aboutsummaryrefslogtreecommitdiffstats
path: root/mm/memblock.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memblock.c')
-rw-r--r--mm/memblock.c881
1 files changed, 881 insertions, 0 deletions
diff --git a/mm/memblock.c b/mm/memblock.c
new file mode 100644
index 00000000..cf52324a
--- /dev/null
+++ b/mm/memblock.c
@@ -0,0 +1,881 @@
+/*
+ * Procedures for maintaining information about logical memory blocks.
+ *
+ * Peter Bergner, IBM Corp. June 2001.
+ * Copyright (C) 2001 Peter Bergner.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/bitops.h>
+#include <linux/poison.h>
+#include <linux/pfn.h>
+#include <linux/debugfs.h>
+#include <linux/seq_file.h>
+#include <linux/memblock.h>
+
+struct memblock memblock __initdata_memblock;
+
+int memblock_debug __initdata_memblock;
+int memblock_can_resize __initdata_memblock;
+static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
+static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
+
+/* inline so we don't get a warning when pr_debug is compiled out */
+static inline const char *memblock_type_name(struct memblock_type *type)
+{
+ if (type == &memblock.memory)
+ return "memory";
+ else if (type == &memblock.reserved)
+ return "reserved";
+ else
+ return "unknown";
+}
+
+/*
+ * Address comparison utilities
+ */
+
+static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size)
+{
+ return addr & ~(size - 1);
+}
+
+static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size)
+{
+ return (addr + (size - 1)) & ~(size - 1);
+}
+
+static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
+ phys_addr_t base2, phys_addr_t size2)
+{
+ return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
+}
+
+long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
+{
+ unsigned long i;
+
+ for (i = 0; i < type->cnt; i++) {
+ phys_addr_t rgnbase = type->regions[i].base;
+ phys_addr_t rgnsize = type->regions[i].size;
+ if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
+ break;
+ }
+
+ return (i < type->cnt) ? i : -1;
+}
+
+/*
+ * Find, allocate, deallocate or reserve unreserved regions. All allocations
+ * are top-down.
+ */
+
+static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
+ phys_addr_t size, phys_addr_t align)
+{
+ phys_addr_t base, res_base;
+ long j;
+
+ /* In case, huge size is requested */
+ if (end < size)
+ return MEMBLOCK_ERROR;
+
+ base = memblock_align_down((end - size), align);
+
+ /* Prevent allocations returning 0 as it's also used to
+ * indicate an allocation failure
+ */
+ if (start == 0)
+ start = PAGE_SIZE;
+
+ while (start <= base) {
+ j = memblock_overlaps_region(&memblock.reserved, base, size);
+ if (j < 0)
+ return base;
+ res_base = memblock.reserved.regions[j].base;
+ if (res_base < size)
+ break;
+ base = memblock_align_down(res_base - size, align);
+ }
+
+ return MEMBLOCK_ERROR;
+}
+
+static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
+ phys_addr_t align, phys_addr_t start, phys_addr_t end)
+{
+ long i;
+
+ BUG_ON(0 == size);
+
+ /* Pump up max_addr */
+ if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
+ end = memblock.current_limit;
+
+ /* We do a top-down search, this tends to limit memory
+ * fragmentation by keeping early boot allocs near the
+ * top of memory
+ */
+ for (i = memblock.memory.cnt - 1; i >= 0; i--) {
+ phys_addr_t memblockbase = memblock.memory.regions[i].base;
+ phys_addr_t memblocksize = memblock.memory.regions[i].size;
+ phys_addr_t bottom, top, found;
+
+ if (memblocksize < size)
+ continue;
+ if ((memblockbase + memblocksize) <= start)
+ break;
+ bottom = max(memblockbase, start);
+ top = min(memblockbase + memblocksize, end);
+ if (bottom >= top)
+ continue;
+ found = memblock_find_region(bottom, top, size, align);
+ if (found != MEMBLOCK_ERROR)
+ return found;
+ }
+ return MEMBLOCK_ERROR;
+}
+
+/*
+ * Find a free area with specified alignment in a specific range.
