aboutsummaryrefslogtreecommitdiffstats
path: root/mm/compaction.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/compaction.c')
-rw-r--r--mm/compaction.c767
1 files changed, 767 insertions, 0 deletions
diff --git a/mm/compaction.c b/mm/compaction.c
new file mode 100644
index 00000000..bf6bc32c
--- /dev/null
+++ b/mm/compaction.c
@@ -0,0 +1,767 @@
+/*
+ * linux/mm/compaction.c
+ *
+ * Memory compaction for the reduction of external fragmentation. Note that
+ * this heavily depends upon page migration to do all the real heavy
+ * lifting
+ *
+ * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
+ */
+#include <linux/swap.h>
+#include <linux/migrate.h>
+#include <linux/compaction.h>
+#include <linux/mm_inline.h>
+#include <linux/backing-dev.h>
+#include <linux/sysctl.h>
+#include <linux/sysfs.h>
+#include "internal.h"
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/compaction.h>
+
+/*
+ * compact_control is used to track pages being migrated and the free pages
+ * they are being migrated to during memory compaction. The free_pfn starts
+ * at the end of a zone and migrate_pfn begins at the start. Movable pages
+ * are moved to the end of a zone during a compaction run and the run
+ * completes when free_pfn <= migrate_pfn
+ */
+struct compact_control {
+ struct list_head freepages; /* List of free pages to migrate to */
+ struct list_head migratepages; /* List of pages being migrated */
+ unsigned long nr_freepages; /* Number of isolated free pages */
+ unsigned long nr_migratepages; /* Number of pages to migrate */
+ unsigned long free_pfn; /* isolate_freepages search base */
+ unsigned long migrate_pfn; /* isolate_migratepages search base */
+ bool sync; /* Synchronous migration */
+
+ /* Account for isolated anon and file pages */
+ unsigned long nr_anon;
+ unsigned long nr_file;
+
+ unsigned int order; /* order a direct compactor needs */
+ int migratetype; /* MOVABLE, RECLAIMABLE etc */
+ struct zone *zone;
+};
+
+static unsigned long release_freepages(struct list_head *freelist)
+{
+ struct page *page, *next;
+ unsigned long count = 0;
+
+ list_for_each_entry_safe(page, next, freelist, lru) {
+ list_del(&page->lru);
+ __free_page(page);
+ count++;
+ }
+
+ return count;
+}
+
+/* Isolate free pages onto a private freelist. Must hold zone->lock */
+static unsigned long isolate_freepages_block(struct zone *zone,
+ unsigned long blockpfn,
+ struct list_head *freelist)
+{
+ unsigned long zone_end_pfn, end_pfn;
+ int nr_scanned = 0, total_isolated = 0;
+ struct page *cursor;
+
+ /* Get the last PFN we should scan for free pages at */
+ zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
+ end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
+
+ /* Find the first usable PFN in the block to initialse page cursor */
+ for (; blockpfn < end_pfn; blockpfn++) {
+ if (pfn_valid_within(blockpfn))
+ break;
+ }
+ cursor = pfn_to_page(blockpfn);
+
+ /* Isolate free pages. This assumes the block is valid */
+ for (; blockpfn < end_pfn; blockpfn++, cursor++) {
+ int isolated, i;
+ struct page *page = cursor;
+
+ if (!pfn_valid_within(blockpfn))
+ continue;
+ nr_scanned++;
+
+ if (!PageBuddy(page))
+ continue;
+
+ /* Found a free page, break it into order-0 pages */
+ isolated = split_free_page(page);
+ total_isolated += isolated;
+ for (i = 0; i < isolated; i++) {
+ list_add(&page->lru, freelist);
+ page++;
+ }
+
+ /* If a page was split, advance to the end of it */
+ if (isolated) {
+ blockpfn += isolated - 1;
+ cursor += isolated - 1;
+ }
+ }
+
+ trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
+ return total_isolated;
+}
+
+/* Returns true if the page is within a block suitable for migration to */
+static bool suitable_migration_target(struct page *page)
+{
+
+ int migratetype = get_pageblock_migratetype(page);
+
+ /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
+ if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
+ return false;
+
+ /* If the page is a large free page, then allow migration */
+ if (PageBuddy(page) && page_order(page) >= pageblock_order)
+ return true;
+
+ /* If the block is MIGRATE_MOVABLE, allow migration */
+ if (migratetype == MIGRATE_MOVABLE)
+ return true;
+
+ /* Otherwise skip the block */
+ return false;
+}
+
+/*
+ * Based on information in the current compact_control, find blocks
+ * suitable for isolating free pages from and then isolate them.
