZE,
+};
+/**
+ * @endcond
+ */
+
+/**
+ * @}
+ */