+ */
+u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align)
+{
+ return memblock_find_base(size, align, start, end);
+}
+
+/*
+ * Free memblock.reserved.regions
+ */
+int __init_memblock memblock_free_reserved_regions(void)
+{
+ if (memblock.reserved.regions == memblock_reserved_init_regions)
+ return 0;
+
+ return memblock_free(__pa(memblock.reserved.regions),
+ sizeof(struct memblock_region) * memblock.reserved.max);
+}
+
+/*
+ * Reserve memblock.reserved.regions
+ */
+int __init_memblock memblock_reserve_reserved_regions(void)
+{
+ if (memblock.reserved.regions == memblock_reserved_init_regions)
+ return 0;
+
+ return memblock_reserve(__pa(memblock.reserved.regions),
+ sizeof(struct memblock_region) * memblock.reserved.max);
+}
+
+static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
+{
+ unsigned long i;
+
+ for (i = r; i < type->cnt - 1; i++) {
+ type->regions[i].base = type->regions[i + 1].base;
+ type->regions[i].size = type->regions[i + 1].size;
+ }
+ type->cnt--;
+
+ /* Special case for empty arrays */
+ if (type->cnt == 0) {
+ type->cnt = 1;
+ type->regions[0].base = 0;
+ type->regions[0].size = 0;
+ }
+}
+
+/* Defined below but needed now */
+static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
+
+static int __init_memblock memblock_double_array(struct memblock_type *type)
+{
+ struct memblock_region *new_array, *old_array;
+ phys_addr_t old_size, new_size, addr;
+ int use_slab = slab_is_available();
+
+ /* We don't allow resizing until we know about the reserved regions
+ * of memory that aren't suitable for allocation
+ */
+ if (!memblock_can_resize)
+ return -1;
+
+ /* Calculate new doubled size */
+ old_size = type->max * sizeof(struct memblock_region);
+ new_size = old_size << 1;
+
+ /* Try to find some space for it.
+ *
+ * WARNING: We assume that either slab_is_available() and we use it or
+ * we use MEMBLOCK for allocations. That means that this is unsafe to use
+ * when bootmem is currently active (unless bootmem itself is implemented
+ * on top of MEMBLOCK which isn't the case yet)
+ *
+ * This should however not be an issue for now, as we currently only
+ * call into MEMBLOCK while it's still active, or much later when slab is
+ * active for memory hotplug operations
+ */
+ if (use_slab) {
+ new_array = kmalloc(new_size, GFP_KERNEL);
+ addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
+ } else
+ addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
+ if (addr == MEMBLOCK_ERROR) {
+ pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
+ memblock_type_name(type), type->max, type->max * 2);
+ return -1;
+ }
+ new_array = __va(addr);
+
+ memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
+ memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
+
+ /* Found space, we now need to move the array over before
+ * we add the reserved region since it may be our reserved
+ * array itself that is full.
+ */
+ memcpy(new_array, type->regions, old_size);
+ memset(new_array + type->max, 0, old_size);
+ old_array = type->regions;
+ type->regions = new_array;
+ type->max <<= 1;
+
+ /* If we use SLAB that's it, we are done */
+ if (use_slab)
+ return 0;
+
+ /* Add the new reserved region now. Should not fail ! */
+ BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size));
+
+ /* If the array wasn't our static init one, then free it. We only do
+ * that before SLAB is available as later on, we don't know whether
+ * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
+ * anyways
+ */
+ if (old_array != memblock_memory_init_regions &&
+ old_array != memblock_reserved_init_regions)
+ memblock_free(__pa(old_array), old_size);
+
+ return 0;
+}
+
+extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
+ phys_addr_t addr2, phys_addr_t size2)
+{
+ return 1;
+}
+
+static long __init_memblock memblock_add_region(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size)
+{
+ phys_addr_t end = base + size;
+ int i, slot = -1;
+
+ /* First try and coalesce this MEMBLOCK with others */
+ for (i = 0; i < type->cnt; i++) {
+ struct memblock_region *rgn = &type->regions[i];
+ phys_addr_t rend = rgn->base + rgn->size;
+
+ /* Exit if there's no possible hits */
+ if (rgn->base > end || rgn->size == 0)
+ break;
+
+ /* Check if we are fully enclosed within an existing
+ * block
+ */
+ if (rgn->base <= base && rend >= end)
+ return 0;
+
+ /* Check if we overlap or are adjacent with the bottom
+ * of a block.