+ */
+static void isolate_freepages(struct zone *zone,
+ struct compact_control *cc)
+{
+ struct page *page;
+ unsigned long high_pfn, low_pfn, pfn;
+ unsigned long flags;
+ int nr_freepages = cc->nr_freepages;
+ struct list_head *freelist = &cc->freepages;
+
+ /*
+ * Initialise the free scanner. The starting point is where we last
+ * scanned from (or the end of the zone if starting). The low point
+ * is the end of the pageblock the migration scanner is using.
+ */
+ pfn = cc->free_pfn;
+ low_pfn = cc->migrate_pfn + pageblock_nr_pages;
+
+ /*
+ * Take care that if the migration scanner is at the end of the zone
+ * that the free scanner does not accidentally move to the next zone
+ * in the next isolation cycle.
+ */
+ high_pfn = min(low_pfn, pfn);
+
+ /*
+ * Isolate free pages until enough are available to migrate the
+ * pages on cc->migratepages. We stop searching if the migrate
+ * and free page scanners meet or enough free pages are isolated.
+ */
+ for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
+ pfn -= pageblock_nr_pages) {
+ unsigned long isolated;
+
+ if (!pfn_valid(pfn))
+ continue;
+
+ /*
+ * Check for overlapping nodes/zones. It's possible on some
+ * configurations to have a setup like
+ * node0 node1 node0
+ * i.e. it's possible that all pages within a zones range of
+ * pages do not belong to a single zone.
+ */
+ page = pfn_to_page(pfn);
+ if (page_zone(page) != zone)
+ continue;
+
+ /* Check the block is suitable for migration */
+ if (!suitable_migration_target(page))
+ continue;
+
+ /*
+ * Found a block suitable for isolating free pages from. Now
+ * we disabled interrupts, double check things are ok and
+ * isolate the pages. This is to minimise the time IRQs
+ * are disabled
+ */
+ isolated = 0;
+ spin_lock_irqsave(&zone->lock, flags);
+ if (suitable_migration_target(page)) {
+ isolated = isolate_freepages_block(zone, pfn, freelist);
+ nr_freepages += isolated;
+ }
+ spin_unlock_irqrestore(&zone->lock, flags);
+
+ /*
+ * Record the highest PFN we isolated pages from. When next
+ * looking for free pages, the search will restart here as
+ * page migration may have returned some pages to the allocator
+ */
+ if (isolated)
+ high_pfn = max(high_pfn, pfn);
+ }
+
+ /* split_free_page does not map the pages */
+ list_for_each_entry(page, freelist, lru) {
+ arch_alloc_page(page, 0);
+ kernel_map_pages(page, 1, 1);
+ }
+
+ cc->free_pfn = high_pfn;
+ cc->nr_freepages = nr_freepages;
+}
+
+/* Update the number of anon and file isolated pages in the zone */
+static void acct_isolated(struct zone *zone, struct compact_control *cc)
+{
+ struct page *page;
+ unsigned int count[NR_LRU_LISTS] = { 0, };
+
+ list_for_each_entry(page, &cc->migratepages, lru) {
+ int lru = page_lru_base_type(page);
+ count[lru]++;
+ }
+
+ cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
+ cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
+ __mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
+ __mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
+}
+
+/* Similar to reclaim, but different enough that they don't share logic */
+static bool too_many_isolated(struct zone *zone)
+{
+ unsigned long active, inactive, isolated;
+
+ inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
+ zone_page_state(zone, NR_INACTIVE_ANON);
+ active = zone_page_state(zone, NR_ACTIVE_FILE) +
+ zone_page_state(zone, NR_ACTIVE_ANON);
+ isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
+ zone_page_state(zone, NR_ISOLATED_ANON);
+
+ return isolated > (inactive + active) / 2;
+}
+
+/* possible outcome of isolate_migratepages */
+typedef enum {
+ ISOLATE_ABORT, /* Abort compaction now */
+ ISOLATE_NONE, /* No pages isolated, continue scanning */
+ ISOLATE_SUCCESS, /* Pages isolated, migrate */
+} isolate_migrate_t;
+
+/*
+ * Isolate all pages that can be migrated from the block pointed to by
+ * the migrate scanner within compact_control.
+ */
+static isolate_migrate_t isolate_migratepages(struct zone *zone,
+ struct compact_control *cc)
+{
+ unsigned long low_pfn, end_pfn;
+ unsigned long last_pageblock_nr = 0, pageblock_nr;
+ unsigned long nr_scanned = 0, nr_isolated = 0;
+ struct list_head *migratelist = &cc->migratepages;
+
+ /* Do not scan outside zone boundaries */
+ low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
+
+ /* Only scan within a pageblock boundary */
+ end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
+
+ /* Do not cross the free scanner or scan within a memory hole */
+ if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
+ cc->migrate_pfn = end_pfn;
+ return ISOLATE_NONE;
+ }
+
+ /*
+ * Ensure that there are not too many pages isolated from the LRU
+ * list by either parallel reclaimers or compaction. If there are,
+ * delay for some time until fewer pages are isolated
+ */
+ while (unlikely(too_many_isolated(zone))) {
+ /* async migration should just abort */
+ if (!cc->sync)
+ return ISOLATE_ABORT;
+
+ congestion_wait(BLK_RW_ASYNC, HZ/10);
+
+ if (fatal_signal_pending(current))
+ return ISOLATE_ABORT;
+ }
+
+ /* Time to isolate some pages for migration */
+ cond_resched();
+ spin_lock_irq(&zone->lru_lock);
+ for (; low_pfn < end_pfn; low_pfn++) {
+ struct page *page;
+ bool locked = true;
+
+ /* give a chance to irqs before checking need_resched() */
+ if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
+ spin_unlock_irq(&zone->lru_lock);
+ locked = false;
+ }
+ if (need_resched() || spin_is_contended(&zone->lru_lock)) {
+ if (locked)
+ spin_unlock_irq(&zone->lru_lock);
+ cond_resched();
+ spin_lock_irq(&zone->lru_lock);
+ if (fatal_signal_pending(current))
+ break;
+ } else if (!locked)
+ spin_lock_irq(&zone->lru_lock);
+
+ /*
+ * migrate_pfn does not necessarily start aligned to a
+ * pageblock. Ensure that pfn_valid is called when moving
+ * into a new MAX_ORDER_NR_PAGES range in case of large
+ * memory holes within the zone
+ */
+ if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
+ if (!pfn_valid(low_pfn)) {
+ low_pfn += MAX_ORDER_NR_PAGES - 1;
+ continue;
+ }
+ }
+
+ if (!pfn_valid_within(low_pfn))
+ continue;
+ nr_scanned++;
+
+ /*
+ * Get the page and ensure the page is within the same zone.
+ * See the comment in isolate_freepages about overlapping
+ * nodes. It is deliberate that the new zone lock is not taken
+ * as memory compaction should not move pages between nodes.