+ */
+ if (base < rgn->base && end >= rgn->base) {
+ /* If we can't coalesce, create a new block */
+ if (!memblock_memory_can_coalesce(base, size,
+ rgn->base,
+ rgn->size)) {
+ /* Overlap & can't coalesce are mutually
+ * exclusive, if you do that, be prepared
+ * for trouble
+ */
+ WARN_ON(end != rgn->base);
+ goto new_block;
+ }
+ /* We extend the bottom of the block down to our
+ * base
+ */
+ rgn->base = base;
+ rgn->size = rend - base;
+
+ /* Return if we have nothing else to allocate
+ * (fully coalesced)
+ */
+ if (rend >= end)
+ return 0;
+
+ /* We continue processing from the end of the
+ * coalesced block.
+ */
+ base = rend;
+ size = end - base;
+ }
+
+ /* Now check if we overlap or are adjacent with the
+ * top of a block
+ */
+ if (base <= rend && end >= rend) {
+ /* If we can't coalesce, create a new block */
+ if (!memblock_memory_can_coalesce(rgn->base,
+ rgn->size,
+ base, size)) {
+ /* Overlap & can't coalesce are mutually
+ * exclusive, if you do that, be prepared
+ * for trouble
+ */
+ WARN_ON(rend != base);
+ goto new_block;
+ }
+ /* We adjust our base down to enclose the
+ * original block and destroy it. It will be
+ * part of our new allocation. Since we've
+ * freed an entry, we know we won't fail
+ * to allocate one later, so we won't risk
+ * losing the original block allocation.
+ */
+ size += (base - rgn->base);
+ base = rgn->base;
+ memblock_remove_region(type, i--);
+ }
+ }
+
+ /* If the array is empty, special case, replace the fake
+ * filler region and return
+ */
+ if ((type->cnt == 1) && (type->regions[0].size == 0)) {
+ type->regions[0].base = base;
+ type->regions[0].size = size;
+ return 0;
+ }
+
+ new_block:
+ /* If we are out of space, we fail. It's too late to resize the array
+ * but then this shouldn't have happened in the first place.
+ */
+ if (WARN_ON(type->cnt >= type->max))
+ return -1;
+
+ /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
+ for (i = type->cnt - 1; i >= 0; i--) {
+ if (base < type->regions[i].base) {
+ type->regions[i+1].base = type->regions[i].base;
+ type->regions[i+1].size = type->regions[i].size;
+ } else {
+ type->regions[i+1].base = base;
+ type->regions[i+1].size = size;
+ slot = i + 1;
+ break;
+ }
+ }
+ if (base < type->regions[0].base) {
+ type->regions[0].base = base;
+ type->regions[0].size = size;
+ slot = 0;
+ }
+ type->cnt++;
+
+ /* The array is full ? Try to resize it. If that fails, we undo
+ * our allocation and return an error
+ */
+ if (type->cnt == type->max && memblock_double_array(type)) {
+ BUG_ON(slot < 0);
+ memblock_remove_region(type, slot);
+ return -1;
+ }
+
+ return 0;
+}
+
+long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_add_region(&memblock.memory, base, size);
+
+}
+
+static long __init_memblock __memblock_remove(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size)
+{
+ phys_addr_t end = base + size;
+ int i;
+
+ /* Walk through the array for collisions */
+ for (i = 0; i < type->cnt; i++) {
+ struct memblock_region *rgn = &type->regions[i];
+ phys_addr_t rend = rgn->base + rgn->size;
+
+ /* Nothing more to do, exit */
+ if (rgn->base > end || rgn->size == 0)
+ break;