+ */
+ page = pfn_to_page(low_pfn);
+ if (page_zone(page) != zone)
+ continue;
+
+ /* Skip if free */
+ if (PageBuddy(page))
+ continue;
+
+ /*
+ * For async migration, also only scan in MOVABLE blocks. Async
+ * migration is optimistic to see if the minimum amount of work
+ * satisfies the allocation
+ */
+ pageblock_nr = low_pfn >> pageblock_order;
+ if (!cc->sync && last_pageblock_nr != pageblock_nr &&
+ get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
+ low_pfn += pageblock_nr_pages;
+ low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
+ last_pageblock_nr = pageblock_nr;
+ continue;
+ }
+
+ if (!PageLRU(page))
+ continue;
+
+ /*
+ * PageLRU is set, and lru_lock excludes isolation,
+ * splitting and collapsing (collapsing has already
+ * happened if PageLRU is set).
+ */
+ if (PageTransHuge(page)) {
+ low_pfn += (1 << compound_order(page)) - 1;
+ continue;
+ }
+
+ /* Try isolate the page */
+ if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
+ continue;
+
+ VM_BUG_ON(PageTransCompound(page));
+
+ /* Successfully isolated */
+ del_page_from_lru_list(zone, page, page_lru(page));
+ list_add(&page->lru, migratelist);
+ cc->nr_migratepages++;
+ nr_isolated++;
+
+ /* Avoid isolating too much */
+ if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
+ break;
+ }
+
+ acct_isolated(zone, cc);
+
+ spin_unlock_irq(&zone->lru_lock);
+ cc->migrate_pfn = low_pfn;
+
+ trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
+
+ return ISOLATE_SUCCESS;
+}
+
+/*
+ * This is a migrate-callback that "allocates" freepages by taking pages
+ * from the isolated freelists in the block we are migrating to.
+ */
+static struct page *compaction_alloc(struct page *migratepage,
+ unsigned long data,
+ int **result)
+{
+ struct compact_control *cc = (struct compact_control *)data;
+ struct page *freepage;
+
+ /* Isolate free pages if necessary */
+ if (list_empty(&cc->freepages)) {
+ isolate_freepages(cc->zone, cc);
+
+ if (list_empty(&cc->freepages))
+ return NULL;
+ }
+
+ freepage = list_entry(cc->freepages.next, struct page, lru);
+ list_del(&freepage->lru);
+ cc->nr_freepages--;
+
+ return freepage;
+}
+
+/*
+ * We cannot control nr_migratepages and nr_freepages fully when migration is
+ * running as migrate_pages() has no knowledge of compact_control. When
+ * migration is complete, we count the number of pages on the lists by hand.
+ */
+static void update_nr_listpages(struct compact_control *cc)
+{
+ int nr_migratepages = 0;
+ int nr_freepages = 0;
+ struct page *page;
+
+ list_for_each_entry(page, &cc->migratepages, lru)
+ nr_migratepages++;
+ list_for_each_entry(page, &cc->freepages, lru)
+ nr_freepages++;
+
+ cc->nr_migratepages = nr_migratepages;
+ cc->nr_freepages = nr_freepages;
+}
+
+static int compact_finished(struct zone *zone,
+ struct compact_control *cc)
+{
+ unsigned int order;
+ unsigned long watermark;
+
+ if (fatal_signal_pending(current))
+ return COMPACT_PARTIAL;
+
+ /* Compaction run completes if the migrate and free scanner meet */
+ if (cc->free_pfn <= cc->migrate_pfn)
+ return COMPACT_COMPLETE;
+
+ /*
+ * order == -1 is expected when compacting via
+ * /proc/sys/vm/compact_memory
+ */
+ if (cc->order == -1)
+ return COMPACT_CONTINUE;
+
+ /* Compaction run is not finished if the watermark is not met */
+ watermark = low_wmark_pages(zone);
+ watermark += (1 << cc->order);
+
+ if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
+ return COMPACT_CONTINUE;
+
+ /* Direct compactor: Is a suitable page free? */
+ for (order = cc->order; order < MAX_ORDER; order++) {
+ /* Job done if page is free of the right migratetype */
+ if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
+ return COMPACT_PARTIAL;
+
+ /* Job done if allocation would set block type */
+ if (order >= pageblock_order && zone->free_area[order].nr_free)
+ return COMPACT_PARTIAL;
+ }
+
+ return COMPACT_CONTINUE;
+}
+
+/*
+ * compaction_suitable: Is this suitable to run compaction on this zone now?
+ * Returns
+ * COMPACT_SKIPPED - If there are too few free pages for compaction
+ * COMPACT_PARTIAL - If the allocation would succeed without compaction
+ * COMPACT_CONTINUE - If compaction should run now
+ */
+unsigned long compaction_suitable(struct zone *zone, int order)
+{
+ int fragindex;
+ unsigned long watermark;
+
+ /*
+ * order == -1 is expected when compacting via
+ * /proc/sys/vm/compact_memory
+ */
+ if (order == -1)
+ return COMPACT_CONTINUE;
+
+ /*
+ * Watermarks for order-0 must be met for compaction. Note the 2UL.
+ * This is because during migration, copies of pages need to be
+ * allocated and for a short time, the footprint is higher
+ */
+ watermark = low_wmark_pages(zone) + (2UL << order);
+ if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
+ return COMPACT_SKIPPED;
+
+ /*
+ * fragmentation index determines if allocation failures are due to
+ * low memory or external fragmentation
+ *
+ * index of -1000 implies allocations might succeed depending on
+ * watermarks
+ * index towards 0 implies failure is due to lack of memory
+ * index towards 1000 implies failure is due to fragmentation
+ *
+ * Only compact if a failure would be due to fragmentation.
+ */
+ fragindex = fragmentation_index(zone, order);
+ if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
+ return COMPACT_SKIPPED;
+
+ if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
+ 0, 0))
+ return COMPACT_PARTIAL;
+
+ return COMPACT_CONTINUE;
+}
+
+static int compact_zone(struct zone *zone, struct compact_control *cc)
+{
+ int ret;
+
+ ret = compaction_suitable(zone, cc->order);
+ switch (ret) {
+ case COMPACT_PARTIAL:
+ case COMPACT_SKIPPED:
+ /* Compaction is likely to fail */
+ return ret;
+ case COMPACT_CONTINUE:
+ /* Fall through to compaction */
+ ;
+ }
+
+ /* Setup to move all movable pages to the end of the zone */
+ cc->migrate_pfn = zone->zone_start_pfn;
+ cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
+ cc->free_pfn &= ~(pageblock_nr_pages-1);
+
+ migrate_prep_local();
+
+ while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
+ unsigned long nr_migrate, nr_remaining;
+ int err;
+
+ switch (isolate_migratepages(zone, cc)) {
+ case ISOLATE_ABORT:
+ ret = COMPACT_PARTIAL;
+ goto out;
+ case ISOLATE_NONE:
+ continue;
+ case ISOLATE_SUCCESS:
+ ;
+ }
+
+ nr_migrate = cc->nr_migratepages;
+ err = migrate_pages(&cc->migratepages, compaction_alloc,
+ (unsigned long)cc, false,
+ cc->sync);
+ update_nr_listpages(cc);
+ nr_remaining = cc->nr_migratepages;
+
+ count_vm_event(COMPACTBLOCKS);
+ count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
+ if (nr_remaining)
+ count_vm_events(COMPACTPAGEFAILED, nr_remaining);
+ trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
+ nr_remaining);
+
+ /* Release LRU pages not migrated */
+ if (err) {
+ putback_lru_pages(&cc->migratepages);
+ cc->nr_migratepages = 0;
+ }
+
+ }
+
+out:
+ /* Release free pages and check accounting */
+ cc->nr_freepages -= release_freepages(&cc->freepages);
+ VM_BUG_ON(cc->nr_freepages != 0);
+
+ return ret;
+}
+
+unsigned long compact_zone_order(struct zone *zone,
+ int order, gfp_t gfp_mask,
+ bool sync)
+{
+ struct compact_control cc = {
+ .nr_freepages = 0,
+ .nr_migratepages = 0,
+ .order = order,
+ .migratetype = allocflags_to_migratetype(gfp_mask),
+ .zone = zone,
+ .sync = sync,
+ };
+ INIT_LIST_HEAD(&cc.freepages);
+ INIT_LIST_HEAD(&cc.migratepages);
+
+ return compact_zone(zone, &cc);
+}
+
+int sysctl_extfrag_threshold = 500;
+
+/**
+ * try_to_compact_pages - Direct compact to satisfy a high-order allocation
+ * @zonelist: The zonelist used for the current allocation
+ * @order: The order of the current allocation
+ * @gfp_mask: The GFP mask of the current allocation
+ * @nodemask: The allowed nodes to allocate from
+ * @sync: Whether migration is synchronous or not
+ *
+ * This is the main entry point for direct page compaction.