+
+ /* If we fully enclose the block, drop it */
+ if (base <= rgn->base && end >= rend) {
+ memblock_remove_region(type, i--);
+ continue;
+ }
+
+ /* If we are fully enclosed within a block
+ * then we need to split it and we are done
+ */
+ if (base > rgn->base && end < rend) {
+ rgn->size = base - rgn->base;
+ if (!memblock_add_region(type, end, rend - end))
+ return 0;
+ /* Failure to split is bad, we at least
+ * restore the block before erroring
+ */
+ rgn->size = rend - rgn->base;
+ WARN_ON(1);
+ return -1;
+ }
+
+ /* Check if we need to trim the bottom of a block */
+ if (rgn->base < end && rend > end) {
+ rgn->size -= end - rgn->base;
+ rgn->base = end;
+ break;
+ }
+
+ /* And check if we need to trim the top of a block */
+ if (base < rend)
+ rgn->size -= rend - base;
+
+ }
+ return 0;
+}
+
+long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
+{
+ return __memblock_remove(&memblock.memory, base, size);
+}
+
+long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
+{
+ return __memblock_remove(&memblock.reserved, base, size);
+}
+
+long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
+{
+ struct memblock_type *_rgn = &memblock.reserved;
+
+ BUG_ON(0 == size);
+
+ return memblock_add_region(_rgn, base, size);
+}
+
+phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
+{
+ phys_addr_t found;
+
+ /* We align the size to limit fragmentation. Without this, a lot of
+ * small allocs quickly eat up the whole reserve array on sparc
+ */
+ size = memblock_align_up(size, align);
+
+ found = memblock_find_base(size, align, 0, max_addr);
+ if (found != MEMBLOCK_ERROR &&
+ !memblock_add_region(&memblock.reserved, found, size))
+ return found;
+
+ return 0;
+}
+
+phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
+{
+ phys_addr_t alloc;
+
+ alloc = __memblock_alloc_base(size, align, max_addr);
+
+ if (alloc == 0)
+ panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
+ (unsigned long long) size, (unsigned long long) max_addr);
+
+ return alloc;
+}
+
+phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
+{
+ return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
+}
+
+
+/*
+ * Additional node-local allocators. Search for node memory is bottom up
+ * and walks memblock regions within that node bottom-up as well, but allocation
+ * within an memblock region is top-down. XXX I plan to fix that at some stage
+ *
+ * WARNING: Only available after early_node_map[] has been populated,
+ * on some architectures, that is after all the calls to add_active_range()
+ * have been done to populate it.
+ */
+
+phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
+{
+#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
+ /*
+ * This code originates from sparc which really wants use to walk by addresses
+ * and returns the nid. This is not very convenient for early_pfn_map[] users
+ * as the map isn't sorted yet, and it really wants to be walked by nid.
+ *
+ * For now, I implement the inefficient method below which walks the early
+ * map multiple times. Eventually we may want to use an ARCH config option
+ * to implement a completely different method for both case.