+ */
+unsigned long try_to_compact_pages(struct zonelist *zonelist,
+ int order, gfp_t gfp_mask, nodemask_t *nodemask,
+ bool sync)
+{
+ enum zone_type high_zoneidx = gfp_zone(gfp_mask);
+ int may_enter_fs = gfp_mask & __GFP_FS;
+ int may_perform_io = gfp_mask & __GFP_IO;
+ struct zoneref *z;
+ struct zone *zone;
+ int rc = COMPACT_SKIPPED;
+
+ /*
+ * Check whether it is worth even starting compaction. The order check is
+ * made because an assumption is made that the page allocator can satisfy
+ * the "cheaper" orders without taking special steps
+ */
+ if (!order || !may_enter_fs || !may_perform_io)
+ return rc;
+
+ count_vm_event(COMPACTSTALL);
+
+ /* Compact each zone in the list */
+ for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
+ nodemask) {
+ int status;
+
+ status = compact_zone_order(zone, order, gfp_mask, sync);
+ rc = max(status, rc);
+
+ /* If a normal allocation would succeed, stop compacting */
+ if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
+ break;
+ }
+
+ return rc;
+}
+
+
+/* Compact all zones within a node */
+static int compact_node(int nid)
+{
+ int zoneid;
+ pg_data_t *pgdat;
+ struct zone *zone;
+
+ if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
+ return -EINVAL;
+ pgdat = NODE_DATA(nid);
+
+ /* Flush pending updates to the LRU lists */
+ lru_add_drain_all();
+
+ for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
+ struct compact_control cc = {
+ .nr_freepages = 0,
+ .nr_migratepages = 0,
+ .order = -1,
+ };
+
+ zone = &pgdat->node_zones[zoneid];
+ if (!populated_zone(zone))
+ continue;
+
+ cc.zone = zone;
+ INIT_LIST_HEAD(&cc.freepages);
+ INIT_LIST_HEAD(&cc.migratepages);
+
+ compact_zone(zone, &cc);
+
+ VM_BUG_ON(!list_empty(&cc.freepages));
+ VM_BUG_ON(!list_empty(&cc.migratepages));
+ }
+
+ return 0;
+}
+
+/* Compact all nodes in the system */
+static void compact_nodes(void)
+{
+ int nid;
+
+ for_each_online_node(nid)
+ compact_node(nid);
+}
+
+/* The written value is actually unused, all memory is compacted */
+int sysctl_compact_memory;
+
+/* This is the entry point for compacting all nodes via /proc/sys/vm */
+int sysctl_compaction_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *length, loff_t *ppos)
+{
+ if (write)
+ compact_nodes();
+
+ return 0;
+}
+
+int sysctl_extfrag_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *length, loff_t *ppos)
+{
+ proc_dointvec_minmax(table, write, buffer, length, ppos);
+
+ return 0;
+}
+
+#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
+ssize_t sysfs_compact_node(struct sys_device *dev,
+ struct sysdev_attribute *attr,
+ const char *buf, size_t count)
+{
+ compact_node(dev->id);
+
+ return count;
+}
+static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
+
+int compaction_register_node(struct node *node)
+{
+ return sysdev_create_file(&node->sysdev, &attr_compact);
+}
+
+void compaction_unregister_node(struct node *node)
+{
+ return sysdev_remove_file(&node->sysdev, &attr_compact);
+}
+#endif /* CONFIG_SYSFS && CONFIG_NUMA */