+ */
+ unsigned long start_pfn, end_pfn;
+ int i;
+
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
+ if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
+ continue;
+ *nid = i;
+ return min(end, PFN_PHYS(end_pfn));
+ }
+#endif
+ *nid = 0;
+
+ return end;
+}
+
+static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
+ phys_addr_t size,
+ phys_addr_t align, int nid)
+{
+ phys_addr_t start, end;
+
+ start = mp->base;
+ end = start + mp->size;
+
+ start = memblock_align_up(start, align);
+ while (start < end) {
+ phys_addr_t this_end;
+ int this_nid;
+
+ this_end = memblock_nid_range(start, end, &this_nid);
+ if (this_nid == nid) {
+ phys_addr_t ret = memblock_find_region(start, this_end, size, align);
+ if (ret != MEMBLOCK_ERROR &&
+ !memblock_add_region(&memblock.reserved, ret, size))
+ return ret;
+ }
+ start = this_end;
+ }
+
+ return MEMBLOCK_ERROR;
+}
+
+phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
+{
+ struct memblock_type *mem = &memblock.memory;
+ int i;
+
+ BUG_ON(0 == size);
+
+ /* We align the size to limit fragmentation. Without this, a lot of
+ * small allocs quickly eat up the whole reserve array on sparc
+ */
+ size = memblock_align_up(size, align);
+
+ /* We do a bottom-up search for a region with the right
+ * nid since that's easier considering how memblock_nid_range()
+ * works
+ */
+ for (i = 0; i < mem->cnt; i++) {
+ phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
+ size, align, nid);
+ if (ret != MEMBLOCK_ERROR)
+ return ret;
+ }
+
+ return 0;
+}
+
+phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
+{
+ phys_addr_t res = memblock_alloc_nid(size, align, nid);
+
+ if (res)
+ return res;
+ return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
+}
+
+
+/*
+ * Remaining API functions
+ */
+
+/* You must call memblock_analyze() before this. */
+phys_addr_t __init memblock_phys_mem_size(void)
+{
+ return memblock.memory_size;
+}
+
+phys_addr_t __init_memblock memblock_end_of_DRAM(void)
+{
+ int idx = memblock.memory.cnt - 1;
+
+ return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
+}
+
+phys_addr_t __init_memblock memblock_end_of_DRAM_with_reserved(void)
+{
+ int idx = memblock.memory.cnt - 1;
+ phys_addr_t top_addr = 0;
+ int i;
+
+ for (i = 0; i < memblock.reserved.cnt; i++) {
+ phys_addr_t t;
+ t = memblock.reserved.regions[i].base
+ + memblock.reserved.regions[i].size;
+ top_addr = max(t, top_addr);
+ }
+
+ return max(top_addr,
+ memblock.memory.regions[idx].base
+ + memblock.memory.regions[idx].size);
+}
+
+/* You must call memblock_analyze() after this. */
+void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
+{
+ unsigned long i;
+ phys_addr_t limit;
+ struct memblock_region *p;
+
+ if (!memory_limit)
+ return;
+
+ /* Truncate the memblock regions to satisfy the memory limit. */
+ limit = memory_limit;
+ for (i = 0; i < memblock.memory.cnt; i++) {
+ if (limit > memblock.memory.regions[i].size) {
+ limit -= memblock.memory.regions[i].size;
+ continue;
+ }
+
+ memblock.memory.regions[i].size = limit;
+ memblock.memory.cnt = i + 1;
+ break;
+ }
+
+ memory_limit = memblock_end_of_DRAM();
+
+ /* And truncate any reserves above the limit also. */
+ for (i = 0; i < memblock.reserved.cnt; i++) {
+ p = &memblock.reserved.regions[i];
+
+ if (p->base > memory_limit)
+ p->size = 0;
+ else if ((p->base + p->size) > memory_limit)
+ p->size = memory_limit - p->base;
+
+ if (p->size == 0) {
+ memblock_remove_region(&memblock.reserved, i);
+ i--;
+ }
+ }
+}
+
+static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
+{
+ unsigned int left = 0, right = type->cnt;
+
+ do {
+ unsigned int mid = (right + left) / 2;
+
+ if (addr < type->regions[mid].base)
+ right = mid;
+ else if (addr >= (type->regions[mid].base +
+ type->regions[mid].size))
+ left = mid + 1;
+ else
+ return mid;
+ } while (left < right);
+ return -1;
+}
+
+int __init memblock_is_reserved(phys_addr_t addr)
+{
+ return memblock_search(&memblock.reserved, addr) != -1;
+}
+
+int __init_memblock memblock_is_memory(phys_addr_t addr)
+{
+ return memblock_search(&memblock.memory, addr) != -1;
+}
+
+int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
+{
+ int idx = memblock_search(&memblock.memory, base);
+
+ if (idx == -1)
+ return 0;
+ return memblock.memory.regions[idx].base <= base &&
+ (memblock.memory.regions[idx].base +
+ memblock.memory.regions[idx].size) >= (base + size);
+}
+
+int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
+}
+
+
+void __init_memblock memblock_set_current_limit(phys_addr_t limit)
+{
+ memblock.current_limit = limit;
+}
+
+static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
+{
+ unsigned long long base, size;
+ int i;
+
+ pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
+
+ for (i = 0; i < region->cnt; i++) {
+ base = region->regions[i].base;
+ size = region->regions[i].size;
+
+ pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
+ name, i, base, base + size - 1, size);
+ }
+}
+
+void __init_memblock memblock_dump_all(void)
+{
+ if (!memblock_debug)
+ return;
+
+ pr_info("MEMBLOCK configuration:\n");
+ pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
+
+ memblock_dump(&memblock.memory, "memory");
+ memblock_dump(&memblock.reserved, "reserved");
+}
+
+void __init memblock_analyze(void)
+{
+ int i;
+
+ /* Check marker in the unused last array entry */
+ WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
+ != (phys_addr_t)RED_INACTIVE);
+ WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
+ != (phys_addr_t)RED_INACTIVE);
+
+ memblock.memory_size = 0;
+
+ for (i = 0; i < memblock.memory.cnt; i++)
+ memblock.memory_size += memblock.memory.regions[i].size;
+
+ /* We allow resizing from there */
+ memblock_can_resize = 1;
+}
+
+void __init memblock_init(void)
+{
+ static int init_done __initdata = 0;
+
+ if (init_done)
+ return;
+ init_done = 1;
+
+ /* Hookup the initial arrays */
+ memblock.memory.regions = memblock_memory_init_regions;
+ memblock.memory.max = INIT_MEMBLOCK_REGIONS;
+ memblock.reserved.regions = memblock_reserved_init_regions;
+ memblock.reserved.max = INIT_MEMBLOCK_REGIONS;
+
+ /* Write a marker in the unused last array entry */
+ memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
+ memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
+
+ /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
+ * This simplifies the memblock_add() code below...
+ */
+ memblock.memory.regions[0].base = 0;
+ memblock.memory.regions[0].size = 0;
+ memblock.memory.cnt = 1;
+
+ /* Ditto. */
+ memblock.reserved.regions[0].base = 0;
+ memblock.reserved.regions[0].size = 0;
+ memblock.reserved.cnt = 1;
+
+ memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
+}
+
+static int __init early_memblock(char *p)
+{
+ if (p && strstr(p, "debug"))
+ memblock_debug = 1;
+ return 0;
+}
+early_param("memblock", early_memblock);
+
+#if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
+
+static int memblock_debug_show(struct seq_file *m, void *private)
+{
+ struct memblock_type *type = m->private;
+ struct memblock_region *reg;
+ int i;
+
+ for (i = 0; i < type->cnt; i++) {
+ reg = &type->regions[i];
+ seq_printf(m, "%4d: ", i);
+ if (sizeof(phys_addr_t) == 4)
+ seq_printf(m, "0x%08lx..0x%08lx\n",
+ (unsigned long)reg->base,
+ (unsigned long)(reg->base + reg->size - 1));
+ else
+ seq_printf(m, "0x%016llx..0x%016llx\n",
+ (unsigned long long)reg->base,
+ (unsigned long long)(reg->base + reg->size - 1));
+
+ }
+ return 0;
+}
+
+static int memblock_debug_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, memblock_debug_show, inode->i_private);
+}
+
+static const struct file_operations memblock_debug_fops = {
+ .open = memblock_debug_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+static int __init memblock_init_debugfs(void)
+{
+ struct dentry *root = debugfs_create_dir("memblock", NULL);
+ if (!root)
+ return -ENXIO;
+ debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
+ debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
+
+ return 0;
+}
+__initcall(memblock_init_debugfs);
+
+#endif /* CONFIG_DEBUG_FS */